
RESEARCH ARTICLE

Delay-dependent transitions of phase synchronization and coupling
symmetry between neurons shaped by spike-timing-dependent
plasticity

Mojtaba Madadi Asl1 • Saeideh Ramezani Akbarabadi2

Received: 16 October 2021 / Revised: 24 May 2022 / Accepted: 6 July 2022 / Published online: 23 July 2022
� The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract
Synchronization plays a key role in learning and memory by facilitating the communication between neurons promoted by

synaptic plasticity. Spike-timing-dependent plasticity (STDP) is a form of synaptic plasticity that modifies the strength of

synaptic connections between neurons based on the coincidence of pre- and postsynaptic spikes. In this way, STDP

simultaneously shapes the neuronal activity and synaptic connectivity in a feedback loop. However, transmission delays

due to the physical distance between neurons affect neuronal synchronization and the symmetry of synaptic coupling. To

address the question that how transmission delays and STDP can jointly determine the emergent pairwise activity-

connectivity patterns, we studied phase synchronization properties and coupling symmetry between two bidirectionally

coupled neurons using both phase oscillator and conductance-based neuron models. We show that depending on the range

of transmission delays, the activity of the two-neuron motif can achieve an in-phase/anti-phase synchronized state and its

connectivity can attain a symmetric/asymmetric coupling regime. The coevolutionary dynamics of the neuronal system and

the synaptic weights due to STDP stabilizes the motif in either one of these states by transitions between in-phase/anti-

phase synchronization states and symmetric/asymmetric coupling regimes at particular transmission delays. These tran-

sitions crucially depend on the phase response curve (PRC) of the neurons, but they are relatively robust to the hetero-

geneity of transmission delays and potentiation-depression imbalance of the STDP profile.

Keywords Transmission delay � Synchronization � Spike-timing-dependent plasticity � Synaptic plasticity �
Coupling symmetry

Introduction

Synchronization between neuronal assemblies is crucial for

information transfer across different brain regions (Buzsáki

and Draguhn 2004; Wang et al. 2011; Li et al. 2021), cog-

nition (Wang 2010), learning mechanisms and memory

formation (Axmacher et al. 2006; Fell andAxmacher 2011).

In plastic networks, synchronized neuronal activity can

promote synaptic connectivity by coordinating the firing

dynamics of neurons in a feedback loop (Gilson et al. 2009;

Popovych et al. 2013; Madadi Asl et al. 2018c). Particu-

larly, spike-timing-dependent plasticity (STDP) is a form of

synaptic plasticity that modifies the synaptic strengths

according to the coincidence of pre- and postsynaptic spikes

between neuron pairs (Gerstner et al. 1996; Markram et al.

1997; Bi and Poo 1998). When the presynaptic spike pre-

cedes the postsynaptic spike (i.e., pre-post pairing), the

corresponding synapse undergoes long-term potentiation

(LTP), whereas long-term depression (LTD) is induced in

the opposite direction (i.e., post-pre pairing) (Markram et al.

1997). In this way, neuronal activity reshapes patterns of

synaptic connectivity between neurons through STDP

which, in turn, determines the spiking events of neu-

rons (Aoki and Aoyagi 2009; Madadi Asl et al. 2018c).

The question that how STDP influences the synchro-

nization properties of neurons has been previously
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addressed in numerous studies (Zhigulin et al. 2003;

Lubenov and Siapas 2008; Kozloski and Cecchi 2010;

Knoblauch et al. 2012; Matias et al. 2015; Madadi Asl

et al. 2017, 2018a; Kim and Lim 2018). When STDP is

equilibrated, synapses between those correlated neurons

that causally fire together (with small time lags) are

stronger than the synapses between uncorrelated neurons

that fire with large time lags due to the competitive nature

of STDP (Song et al. 2000). On the other hand, strong

connections between neurons supposedly further synchro-

nize their activity, while the activity of loosely connected

neurons remains relatively desynchronized (Kozloski and

Cecchi 2010). Yet, functional implications of STDP, par-

ticularly its relation to the synchronization in neuronal

networks may depend on several variables. In fact, transi-

tions between coherent and incoherent firing modes are

critically determined by the relation between transmission

delays and the oscillatory period (Ermentrout and Kopell

1998; Woodman and Canavier 2011). More specifically,

transmission delay between neurons determines their syn-

chronization tendency (Ernst et al. 1995; Madadi Asl et al.

