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Abstract

Well-established animal models of depression have described a proximal relationship between 

stress and central nervous system (CNS) inflammation – a relationship mirrored in the 

peripheral inflammatory biomarkers of individuals with depression. Evidence also suggests that 

stress-induced proinflammatory states can contribute to the neurobiology of treatment-resistant 

depression. Interestingly, ketamine, a rapid-acting antidepressant, can partially exert its therapeutic 

effects via anti-inflammatory actions on the hypothalamic-pituitary-adrenal (HPA) axis, the 

kynurenine pathway or by cytokine suppression. Further investigations into the relationship 

between ketamine, inflammation and stress could provide insight into ketamine’s unique 

therapeutic mechanisms and stimulate efforts to develop rapid-acting, anti-inflammatory-based 

antidepressants.
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Introduction

Depression is the leading cause of disability worldwide, affecting 322 million people.1 In the 

USA, research suggests that approximately one-third of sufferers have treatment-resistant 

depression (TRD), broadly defined as non-response to conventional antidepressants.2 One 

of the primary obstacles to understanding depression is its characteristic heterogeneity in 

the course of illness, biomarkers, treatment response and genetic polymorphisms. As such, 

recent efforts within psychiatry have sought to establish clinically relevant biomarker and 

symptom-based subgroups under the umbrella of depressive disorders.

For over three decades, researchers have studied the relationship between depressive 

symptoms and inflammatory states.3 This interest began with the observation that chronic 

administration of interferon (IFN)-α – a proinflammatory cytokine used to treat hepatitis 

C and other malignancies – precipitated depressive symptoms that responded to standard 

antidepressant interventions.4 As first introduced by Dantzer and colleagues,5 the concept 

of ‘sickness-behavior’ has linked inflammation and depression through the hypothesis that 

constant activation of the peripheral immune system leads to circulating proinflammatory 

cytokines that increase immune signaling in the brain and subsequently worsen sickness 

behavior, predisposing a person to depression. Preclinical studies also found that peripheral 

immune system activation via systemic administration of lipopolysaccharide (LPS), an 

endotoxin, reliably triggered ‘depressive-like’ behaviors in rodents.6 Acute and chronic 

stressors that play an integral part in the etiology of depression7 also reliably trigger 

inflammatory responses.8

Indeed, emerging evidence from population-based studies supports the notion that chronic, 

low-grade inflammation – although not present in all individuals with depression – could 

nevertheless play a key part in the pathophysiology of depression for a subset of patients.9 

Data from longitudinal studies suggest that dysregulation of the inflammatory response is 

associated with a more severe course of illness, higher recurrence of depressive symptoms 

and worse outcomes, including impaired brain connectivity within motivation and reward 

circuits,10 increased suicidality11 and, notably, greater resistance to conventional therapies.12 

Reward circuits can also impact a hallmark symptom of TRD: anhedonia, which has 

also been consistently linked to inflammation.13 Other factors such as obesity and other 

conditions associated with chronic inflammation also appear to increase the development of 

inflammation-associated sickness and depressive symptoms, as well as their persistence.5

Subanesthetic doses of the glutamatergic modulator racemic ketamine, as well as its 

enantiomers, have consistently been shown to exert rapid-acting antidepressant effects in 

patients with TRD and treatment-resistant bipolar depression (reviewed in 14). Ketamine 

has also been found to successfully treat traditionally treatment-refractive symptom domains 

such as anhedonia, suicidality and amotivation.15,16 Within the context of this review, it is 

important to note that, although researchers primarily attribute ketamine’s therapeutic effects 

to upregulated neuroplasticity induced via glutamatergic modulation,17 growing evidence 

suggests that it might also regulate acute and chronic inflammatory reactions and restore 

immune homeostasis.18,19
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This review of previous and emerging research discusses the links between depression, 

stress and inflammation, particularly inflammation as an potential indicator of TRD, 

and summarizes the preclinical and clinical evidence for ketamine’s anti-inflammatory 

and immunomodulatory properties in the context of its antidepressant effects. Potential 

mediators of the process – including the kynurenine pathway and the hypothalamic-

pituitary-adrenal (HPA) axis – are also discussed, as is the hypothesis that ketamine’s unique 

ability to reduce depressive symptoms in TRD could in fact be caused by its ability to reduce 

stress-induced inflammation.

Chronic stress, depression and inflammation: an overview

Stress is an inherent physiologically or emotionally coordinated response that activates 

processes in the body to maintain homeostasis after threatening stimuli or, under acute stress 

conditions, helps anticipate challenges or response to dangerous situations. Chronic stress is 

loosely defined as a sustained threat lasting at least several weeks that is accompanied by a 

resulting negative emotional state and deleterious effects on body systems. Under chronic, 

prolonged stress conditions, the brain and body lose their ability to restore homeostasis. 

The link between inflammation and chronic stress probably results from an evolutionary 

adaptation.8 In prehistoric environments, this connection between the perception of danger 

and the risk of subsequent tissue injury or pathogen exposure was believed to be so reliable 

that evolution favored anticipatory inflammatory responses to many environmental stressors, 

including psychosocial stressors. In the context of the present review, chronic stress is 

known to be a major risk factor for depression.7

The relationship between chronic stress and depression holds true in preclinical models, 

where chronic stress protocols [e.g., social defeat, unpredictable mild stress and chronic 

corticosterone (CORT) administration] are the gold standard for producing depressive-

like behaviors in animals, including symptom profiles such as learned helplessness and 

anhedonia.20 In animal models, the upregulation of stress hormones was found to robustly 

increase inflammatory markers such as tumor necrosis factor (TNF)-α and interleukin 

(IL)-1β.21 Preclinical studies also found that chronic stress induces central nervous system 

(CNS) inflammation characterized by the secretion of cytokines and neuroinflammation.22 

Interestingly, one study found that chronic social instability stress did not alter hippocampal 

proinflammatory cytokines; however, the study was conducted in females, suggesting 

potential gender differences in the links between chronic stress and inflammation.23

Multiple clinical studies have reported elevated levels of proinflammatory cytokines in 

individuals with depression. For instance, meta-analyses found that elevated levels of 

C-reactive protein (CRP) – a common marker of inflammation – predicted subsequent 

depressive symptoms24 and were strongly associated with a diagnosis of depression.25 

Another recent meta-analysis of individuals with depression found that a quarter of 

participants had low-grade inflammation (CRP >3 mg/l), and half had elevated CRP levels 

(CRP >1 mg/l).26 Other meta-analyses reported cerebrospinal fluid (CSF) and peripheral 

elevations of other proinflammatory markers such as IL-6, IL-8 and TNF-α.27,28 Supporting 

the notion that higher levels of inflammation play a causative part in depression, one 

longitudinal study found that participants with elevated IL-6 and CRP levels at age nine 
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were more likely to be evaluated as depressed at age 18.29 Nevertheless, many other studies 

have found no such association between increased levels of CRP and IL-6 (reviewed 

in 30), suggesting that any putative relationship between depression and inflammation 

remains unclear. Such differences could arise from disparities in the chronicity of MDD, 

given that some evidence suggests that the early phases of MDD might not present 

with heightened inflammation, which can predict poor response to the initial prescription 

of antidepressants.31,32 Baseline low-grade inflammation has been shown to mediate 

endothelial dysfunction, which in turn can predict persistent depressive symptoms and 

impact the chronicity of MDD.33 In a sample from The Netherlands, higher baseline 

inflammatory markers predicted a subsequent chronic course of illness in women, and 

depressive severity predicted subsequent higher levels of IL-6 in men and women.34 Thus, 

the presence of increased inflammatory markers could represent a distinct subgroup within 

the depressive diagnostic label, and the mixed results warrant further investigation.

Genetic differences and epigenetic changes are also major drivers of response to chronic 

stress. Genetically, studies have determined that ~40% of MDD is heritable.35 The 

past two decades of research have also determined that chronic stress can produce 

significant epigenetic changes that contribute to the pathophysiology of depression.36 As 

the major connection between genetics and the environment, epigenetic changes affect 

the availability of DNA to transcription factors through DNA methylation and histone 

modifications, including methylation, acetylation, phosphorylation and more.37 Major 

findings on inflammation-promoting epigenetic changes after chronic stress include histone 

deacetylase inhibitors, which have been shown to ameliorate depressive-like behavior and 

microglial activation.38–40 In addition, chronic corticosterone-induced expression of the 

gene Nfkb1 was shown to be accompanied by upregulation of TNF-α and IL-1β.41 Although 

an in-depth discussion of epigenetic mechanisms is beyond the scope of this review, these 

mechanisms were recently reviewed extensively (see 42).

It is also important to acknowledge the potential role of gender in the interplay between 

chronic stress, depression and inflammation. Rates of depression have consistently been 

found to be two-to-three-fold higher in females,43 and clinical research also suggests 

that women might be particularly vulnerable to the effects inflammation on depressive 

symptomatology.44 By contrast, some preclinical models found that males were more 

vulnerable to developing depressive-like behaviors after inflammatory insult.45 Throughout 

this review, gender differences will be discussed wherever possible.

The relationship between inflammation and TRD

As noted above, evidence suggests that individuals with MDD with heightened 

inflammatory markers can constitute a subpopulation uniquely associated with treatment-

refractory symptoms.46 Notably, the ability to model TRD in animals is essential for future 

contributions to preclinical research exploring the underlying mechanisms of inflammation 

in treatment-resistance; but this field is still in its infancy.47 Proposed solutions include 

animal models that receive cyclic exposure to chronic stress and/or using animals that do 

not respond to conventional antidepressants, such as Wistar–Kyoto rats.48 Another potential 
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proxy would be the measurement of behaviors known to be more present in TRD, such as 

anhedonia, anergia and motivation.

In clinical research, body mass index (BMI)-corrected serum CRP levels were recently 

found to be significantly elevated in TRD participants relative to treatment-responsive 

MDD participants, unmedicated MDD participants and healthy volunteers.49 These findings 

are complemented by two randomized, controlled trials that found that baseline CRP 

levels predicted lack of response to conventional antidepressants.50,51 Another study found 

distinct results in whole-blood samples, with a significant upregulation in mRNA-indicated 

inflammasome activation and glucocorticoid resistance in the MDD population (untreated 

versus treatment-responsive versus TRD). Of the mRNAs identified, six (P2RX7, IL-1β, 

IL-6, TNF-α, CXCL12 and GR) differentiated between TRD and treatment-responsive 

subgroups.52 By contrast, another study found no evidence of large inflammatory differences 

in the peripheral blood mononuclear cells (PBMCs) of healthy volunteers versus MDD 

patients (untreated versus treatment-responsive versus TRD) but did find strong evidence of 

increased biological aging in the MDD sample.53

One study of unmedicated MDD participants found that those who, on average, had failed 

to respond to three or more antidepressant trials had significantly higher levels of CRP, IL-6, 