2018b), which is predicted by their dynamical properties

(i.e., type-I vs. type-II excitability) given by the phase

response curve (PRC) of the neurons (Ermentrout 1996;

Câteau et al. 2008; Achuthan and Canavier 2009). In the

case of two reciprocally coupled neurons, for example,

when the range of transmission delay lies in the region

where the gradient of PRC is negative, an in-phase firing

mode is achieved (Woodman and Canavier 2011; Mada-

di Asl et al. 2017). On the contrary, transmission delays

associated with a positive gradient of PRC can lead to an

anti-phase firing mode (Woodman and Canavier 2011;

Madadi Asl et al. 2017).

When large plastic networks with massively intercon-

nected neurons are subjected to STDP, the emerging

dynamics and structure are determined as a result of the

interactions between neuronal activity and synaptic con-

nectivity (Aoki and Aoyagi 2009; Madadi Asl et al.

2018b). The synchronizing/desynchronizing nature of

neuronal activity is determined by the interplay between

transmission delays and the PRC of neurons (Woodman

and Canavier 2011). This leads to a rewiring of the

synaptic connections mediated by STDP (Câteau et al.

2008) which, in turn, adjusts the neuronal activity in a

feedback cycle (Kozloski and Cecchi 2010; Knoblauch

et al. 2012; Madadi Asl et al. 2018c). Short-range trans-

mission delays in local neuronal circuits or long-range

transmission delays between distant neuronal populations

embedded in different brain regions can strongly impact on

these reciprocal interactions (Knoblauch and Sommer

2003). For instance, axonal delays can decouple neurons

firing in synchrony by imposing a strong decoupling force

on the synaptic dynamics through STDP (Lubenov and

Siapas 2008). However, when the neurons fire in a

desynchronized state, the same force promotes coupling

strengths (Lubenov and Siapas 2008).

More specifically, STDP-driven neuronal networks with

(dendritic and/or axonal) transmission delays may show

multistable dynamics (Madadi Asl et al. 2018a), i.e.,

coexistence of qualitatively different stable attractor states

such that either symmetric coupling (i.e., strong bidirec-

tional loops or loosely connected states) or asymmetric

coupling (i.e., unidirectional connections) can emerge

between pairs of neurons (Madadi Asl et al. 2017, 2018a).

These network properties can be explained by inspecting

the effect of STDP on pairwise interactions of neu-

rons (Babadi and Abbott 2013; Madadi Asl et al. 2017),

i.e., two-neuron motifs, providing an analytically

tractable way to relate the emergent connectivity pattern of

networks to the properties of the STDP rule that modifies

the synapses (Babadi and Abbott 2013). The transitions

between symmetric and asymmetric coupling regimes is

determined by the range of transmission delays (Barardi

et al. 2014) and its interplay with STDP (Madadi Asl et al.

2018a). Since neuronal activity and synaptic connectivity

are simultaneously shaped by STDP, changes in the cou-

pling symmetry can be accompanied by transitions

between phase synchronization states (Xie et al. 2016; Saa

2018; Khoshkhou and Montakhab 2019; Berner et al.

2021), so that symmetry/asymmetry in the coupling of

neurons determines the synchronization/desynchronization

properties of neurons (Saa 2018; Mikkelsen et al. 2013).

Computationally, phase difference between cortical

areas can modulate information transfer by modifying the

synchronization properties and connectivity patterns of

networks (Ter Wal and Tiesinga 2017), likely regulated by

inter-areal transmission delays (Barardi et al. 2014) and

STDP (Matias et al. 2015). However, the joint action of

transmission delays and STDP on the emergent dynamics

and structure of networks is still not well known. Although

STDP is a local rule that modifies the strength of synapses

between pairs of neurons, it can determine the global

connectivity pattern in large networks (Izhikevich et al.