TNF receptor 2 (sTNF-R2) and TNF-α than those who, on average, had failed to respond 

to less than one trial.46 A meta-analysis found that higher baseline levels of inflammatory 

markers in general were associated with poor treatment response, and that high TNF-α 
levels in particular were associated with TRD.54 An analysis of participants with MDD 

and bipolar depression who participated in a randomized, controlled trial of escitalopram 

versus nortriptyline found that cutoffs for absolute mRNA levels of IL-1β and macrophage 

migration inhibitory factor (MIF) in blood accurately predicted 100% of the non-responders 

in their study.55 Interestingly, a randomized, controlled trial of the anti-inflammatory agent 

infliximab found that its antidepressant effects were specific to a subset of TRD participants 

with elevated baseline plasma CRP levels >5mg/l56; because this impact was not consistent 

with results observed in individuals with bipolar I and II depression, it suggests a potential 

unique efficacy for TRD.57 Finally, adjunctive use of the anti-glucocorticoid therapeutic 

metyrapone actually increased IL-6 levels in individuals diagnosed with TRD, an increase 

associated with poorer outcomes to treatment; this finding was hypothesized to result from 

potential glucocorticoid system overcompensation.58

Imaging studies are also beginning to confirm that this peripheral inflammation is mirrored 

in the brain itself. Positron emission tomography (PET) studies of translocator protein 

18 kDa (TSPO) – a biomarker of neuroinflammation – have typically reported greater 

TSPO binding in the prefrontal cortex (PFC) and anterior cingulate cortex (ACC) of 

individuals experiencing a major depressive episode.59 In an open-label trial of TRD 

participants who received the anti-inflammatory agent celecoxib, investigators plotted the 

reduction in Hamilton Depression Rating Scale (HAM-D) score against baseline TSPO 

volume in the PFC and ACC and found that HAM-D scores rapidly dropped post-treatment 

as baseline TSPO distribution volume decreased.60 A recent parallel study measured the 

impact of minocycline, a tetracycline antibiotic with anti-inflammatory properties, on TRD 

participants experiencing a major depressive episode; minocycline did not significantly 
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impact TSPO binding,61 although another study found that it significantly decreased 

HAM-D scores in participants with elevated CRP levels (CRP ≥3mg/ml).62 Other studies 

investigating minocycline as an adjunctive treatment for TRD found no significant change in 

depressive symptoms.63 Finally, increases in immune factors after ex vivo LPS stimulation 

of PBMCs were associated with reduced reward anticipation in the ventral striatum, as 

measured via functional magnetic resonance imaging (fMRI).64 This builds on previous 

research that found that endotoxin administration to healthy volunteers significantly 

increased depressed mood over time and reduced ventral striatum responses to reward.65 

This effect could also be gender-dependent, given that females demonstrated greater 

reductions in ventral striatum activity in response to reward.66 Inflammation can mediate 

motivational behavioral responses by dampening dopamine activity within reward circuits, 

resulting in disrupted frontostriatal functional connectivity.67 Inflammatory processes are 

therefore well-situated to influence the neural circuits underlying motivational symptoms 

related to anhedonia. This is particularly important because behavioral responses to reward 

and social stimuli in patients with anhedonia have been associated with suicidality68 and 

treatment resistance.69 Interestingly, depressive symptoms such as reduced motivation and 

anhedonia correlate significantly with central IL-6 soluble receptor (IL-6sr)70 as well as 

peripheral CRP levels.10,70 A resting-state fMRI study of depressed participants found that 

plasma CRP levels correlated with decreased connectivity between the ventral striatum and 

ventromedial PFC (vmPFC), and that this change in connectivity was itself correlated with 

the severity of anhedonia.10 Consistent with this finding, administration of IFN-α for 4–6 

weeks in 14 individuals with hepatitis C not only induced anhedonia but also reduced 

bilateral activation of the ventral striatum in an fMRI reward task71; change in striatal 

activity again correlated with anhedonia scores.

Relatedly, reduced motivation has been correlated with central levels of TNF-α.70 

Anhedonia, anergia and amotivation all fall under the symptom interest–activity dimension 

of depression; in the large Genome-Based Therapeutic Drugs for Depression (GENDEP) (n 
= 811) and Sequenced Treatment Alternatives to Relieve Depression (STAR*D) (n = 3637) 

studies, this dimension was shown to best predict poor antidepressant response.72

Glutamate can also modulate the interplay between inflammation and depression. Higher 

glutamate release from microglial cells appears to increase concentrations of extracellular 

glutamate, promote maladaptive glutamate metabolism, contribute to loss of synaptic fidelity 

and decrease the specificity of neurotransmission – all of which can worsen depressive-

like behaviors and increase circuit dysfunction.73 Although most research in this area 

has focused on chronic stress, acute traumatic stress can similarly provoke glutamatergic 

signaling dysfunction.74 Administration of the proinflammatory cytokine IFN-α increased 

glutamate concentrations in the dorsal anterior cingulate cortex and basal ganglia.75,76 

Notably, individuals with depression who also had high concentrations of plasma CRP and 

high levels of basal ganglia glutamate were significantly more likely to have more-severe 

symptom presentations of anhedonia and cognitive slowing.77 In analyses of postmortem 

tissue, glutamate was also found to be increased in the frontal cortex of those diagnosed 

with MDD or bipolar disorder.78 Increased mGluR2/3 expression was also found in the PFC 

of individuals with MDD, a finding paralleled in a Rhesus monkey model of depression.79 

By contrast, mGluR5 expression was found to be decreased in the PFC of postmortem 
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MDD tissue, and participants with MDD had significantly lower levels of mGluR5 binding 

in multiple regions, as ascertained through PET imaging.80 mRNA alterations related to 

glutamate signaling pathways have also been found in the locus coeruleus and hippocampus 

of individuals with MDD.81,82

Another important indicator of glutamatergic activity implicated in depression is the 

glutamate–glutamine cycle. Glutamate is synthesized from glutamine in neurons and, after 

release into the synapse, is taken up by sodium-dependent glutamate transporters (EAAT1 

and EEAT2) located on astrocytes. This scavenged glutamate is then converted back to 

glutamine and transported back to neurons by neutral amino acid transporters (SNAT1 

and SNAT2), continuing the cycle. In the CSF, glutamine levels have been found to be 

upregulated in individuals with MDD.83 In addition, increases in the ratio of glutamine to 

glutamate have been found in the CSF of individuals with MDD compared with healthy 

volunteers – a ratio that correlated with the severity of depression in a three-year follow-

up.84 Changes in this cycle have also been implicated in suicide; specifically, differential 

changes in neuronal and astrocytic components of the cycle were observed in postmortem 

tissue obtained from healthy volunteers, individuals with MDD and those who died by 

suicide.85

Despite these intriguing findings, the role of glutamate in depression remains unclear. As 

an example, magnetic resonance spectroscopy (MRS)86 studies found decreased levels of 

glutamate, or no differences at all,87 in individuals with depression. Other studies found that 

the glutamatergic neurons of individuals with depression exhibited decreased mitochondrial 

energy production.88 One important caveat is that glutamate is often measured using Glx – a 

composite measure that includes glutamate and glutamine. At least one study that separated 

these measures found no significant differences in glutamate levels in participants with 

depression.89

Preliminary research is also investigating the response of inflammatory proteins to 

psychological therapy. In one study, poor response to treatment was associated with higher 

baseline levels of TNF-α, IL-6 and soluble intracellular adhesion molecule-1 and with 

higher post-therapeutic levels of CRP, thymus and activation-regulated chemokine, and 

macrophage chemoattractant protein-4.90 At least one review of the literature also reported a 

general reduction in inflammation after cognitive behavioral therapy for depression.91

Taken together, inflammatory markers seem to cause bona fide alterations in brain network 

activity that can, in turn, cause depressive symptoms. Thus, the evidence suggests that 

inflammation contributes to depressive pathology in at least some cases and that determining 

potential mediators of the stress response can inform the development of therapeutic 

interventions.

Potential mediators between depression and inflammation

HPA axis

HPA axis hyperactivity is one of the most consistent findings in studies exploring the 

underlying pathophysiology of depression. In healthy states, the HPA axis is activated 

Johnston et al. Page 7

Drug Discov Today. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



by acute stress, stimulating the release of corticotropin-releasing hormone (CRH) and 

vasopressin (AVP) from the hypothalamus. This, in turn, stimulates the release of 

adrenocorticotrophic hormone (ACTH) and glucocorticoids (primarily cortisol in humans 

and corticosterone in rodents). After an acute stressor, these glucocorticoids interact with 

their widely expressed receptors (either mineralocorticoid or glucocorticoid receptors), some 

of which interact with the hypothalamus to form a negative feedback loop to shut off 

HPA axis activity. Chronic stress disrupts this feedback loop, causing a downregulation 

of glucocorticoid receptors that impairs the ability to shut off the HPA axis, leading to 

dysfunctional hyperactivity.92

Many individuals with depression exhibit HPA axis dysfunction, such as continuously 

elevated levels of cortisol and CRH.93 This hypersecretion can cause hypercortisolism and, 

as a result, decreased dopaminergic reward-system responsivity.94 In females, increased hair 

cortisol concentrations were associated with poor performance on measures of cognition and 

memory, an association that appeared to be mediated by CRP levels.95 Early-life adversity 

has also been shown to increase vulnerability to acute social stress, an effect mediated by 

HPA-axis and immune activation,96 and this was also found to impact later diurnal HPA axis 

functioning in adulthood.97

One of the most compelling theories regarding the clinical relevance of inflammation in 

depression is that inflammation can differentiate depressive subtypes and mediate specific 

symptoms. For example, a recent study found that biomarkers of HPA axis activity and 

subsequent inflammation (such as cortisol and CRP) were more strongly associated with 

the presence of somatic symptoms rather than cognitive-affective symptoms.98 For instance, 

a recent review found that cancer patients – who are significantly more likely to have 

depressive symptoms and a worsened symptom profile – can exhibit increased depressive-

like behaviors owing to hyperactivity of the HPA axis caused by cancer and anticancer 

treatments.99 In a CORT-injected mouse model, the antidepressant-like effects of catalpol, 

an iridoid glucoside, also appeared to be mediated through the HPA axis, suppressing levels 

of CORT, ACTH and CRH.100

The kynurenine pathway

One hypothesis of inflammation-mediated depressive pathogenesis is that stress and 

inflammatory cytokines promote kynurenine pathway signaling.101 Tryptophan, a precursor 

for serotonin synthesis, is competitively consumed by the kynurenine pathway. One of the 

rate-limiting enzymes of this pathway: indoleamine-2,3-dioxygenase (IDO), is expressed 

mainly in immune and neuronal cells and induced by cytokines, cortisol and LPS, generally 

indicating a proinflammatory state.102 Tryptophan-2,3-dioxygenase (TDO), the other main 

enzyme in the kynurenine pathway that catalyzes tryptophan catabolism, is also induced 

under proinflammatory states.103 Thus, increased cytokine and cortisol levels can reduce 

serotonin levels via tryptophan depletion, a process that has been experimentally shown 

to induce depressive symptoms in vulnerable persons,104 although these findings have 

not always been consistent.105 Tryptophan–kynurenine metabolism can also provide a link 

between the gut–brain axis and inflammatory bowel disease and depression, two disorders 

that are strongly associated with one another.106 Acute and chronic stress also impact 
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the rate-limiting enzymes involved in the tryptophan–kynurenine balance (Figure 1). For 

example, IFN-γ and IL-1β are potent inducers of IDO and TDO, which are highly impacted 

by immune activation in the brain. In addition, stress-induced corticosterone release and the 

consequent cascading activation of hepatic TDO to tryptophan metabolism ultimately lead to 

the production of kynurenine, which provokes a depression-related behavioral phenotype.107 

IDO and TDO can therefore represent promising targets for the treatment of depression 

associated with stress-related disorders marked by kynurenine pathway activation (Figure 1).