2004; Morrison et al. 2007; Gilson et al. 2009). Hence,

study of the STDP-induced pairwise interactions of neu-

rons at the level of simple two-neuron motifs may enable

an understanding of the dynamics and structure arising in

large networks. To shed light on this complex interaction,

we studied the dynamics and structure between two

reciprocally delayed-coupled neurons with plastic synapses

using both neuronal phase oscillator model and conduc-

tance-based spiking neuron model.

We theoretically analyzed the two-neuron motif using

both type-I and type-II phase oscillator models and

examined how the range of transmission delays can lead to

in-phase/anti-phase transitions of synchronization or
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symmetric/asymmetric transitions of coupling structure in

the motif, depending on the PRC of neurons. For analytical

tractability, the dynamics of the systems was first theoret-

ically analyzed from the perspective of no plasticity and

then from the perspective of no neuronal dynamics. The

theoretical results were able to predict the emergent phase

synchronization state and the corresponding coupling

regime in the simulations where the full coevolutionary

dynamics was present, i.e., simultaneous evolution of the

neuronal system and synaptic weights. Computer simula-

tion results for both the phase oscillator model and con-

ductance-based model qualitatively verified the theoretical

predictions.

Furthermore, we showed that these transitions between

in-phase/anti-phase synchronization states or symmetric/

asymmetric coupling regimes are relatively robust to the

heterogeneity of transmission delays between the two

neurons and the dominance of potentiation/depression

regime in the STDP profile. Our results demonstrate that

the coevolution of neuronal activity and synaptic connec-

tivity in plastic delayed-coupled two-neuron motifs deter-

mines the future state of the system. This notion can be

translated to the network level and, in this way, affect the

emergent structure and dynamics in large, plastic neuronal

networks.

Methods

Spike-timing-dependent plasticity (STDP)

The synaptic strengths between neurons were modified

according to the classical STDP rule characterized by an

asymmetric learning window shown in Fig.1A (Bi and Poo

1998):

Dg ¼ A� sgnðDt þ nÞ expð�jDt þ nj=s�Þ; ð1Þ

where AþðA�Þ and sþðs�Þ are the learning rate and the

effective time window for synaptic potentiation (depres-

sion), and sgnðxÞ is a sign function where sgnðxÞ is 1 if

x[ 0 and �1 otherwise. The time lag between pre- and

postsynaptic spike pairs is represented by Dt ¼ tpost � tpre,

and n ¼ sd � sa denotes the effective delay perceived at the
synapse, i.e., the difference between dendritic (sd) and

axonal (sa) transmission delays (Madadi Asl et al. 2017).

The instantaneous synaptic change over the period of

spiking (T) can be approximated by separating the poten-

tiation and depression terms in Eq. (1) which compete to

determine the net synaptic change as follows (Madadi Asl

et al. 2017):

_gðtÞ � Dg
T

¼ 1

T
½Aþ expð�jDtþj=sþÞ þ A� expð�jDt�j=s�Þ�;

ð2Þ

where Dtþ ¼ Dt þ n[ 0 is the time lag used by STDP for

potentiation of the synapse and Dt� ¼ T � jDt þ nj\0

represents the depression time lag.

The coupling strengths were updated by an additive rule

at each step, i.e., g ! gþ Dg. The value of the coupling

strengths was confined in the range ½gmin; gmax� 2 ½0; 1�, so
that they were set to gmin (gmax) via hard bound saturation

constraint once they crossed the lower (upper) bound of

their allowed range.

Neuronal phase oscillator model

The general form of weakly pulse-coupled neuronal

oscillators characterized by intrinsic frequency x and

infinitesimal phase sensitivity Zð/Þ can be approximated

by the phase-reduced model when the rate of the synaptic

change is negligible on the fast timescale of the neuronal

A B

Fig. 1 Delayed-coupled two-neuron motif mediated by STDP. A The

classic STDP profile characterized by an asymmetric learning

window. STDP parameters were Aþ ¼ 0:008, A� ¼ 0:005, sþ ¼
10ms and s� ¼ 20ms. The change in the synaptic strengths is

represented relative to the baseline where no synaptic change was

induced, i.e., Dg :¼ ðgafter � gbefore=gbeforeÞ � 100. B Two schematic

neurons (1,2) reciprocally coupled via plastic excitatory synapses

characterized by the strengths g21,g12 and the transmission delay s,
supposedly isolated from a network. (Color figure online)
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interactions (Izhikevich 1999). The evolution of the phases

(/) of the two neurons (schematically shown in Fig.1B) is

given by:

_/1 ¼ x1 þ
g12
2p

Zðwþ /1 � /2Þ;

_/2 ¼ x2 þ
g21
2p

Zðwþ /2 � /1Þ;
ð3Þ

where g21 (g12) is the coupling strength of the synapse

1 �! 2 (2 �! 1). w ¼ xs is the rescaled delay, where s ¼
sd þ sa is the total transmission delay between the two

neurons in the motif, i.e., the sum of dendritic and axonal

delays. We assumed that the transmission delays are

identical in both directions (i.e., identical feedforward and

feedback delays). The neuronal phase oscillators spike

once their phase crosses multiples of T ¼ 2p.

Coupling asymmetry index

In order to measure that to what extent the coupling

between the two neurons is symmetric we defined the

quantity c as follows:

c ¼ jg21 � g12j: ð4Þ

In a fully asymmetric two-neuron motif characterized by

unidirectional connection between neurons (potentiation of

one synapse and depression of the reverse synapse), the

asymmetry index approaches unity, i.e., c � 1. On the

contrary, symmetric changes of the synaptic strengths (ei-

ther symmetric potentiation or symmetric depression of

both synapses) lead to the emergence of a fully symmetric

two-neuron motif (i.e., either strong bidirectional loops or

loosely connected neurons) with c � 0.

Dynamical analysis of the pairwise interactions

By introducing the phase lag between the spike events of

two bidirectionally coupled neurons as v ¼ /2 � /1, the

evolution of the phase difference can be written as fol-

lows (Madadi Asl et al. 2017):

_v ¼ Xþ 1

2p
g21Zðwþ vÞ � g12Zðw� vÞ½ �: ð5Þ

For simplicity and analytical tractability, we assumed that

the frequency mismatch between the two neurons is neg-

ligible (i.e., X � 0) (Madadi Asl et al. 2017). For an

analysis of the situation that the frequency mismatch is not

neglected see Madadi Asl et al. (2018a). The PRC function

for a type-I neuron is mainly positive where its shape can

be approximated by Zðw� vÞ ¼ 1� cosðw� vÞ, whereas
the PRC function for a type-II neuron exhibits both positive

and negative regions which can be approximated by

Zðw� vÞ ¼ � sinðw� vÞ (Achuthan and Canavier 2009;

Sadeghi and Valizadeh 2014). The fixed point of the phase

lag (v�) can then be calculated as follows (Madadi Asl

et al. 2017, 2018a):

v� ¼ tan�1 � cðcosw cos v� � 1Þ
ðg21 þ g12Þðsinw cos v�Þ

� �
; type� I;

ð6Þ

v� ¼ tan�1 � c tanw
g21 þ g12

� �
; type� II; ð7Þ

where 0	 c	 1 is the coupling asymmetry index defined in

Eq. (4).

Conductance-based neuronal and synaptic model

Wang-Buzsáki (WB) (Wang and Buzsáki 1996) and

Hodgkin-Huxley (HH) (Hodgkin and Huxley 1952) models

were considered to simulate conductance-based neurons in

which their dynamics resembles the dynamics of the type-I

and type-II oscillators, respectively. The dynamics of the

membrane potential of neuron i (Vi) obeys the following

differential equation in both WB and HH models:

C _Vi ¼Iapp � Isyn � �gNam
3hðVi � VNaÞ � �gKn

4ðVi � VKÞ
� �gLðVi � VLÞ;

ð8Þ

where C is the membrane capacitance. �gNa, �gK, and �gL are

maximal conductances of sodium, potassium and leak

currents. VNa, VK and VL are the corresponding Nernst

equilibrium potentials. The numerical values of the

parameters used in the simulations are listed in Table 1.