Kynurenine pathway products are biologically active. Kynurenic acid (KA) is considered 

to be neuroprotective108 and a potential therapeutic target for drug development in mood 

disorders. Another product, quinolinic acid (QA), is an endogenous neurotoxin that 

generates free radicals109 and causes excitotoxicity by inducing the release and inhibiting 

the reuptake of glutamate.110 One major component of the kynurenine pathway is its ability 

to affect the glutamatergic system, where it directly and indirectly influences ionotropic 

and metabotropic glutamate receptors and vesicular glutamate transport.111 These effects are 

hypothesized to act as a main link between chronic stress, depression and inflammation.112 

For instance, QA directly activates N-methyl-D-aspartate receptors (NMDARs), increases 

synaptosomal glutamate release and inhibits glutamate uptake, making it uniquely placed to 

mediate interactions between ketamine and inflammation.113 KA and QA are metabolized 

from kynurenine by astrocytes and microglia, respectively, and evidence suggests that 

individuals with MDD have reduced astrocyte density114 and function115 along with 

increased microglial activation and number.116

Supporting the clinical relevance of this pathway, studies have reported higher ratios of 

kynurenine to tryptophan levels,117,118 lower levels of KA119 and lower KA:QA ratios120 

at baseline in MDD participants. In addition, QA elevations were found in the CSF of 

recent suicide attempters,121 and more QA-positive cells were found in the brain of suicide 

decedents.122 Finally, altered peripheral ratios of KA:QA levels were shown to correlate 

with increased anhedonia in MDD participants123 as well as with depression and fatigue in 

cancer patients.124

Inflammation-mediated tryptophan metabolism in the gut microbiome has also been 

implicated in depression.125 Intestinal inflammation, particularly via increased IFN-γ, was 

able to induce IDO, shifting tryptophan metabolism toward the production of kynurenine 

rather than serotonin.126,127 Kynurenine is able to cross the blood–brain barrier,128 

suggesting that alterations from the gut microbiome could enter the blood circulation 

and impact levels of kynurenine and kynurenic metabolites in the brain. Fecal microbiota 

transplantation from participants with depression into a rat model induced depressive-like 

behaviors that were associated with increased levels of inflammatory markers (IL-6, TNF-α, 

CRP) as well as an increased kynurenine:tryptophan ratio.129 This finding was paralleled 

in another fecal microbiota transplant from chronically stressed mice to control mice that 

increased IDO1 expression and proinflammatory cytokine levels.130 For a recent summary 

of studies exploring tryptophan metabolism, gut microbiota and depression, we refer the 

interested reader to a recent summary by Lukic and colleagues.131 Taken together, this 

evidence suggests that the kynurenine pathway could play a key part in mediating the links 

between inflammation and depression.
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Ketamine and inflammation

The NMDAR antagonist ketamine is uniquely effective for treating TRD, with a response 

rate ranging from 25% to 85% at 24 h post-infusion.132 It has also been shown to 

effectively reduce suicidal ideation and anhedonia,15,16 as well as fatigue and amotivation 

symptoms.133,134 Recent clinical and preclinical evidence indicates that, at antidepressant 

doses, ketamine can exert these unique therapeutic effects in part by modulating 

inflammation.19,117 It is important to note that most of the studies described below reflect 

acute, not chronic, ketamine administration, which could affect the interpretation of results.

Although considerable volumes of research, and clinical studies in particular, have focused 

on the (S)-ketamine enantiomer, significant preclinical work has begun to explore the 

mechanisms behind ketamine’s (R)-enantiomer and various ketamine metabolites. Briefly, 

(R)-ketamine binds with around fourfold less affinity or potency to inhibit NMDARs 

than the (S)-enantiomer and has shown promise in terms of its antidepressant effects 

and reduced adverse side effect profile in animal models for depression135 and in early 

clinical trials.136 In addition, a recent open-label study found that (R)-ketamine had 

rapid and sustained antidepressant effects,137 and further clinical trials are currently 

underway by multiple companies. Two major ketamine metabolites [norketamine and 

hydroxynorketamine (HNK)], which have different binding capacities to NMDARs,138 

have also recently been studied in animal models of depression and early-phase clinical 

trials. Thus far, these metabolites appear to have potential antidepressant-like effects when 

administered directly.139–141 In addition, varying levels of ketamine metabolites in plasma 

and CSF have been correlated with clinical response to ketamine.142 Although an in-depth 

discussion of the hypothesized distinct mechanisms underlying the effects of ketamine, 

its enantiomers and its metabolites is beyond the scope of this review, these have all 

recently been reviewed extensively.143 In particular, differences between enantiomers and 

metabolites should be considered when defining the role that ketamine has in inflammatory 

processes.

Preclinical evidence of ketamine’s anti-inflammatory effects

Substantial preclinical evidence suggests that ketamine reduces inflammation by regulating 

the immune system. In vitro ketamine application to rodent glial cells144 and 

macrophages145 attenuated markers and mediators of LPS-induced inflammatory responses, 

such as TNF-α, IL-1β, high mobility group box 1 (HMGB1), nitric oxide (NO), inducible 

nitric oxide synthase (iNOS) and prostaglandin E-2.