The parameters n, m and h are gating variables that satisfy

the following differential equations in the case of

WB (Wang and Buzsáki 1996) and HH (Hodgkin and

Huxley 1952) models, respectively:

Table 1 Parameters of conductance-based models used in the

simulations

Parameter Symbol WB HH Unit

Membrane capacitance C 1 1 lF=cm2

Spiking threshold Vth -40 -40 mV

Resting membrane potential Vr -65 -65 mV

Sodium equilibrium potential VNa 55 50 mV

Potassium equilibrium potential VK -90 -77 mV

Leak equilibrium potential VL -65 -54.4 mV

Sodium maximal conductance �gNa 35 120 mS=cm2

Potassium maximal conductance �gK 9 36 mS=cm2

Leak maximal conductance �gL 0.1 0.3 mS=cm2

Applied current Iapp 1 10 lA=cm2
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_nðtÞ ¼ / ðanð1� nÞ � bnnÞ;
_hðtÞ ¼ / ðahð1� hÞ � bhhÞ;

mðtÞ ¼ m1 ¼ am=ðam þ bmÞ;
ð9Þ

_nðtÞ ¼ anð1� nÞ � bnn;
_hðtÞ ¼ ahð1� hÞ � bhh;

_mðtÞ ¼ amð1� mÞ � bmm;

ð10Þ

where / ¼ 5, and the functions aðVÞ and bðVÞ describe the
transition rates between open and closed states of the

channels according to the following differential equations

in the case of WB (Wang and Buzsáki 1996) and

HH (Hodgkin and Huxley 1952) models, respectively:

anðVÞ ¼ � 0:01ðV þ 34Þ=ðexpð�0:1ðV þ 34ÞÞ � 1Þ;
bnðVÞ ¼0:125 expð�ðV þ 44Þ=80Þ;
ahðVÞ ¼0:07 expð�ðV þ 58Þ=20Þ;
bhðVÞ ¼1=ðexpð�0:1ðV þ 28ÞÞ þ 1Þ;
amðVÞ ¼ � 0:1ðV þ 35Þ=ðexpð�0:1ðV þ 35ÞÞ � 1Þ;
bmðVÞ ¼4 expð�ðV þ 60Þ=18Þ;

ð11Þ

anðVÞ ¼ð0:1� 0:01VÞ=ðexpð1� 0:1VÞ � 1Þ;
bnðVÞ ¼0:125 expð�V=80Þ;
ahðVÞ ¼0:07 expð�V=20Þ;
bhðVÞ ¼1=ðexpð3� 0:1VÞ þ 1Þ;
amðVÞ ¼ð2:5� 0:1VÞ=ðexpð2:5� 0:1VÞ � 1Þ;
bmðVÞ ¼4 expð�V=18Þ:

ð12Þ

In Eq. (8), Iapp is the applied current to the neuron i. In

the case of conductance-based models, we assumed that

neurons are connected to each other by excitatory chemical

synapses where Isyn represents the synaptic current from

the presynaptic neuron (j) to the postsynaptic neuron (i):

Isyn ¼
X
i

X
j

gijsijðt � sÞðVi � VsynÞ; i; j ¼ 1; 2 ði 6¼ jÞ;

ð13Þ

where gij is the synaptic strength, s is the total transmission

delay between pre- and postsynaptic neurons, Vi is the

voltage of the postsynaptic neuron, and Vsyn is the synaptic

reversal potential that characterizes excitatory or inhibitory

nature of the synapse. The function s(t) denotes the fraction

of open channels and obeys the following differential

equation (Wang and Buzsáki 1996):

dsij
dt

¼ af ðVj � VthÞð1� sijÞ � bsij; ð14Þ

where a and b are channel opening and closing rates,

respectively. The function f ðVjÞ ¼ 0:5½1þ tanhðgVjÞ�
guarantees the activation of the synapse whenever the

presynaptic voltage crosses Vth and the parameter g is a

constant.

Results

Theoretical predictions

Transitions of phase synchronization

To inspect how transmission delays and STDP jointly

shape the dynamics and structure between neurons we

considered a two-neuron motif schematically shown in

Fig. 1B, assumed to be isolated from a network. The two

neurons were reciprocally delayed-coupled to each other

via plastic synapses subjected to the STDP rule given by

Eq. (1). For analytical tractability we used neuronal phase

oscillator model to provide theoretical predictions. In order

to present a more general overview, we considered both

dynamical type-I and type-II phase oscillators character-

ized by their approximated analytical PRCs (see Methods).

For simplicity, we first assumed that STDP is OFF. As

shown in Fig. 2A1,B1, we systematically varied the

transmission delay (w) and the coupling asymmetry index

(c), and theoretically calculated the fixed point of phase lag

(v�) between the spiking events of neurons according to

Eqs. (6) and (7) for the type-I (A1) and type-II (B1) phase

oscillators, respectively. The transmission delay is rea-

sonably varied up to the spiking period of the phase

oscillators (i.e., T ¼ 2p). Fig. 2A1,B1 shows that depend-

ing on the excitability nature of the phase oscillators, the

transitions between in-phase (zero phase lag) and anti-

phase (p phase lag) synchronization occur at particular

coupling asymmetry and transmission delay.

As shown in Fig. 2A1,B1, in the fully symmetric cou-

pling regime (i.e., c � 0) characterized by either strong

bidirectional loops or loosely connected states, the fixed

point of phase lag can merely attain in-phase (blue) or anti-

phase (red) synchronization state, depending on the delay.

This can be traced back to Eqs. (6) and (7) where substi-

tuting c ¼ 0 yields v� ¼ 0; p. In this case, in the type-I

phase oscillator (Fig. 2A1) in-phase/anti-phase synchro-

nization transition occurs when w � T=2, whereas in the

type-II phase oscillator in Fig. 2B1 such a transition occurs

when w � T=4 and w � 3T=4. As the value of the coupling

asymmetry index is gradually increased toward the fully

asymmetric coupling regime (i.e., c � 1) characterized by

unidirectional coupling between neurons, the phase lag

experiences a mixture of states between in-phase and anti-

phase synchronization limits represented by different

colors.

In Fig. 2A2-B3, the phase dynamics of the oscillators

and the corresponding phase lag is shown for examplary
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combination of the transmission delay and coupling

asymmetry index. Fig. 2A2-B3 shows how changing the

transmission delay at a given coupling asymmetry index

can determine the phase lag between neurons and lead to

the in-phase/anti-phase synchronization transitions. For

instance, in Fig. 2A3,B2 the two-neuron motif tends to

achieve an in-phase synchronization state, whereas an anti-

phase synchronization state is more likely to occur in

Fig. 2A2,B3. The difference between the synchronization

properties of the type-I and type-II phase oscillators arises

due to their PRC which determines the fixed point of phase

lag and delay-dependent transitions between in-phase and

anti-phase states.

Transitions of coupling symmetry between neurons

When the synapses between the two neurons are modified

according to the STDP rule, the coupling asymmetry index

is determined by the interplay between neuronal and

synaptic dynamics in a self-organized manner (Madadi Asl

et al. 2017). In fact, the neuronal activity and synaptic

connectivity compete to shape the ultimately emerging

phase lag and coupling asymmetry index. In this way,

STDP stabilizes the dynamics and structure of the two-

neuron motif in desired basins of attraction determined by

the transmission delay.

To theoretically explore the role of STDP in the stabi-

lization of neuronal and synaptic dynamics, in Fig. 3A we

assumed the transmission delay and phase lag as free

parameters (a fixed neuronal dynamics) and estimated the

emergent coupling symmetry between the two neurons

based on the synaptic change. Note that n is the difference

between dendritic and axonal delays that enters Eq. (1) and

modifies the synaptic dynamics, whereas w is the sum of

dendritic and axonal delays that enters Eq. (3) and modifies

the neuronal dynamics (Madadi Asl et al. 2017). Fig. 3A

shows that different combinations of the transmission delay

and phase lag give rise to a variety of coupling scenarios

ranging from a fully symmetric coupling regime (light

color) to a fully asymmetric coupling regime (dark color).