In Wistar–Kyoto rats, a proposed model of TRD,146 ketamine showed rapid-acting 

antidepressant effects by inhibiting the NLR family pyrin domain containing 3 (NLRP3) 

inflammasome pathway, an effect blocked by application of an autophagy inhibitor.147 In 

addition, low-dose ketamine effectively mediated the gut microbiome bacterial population 

associated with inflammation in Wistar–Kyoto rats.148

In other animal models, administration of intraperitoneal ketamine had prophylactic 

effects against LPS- and chronic-stress-induced depressive behaviors,149–151 an effect that 

appears unique to ketamine versus other NMDAR antagonists.152 For example, ketamine 
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administered one week before stressor application most effectively reduced freezing 

behavior in a contextual fear conditioning task153,154 and improved performance on the 

tail suspension and splash tests.155

Ketamine’s prophylactic effects appear to be, at least in part, mediated via inflammatory 

signaling, such as the NLRP3 inflammasome pathway after LPS or TNF-α adminstration.156 

Cyclooxygenase-2 (COX-2) expression was also shown to be reduced in a gender-

specific manner after ketamine administration.153 (R)-Ketamine has also been shown to 

have prophylactic effects in mice exposed to chronic stress, improving behavioral and 

biological outcomes, such as altered gene expression of Bdnf and Mecp2 mediated through 

miR-132-5p activity.157 Interestingly, this prophylactic effect did not generalize to its 

metabolites [(2R,6R)-HNK and (R)-norketamine]; however, the prophylactic effects of 

different metabolites could be gender-specific, because ovarian hormones are required for 

the protective effects of ketamine and (2R,6R)-HNK in female mice.158 These prophylactic 

effects of (R)-ketamine in chronic stress and inflammation-based models appear to be 

mediated through microRNA-149 and nuclear factor of activated T cells 4 (NFATc4), which 

play a part in mediating cytokine expression.159,160 Together, these results emphasize the 

importance of enantiomer-specific research when discussing the impact of ketamine on 

inflammatory signaling.

Concurrent with the aforementioned behavioral changes, ketamine also attenuated plasma 

cytokine elevations161 and cytokine expression in rodent tissue samples from the PFC, 

hippocampus, cerebellum and spinal cord.151,162 Differences in ketamine’s prophylactic 

efficacy can arise from different experimental paradigms, such as timing of ketamine 

administration, which should be considered carefully when designing future experiments. 

For instance, most, but not all,150 studies focusing on ketamine’s prophylactic effects have 

administered this agent one week before the stressor to ascertain more long-term effects 

rather than immediate effects. Age and gender should also be considered in future clinical 

applications, given that some preclinical research found greater prophylactic efficacy in 

adolescents153 as well as differences in female response.158

Interestingly, ketamine appears to act directly on immune cells. For instance, S-ketamine – 

the S-enantiomer of racemic ketamine – decreased microglial activity levels in the CNS 

after chronic stress exposure.151 An immunohistochemistry study performed on rodent 

hippocampus samples found that ketamine reversed stress-induced activation of microglia 

caused by chronic restraint by downregulating Toll-like receptor (TLR)/p38 pathway 

activation and P2X7 receptors.162 In chronically stressed mice, pharmacological inhibition 

of TGF-β1 signaling in microglia eliminated (R)-ketamine’s antidepressant effects.163 In 

addition, ketamine and its antidepressant metabolites altered the localization of signal 

transducer and activation of transcription 3 (STAT3) in human microglial cells to regulate 

the ‘response to interferon I’ inflammatory pathway.164 Lastly, a recent study found that the 

antidepressant-like effects of (R)-ketamine were blocked by microglial depletion in chronic-

stress-sensitive mice. (R)-Ketamine was also able to induce brain-derived neurotrophic 

factor (BDNF) transcription by inhibiting MeCP2 and increasing the expression of nuclear-

receptor-binding protein 1 in microglial cultures.165
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More recently, acute intraperitoneal ketamine administration in mice was shown to skew 

the distribution of macrophage populations away from proinflammatory and cytokine-

inducing M1 phenotypes toward tissue-supporting M2 phenotypes.166 This finding was 

also observed in vitro in human monocyte cultures, where the effect could be abolished by 

inhibiting mammalian target of rapamycin (mTOR), a key protein implicated in ketamine’s 

antidepressant effects.167 PBMC samples collected from healthy volunteers and participants 

with MDD after a suicide attempt or with active suicidal ideation found that macrophages in 

MDD participants also skewed toward the inflammatory M1 phenotype.166

Some of ketamine’s anti-inflammatory effects can also be mediated via apoptosis of various 

cell types. In neuronal cell types, anesthetic concentrations of (S)-ketamine attenuated 

expression of Bax, a proapoptotic protein, after cerebral ischemia.168 By contrast, lower 

concentrations of ketamine have been shown to promote apoptosis of T lymphocytes via 

mitochondrial signaling in various cell lines, thus potentially inhibiting downstream cytokine 

production.169 Accumulation of Th17 cells (a proinflammatory T cell subtype) and an 

imbalance of Th17:Treg cells have also been associated with depression,170 and ketamine 

was able to suppress differentiation of this cell subtype, although this process was not 

mediated by apoptosis.171

Ketamine can also indirectly affect inflammation by mediating HPA axis function. 