Given a fixed neuronal dynamics, STDP shapes the recip-

rocal synaptic connectivity to determine the coupling

symmetry between the two neurons.

Fig. 3B1-B3 shows the synaptic dynamics of the two-

neuron motif subjected to STDP. The arrows show the flow

of the synaptic change calculated from Eq. (1) and colors

show the coupling asymmetry index between neurons.

Based on the range of the transmission delay and phase lag,

the two-neuron motif can attain a strong bidirectionally

coupled (symmetric) regime characterized by both of the

synaptic strengths saturated to unity (g12 � 1, g21 � 1; B1),

a loosely connected (symmetric) state where both of the

synaptic strengths approach zero (g12 � 0, g21 � 0; B2),

and a unidirectional connectivity (asymmetric) state char-

acterized by the synaptic strengths saturated in the opposite

directions (g12 � 1, g21 � 0 or g12 � 0, g21 � 1; B3).

A notable observation is that the emergent coupling

regime in the two-neuron motif is bistable such that

depending on the initial synaptic strengths qualitatively

different coupling regimes can emerge. For instance, in

Fig. 3B1 the bistability is between the bidirectional and

unidirectional coupling regimes. The system favors the

A1 B1

A2 B2A3 B3

Fig. 2 Theoretical prediction of

in-phase/anti-phase

synchronization transitions in

the two-neuron motif. Colors

show the fixed point of phase

lag theoretically calculated by

Eq. (6) in (A1) and Eq. (7) in

(B1) for the type-I and type-II

phase oscillators, respectively,

when STDP was OFF. Points

a2-b3 denote the examplary set

of parameters used to depict the

panels A2-B3 representing the

phase dynamics (arrows) of the

two-neuron motif calculated by

Eq. (3) and the asymptotic

phase lag (colors) for different

values of the transmission delay

and asymmetry index denoted

above each panel in the case of

the type-I (A2,A3) and type-II

(B2,B3) phase oscillator. (Color

figure online)
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bidirectional regime when the initial values of the synaptic

strengths are close to each other. However, in Fig. 3B2 the

bistability is between the loosely connected state and uni-

directional coupling regime, whereas changing the initial

synaptic strengths in Fig. 3B3 can only change the neuron

with stronger outgoing synapse (always unidirectional).

The emergence of these bistable states due to STDP was

attributed to the frequency-dependent effects in the two-

neuron motif, i.e., the presence of a frequency mismatch

between the neurons (Madadi Asl et al. 2018a).

Simulation results

Transitions are jointly shaped by transmission delays
and STDP

To inspect the validity of the theoretical predictions, we

simulated the emergent phase synchronization and cou-

pling structure in the two-neuron motif with full coevolu-

tionary dynamics, i.e., in the presence of neuronal

dynamics and plasticity. To demonstrate that the results

obtained for the type-I and type-II neuronal phase oscilla-

tors can be translated to conductance-based spiking neuron

models, we also simulated WB and HH neuron models.

The dynamics and the PRC of WB and HH neurons

resemble the type-I and type-II phase oscillators, respec-

tively. This suggests that the theoretical predictions should

be qualitatively valid for conductance-based neuron

models.