In chronically stressed mice, acute ketamine administration restored hippocampal 

glucocorticoid receptor expression, counteracting the negative feedback associated with 

HPA overactivation.172 In mice injected with LPS, ketamine significantly reduced 

corticosterone and ACTH production six hours later.173 Similarly, single and repeated 

7-day ketamine administration reduced corticosterone and ACTH levels in mice that had 

undergone 40 days of chronic mild stress.174

Ketamine and kynurenine appear to converge during stress conditions to affect brain and 

behavior. One study found that, although ketamine did not affect QA production after 

LPS administration, it mediated the effects of QA by blocking NMDARs, where QA 

generally binds to contribute to inflammation.113,150 In a chronic unpredictable mild stress 

model, ketamine decreased the KYN:tryptophan ratio in addition to other measures of 

inflammation.175 To more closely mimic TRD, future studies with preclinical models should 

assess the impact of ketamine on inflammation after multiple cycles of chronic stress.

Clinical evidence of ketamine’s anti-inflammatory effects

Multiple inflammatory markers have been linked to ketamine’s clinical therapeutic efficacy. 

In a recent randomized, controlled trial, subanesthetic-dose ketamine (0.5 mg/kg) acutely 

decreased TNF-α levels in TRD patients, and these decreases correlated with reductions 

in Montgomery–Åsberg Depression Rating Scale (MADRS) scores.18 A smaller study of 

individuals with TRD similarly found that higher baseline levels of IL-6 were associated 

with antidepressant response to ketamine.176 In an open-label trial, ketamine robustly 

reduced peripheral levels of multiple cytokines elevated at baseline in TRD participants 

but these levels returned to baseline within 24 h and did not correlate with antidepressant 

response.177 In addition, a recent study in remitted depressed participants found significant 

decreases and time x treatment interactions for multiple cytokines.178 However, other studies 
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obtained mixed results. For example, a post hoc analysis of three ketamine randomized, 

controlled trials of participants with TRD and treatment-resistant bipolar depression found 

that ketamine decreased levels of soluble tumor necrosis factor receptor 1 (sTNFR1) 

but increased peripheral levels of IL-6 and TNF-α.179 Interestingly, a recent open-label 

ketamine trial found that IL-8 did not predict antidepressant response to ketamine but 

that there was a trend toward prediction in females, suggesting a potential gender-specific 

effect.180 Rapamycin, an mTORC1 inhibitor, was also found to prolong ketamine’s 

antidepressant effects, which could be at least partly due to its immunosuppressive 

actions.181

The effects of ketamine on the HPA system are less clear. One case study found that 

cortisol levels – as measured by the dexamethasone suppression test – normalized in a TRD 

participant who received three standard ketamine infusions; cortisol levels rose to baseline a 

week later as depressive symptoms returned.182 By contrast, a randomized, controlled trial 

of 12 healthy volunteers who received two back-to-back ketamine infusions (0.29 mg/kg for 

1 h, then 0.57 mg/kg for 1 h) reported doubled plasma cortisol levels 200 min later.183 

Furthermore, another randomized, placebo-controlled trial of healthy volunteers found 

that the post-ketamine increase in cortisol was specific to ketamine, because the NMDA 

antagonist memantine caused no such effect.184 For now, the dearth of properly-powered 

studies examining potential HPA biomarkers post-ketamine treatment in TRD participants 

makes it difficult to draw firm conclusions.

Echoing preclinical findings, modulation of the kynurenine pathway might be involved 

in ketamine’s anti-inflammatory effects. A randomized, controlled trial of TRD 

participants found that those who responded to ketamine had significantly lower plasma 

kynurenine:tryptophan ratios as well as lower kynurenine levels 230 min and 24 h 

post-ketamine administration.117 Furthermore, among participants with TRD and treatment-

resistant bipolar depression who received six ketamine infusions over 12 days, those who 

responded had higher levels of serum KA, both absolute and relative to kynurenine, on 

Days 1 and 13.118 Moreover, at 24 h, both of these metrics correlated with MADRS 

score reductions at Days 1, 13 and 26. Finally, a recent randomized, controlled trial of 

individuals with bipolar depression reported that one ketamine infusion increased KA levels 

one and three days later and decreased IDO levels from 230 min post-infusion to three days 

later.185 Despite these promising findings, it should be noted that another study found only 

trend-level decreases in serum kynurenine after repeated ketamine infusions and no change 

in cortisol-awakening response.119

There is also indirect evidence of ketamine’s anti-inflammatory effects. One post hoc 
analysis of four randomized, controlled trials (n = 108) found that greater BMI predicted 

antidepressant response to ketamine in individuals with MDD or bipolar depression,186 

which could be linked to the finding that proinflammatory agents are often deposited 

in adipose tissue.187 Subsequently, researchers examined adipokine levels and found that 

ketamine reduced plasma levels of resistin, and that low baseline levels of adiponectin 

predicted antidepressant response.188 These findings are congruent with anti-inflammatory 

effects; resistin is a potent proinflammatory agent189 associated with obesity, whereas 

adiponectin is an anti-inflammatory molecule.190 Another study of medication-free TRD 
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participants found that ketamine decreased the expression of receptor activator of nuclear 

factor kappa-B ligand (RANKL), a downstream inflammatory mediator.191 In TRD 

participants, gene expression signatures related to IFN signaling pathway activation were 

upregulated in comparison to healthy volunteers; but this did not mediate a response to 

ketamine.192

Despite these promising findings, it is clear that more research is necessary to clarify 

ketamine’s effects on inflammation in general and on clinical depression subtypes linked 

to inflammation in particular. The mixed results suggest that future studies should compare 

acute versus chronic ketamine administration as well as the short- and long-term effects of 

ketamine, given that some of the aforementioned studies observed an immediate increase 

in inflammatory indicators post-ketamine administration that decreased with time. It is 

also important to note that some clinical studies used ketamine adjunctively with current 

antidepressant therapies, and that administration of concomitant medications could directly 

impact results on inflammation in comparison to ketamine administered alone. Nevertheless, 

promising preclinical evidence and strong associations between TRD and inflammation 

warrant further investigation into the mechanisms by which ketamine can either directly or 

indirectly mediate an inflammatory response.

Concluding remarks

In this era of personalized medicine, the quest to identify subpopulations of individuals 

with MDD based on pathophysiology, symptom dimensions and prognostic biomarkers 

of treatment efficacy holds considerable promise for improving the thus far inadequate 

therapeutic response associated with many currently available pharmacotherapies. This 

review presents evidence that chronic-stress-induced, systemic, proinflammatory states 

can constitute a pathogenic factor that can negatively impact treatment-responsiveness 

in depression. Meanwhile, preliminary but growing evidence suggests that ketamine’s 

unique efficacy in treating these same treatment-refractory symptoms could partly be the 

result of its anti-inflammatory effects, perhaps by directly counteracting the inflammatory 

consequences of chronic stress; these unique effects are not associated with conventional 

antidepressants. These effects can occur via some combination of cytokine suppression, 

alteration of the kynurenine pathway or HPA axis, direct actions on microglia and other 

monocytes, and additional mechanisms not discussed here. In addition, research that 

differentiates between the impact of ketamine’s enantiomers [(R)- and (S)-ketamine) and 

its metabolites [e.g., (2R,6R)-HNK and norketamine] is essential for properly outlining 

ketamine’s anti-inflammatory effects. Although promising preclinical and early-phase 

clinical research has been conducted with (R)-ketamine and (2R,6R)-HNK, further clinical 

studies are needed to verify these initial results.

In this context, the need to verify ketamine’s anti-inflammatory properties with rigorous, 

prospective, clinical research is clear, as is the need to use preclinical models to elucidate 

the molecular and cellular basis underlying these effects. The effects of gender must also 

be considered, given the mixed results regarding gender differences in inflammation. This 

is particularly important because few preclinical or clinical studies have explored the links 

between TRD, ketamine and inflammation in a female population. Even less attention has 
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been paid to the effects of race on the links between chronic stress, inflammation and 

therapeutic response, despite initial correlational studies showing different relationships 

between inflammation and depression by race.193–195 In addition, the generalizability of 

ketamine’s therapeutic efficacy has not been determined for multiple ethnic groups. Further 

research should prioritize determining the effects of race and ethnicity on inflammation-

related outcomes and on ketamine’s therapeutic effects. Nevertheless, future research efforts 

in this area are likely to be complicated by several challenges. First, depressive symptoms 

that can derive from inflammation and respond to ketamine are neither universal nor specific 

to any one diagnostic category. Thus, advances in psychiatric nosology are probably needed 

to replicate research with greater inter-study validity. For example, one crucial issue is a 

fuller differentiation between unipolar and bipolar depression, because ketamine has been 

successfully used to treat both these neuropsychiatric disorders despite the fact that the 

underlying inflammation-mediated mechanisms are probably different. Second, immune 

system dysregulation has a multitude of other consequences that span multiple systems and 

that could be further confounded by other factors such as gender and BMI. A more complete 

understanding of these complex interactions, combined with improved identification of the 

heterogeneous etiologies of depressive symptoms, are needed to move this field forward.

Regardless, further systematic research into the connections between inflammation, 

treatment-resistant symptom severity and response to ketamine is warranted. Ideally, such 

investigations should measure central levels of inflammatory markers and products of related 

pathways such as the HPA and kynurenine pathways and correlate these with suicidal 

ideation, anhedonia and other hallmark symptoms of TRD.
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Highlights:

• Chronic stress, depression and inflammation have been consistently linked

• Stress-induced inflammatory states can contribute to treatment resistance

• Ketamine could be uniquely placed to target inflammation

• Ketamine’s effects can be mediated through the HPA axis or kynurenine 

pathway

• Anti-inflammatory antidepressant therapies could improve treatment 

resistance
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Figure 1. 
The hypothesized impact of ketamine on stress and inflammatory pathways. Chronic stress 

leads to overactivation of the hypothalamic-pituitary-adrenal (HPA) axis, which increases 

levels of corticotropin-releasing hormone (CRH) and cortisol while decreasing expression 

of glucocorticoid receptors (GRs). This decrease in GR expression prevents the shut-off 

of the HPA axis, leading to prolonged activation that can have negative consequences. 

Ketamine, an N-methyl-D-aspartate receptor (NMDAR) antagonist, appears to mediate this 

stress response by increasing the number of GRs. Studies examining ketamine’s effect on 

cortisol levels have yielded mixed results. Under chronic stress conditions, the kynurenine 

pathway, another potential mediator between stress and inflammation, demonstrates 

increased levels of indoleamine-2,3-dioxygenase (IDO), tryptophan-2,3-dioxygenase (TDO) 

and quinolinic acid, as well as decreased levels of kynurenic acid. Ketamine decreases 

IDO levels and the ratio of kynurenine:tryptophan through indirect mechanisms while 

blocking the action of quinolinic acid through direct NMDAR antagonism. Ketamine 

also decreases proinflammatory cytokine levels (increased by chronic stress) through the 

NLPR3-inflammasome pathway, decreasing microglial activation via TLR/p38 signaling, 

P2X7 receptors and signal transducer and activator of transcription 3 (STAT3) activation, 

as well as switching macrophages to the anti-inflammatory M2 phenotype. Figure created 

using Biorender.
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