To extract the effect of coupling symmetry on neuronal

dynamics, we first assumed that STDP is OFF . The results

are shown in Fig. 4 where the phase synchronization state

of the type-I and type-II phase oscillators (blue color) as

well as the WB and HH neurons (cyan color) are simulated

for different values of transmission delay and coupling

asymmetry index between neurons (STDP OFF state). In

accordance with the theoretical predictions presented in

Fig. 2A1,B1, in the fully symmetric coupling regime (i.e.,

c ¼ 0), the phase lag between the type-I (Fig. 4A1, blue)

and type-II (Fig. 4B1, blue) phase oscillators can merely

attain well-defined in-phase and anti-phase states where the

in-phase/anti-phase transitions occur at the same theoreti-

cally-predicted delays. For a relatively symmetric cou-

pling, the distribution of steady-state phase lags between

neurons fairly follows the slope of the analytical PRC

(orange curves) of the type-I and type-II neuronal phase

oscillators (see Fig. 4A1,A2 and B1,B2). The spiking

period of the WB and HH neurons were mapped into the

period of the phase oscillators to better illustrate their

resemblance. Fig. 4A1,B1 (cyan) shows that the phase

synchronization transitions of the WB and HH neurons are

consistent with the type-I and type-II phase oscillators,

respectively.

STDP was OFF in Fig. 4, hence, we manually varied the

coupling symmetry to explore its effect on the distribution

A

B1 B2 B3

Fig. 3 Theoretical prediction of

coupling symmetry/asymmetry

transitions in the two-neuron

motif. A Colors show the

emergent two-neuron synaptic

coupling calculated based on the

synaptic change in Eq. (2) over

the spiking period when STDP

parameters were Aþ ¼ 0:008,
A� ¼ 0:005, sþ ¼ 10ms and

s� ¼ 20ms. Points b1-b3

denote the set of parameters

used to depict panels B1-B3.

B1-B3 Examplary synaptic

dynamics (arrows) of the system

calculated by Eq. (1) and the

coupling asymmetry index

(colors) for different values of

the transmission delay and

phase lag denoted above each

panel. (Color figure online)
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of phase lags. As the coupling asymmetry index is

increased from top to bottom in Fig. 4A1-A3 and B1-B3,

the distribution of phase lags is smoothed such that in the

fully asymmetric coupling regime (i.e., c ¼ 1) in

Fig. 4A3,B3 the phase lags are linearly proportional to the

transmission delay between neurons (i.e., v / w) and

achieve a mixture of in-phase and anti-phase synchro-

nization states. Such a relationship between the phase lag

and transmission delay is the characteristic of unidirec-

tional connections between neurons (Sadeghi and Val-

izadeh 2014; Madadi Asl et al. 2017). It is notable that in

this case the linear dependence of steady-state distribution

of phase lags on the transmission delay takes a universal

form irrespective of the PRC nature of the neurons (type-I

vs. type-II) or the neuron model (phase oscillator vs. con-

ductance-based). In either case, the simulation results are in

good agreement with the theoretical predictions.

We then turned ON the STDP rule to study the full

coevolutionary dynamics in Fig. 5. In this case, the cou-

pling symmetry in the two-neuron motif is continuously

adjusted due the competition between neuronal activity and

synaptic connectivity. In other words, STDP modifies the

synaptic strengths based on the spike timing of neurons

and, in return, the strength of synapses modifies the coin-

cidence of neuronal spikes in a feedback loop. The change

in the synaptic weights occurs on a slower time scale in

comparison to the fast phase dynamics (Ratas et al. 2021).

This allows the fixed point of phase lag given by Eq. (5) to

modify the synaptic strengths in Eq. (2) over a spiking

cycle, leading to a full coevolutionary dynamics. As shown

in Fig. 5A1,B1, both the type-I and type-II phase oscilla-

tors favor nearly in-phase or anti-phase synchronization

and symmetric connections in most transmission delays.

However, near the extremum points of the PRC function of

each phase oscillator the coupling has a tendency to avoid

symmetric states. These behaviors can be jointly explained

by Figs. 2 and 3 where the emergent two-neuron structure

was theoretically predicted based on the range of trans-

mission delay and phase lag. Note that the symmetric

loosely connected states may not be stable since fluctua-

tions of the phase lag between neurons in this case can self-

organize the motif toward the emergence of unidirectional

connections (Madadi Asl et al. 2017).

The simulation results for the conductance-based WB

and HH spiking neuron models (shown in Fig. 5A2,B2)

qualitatively follow the results obtained for the type-I and

type-II phase oscillators (shown in Fig. 5A1,B1), respec-

tively. In this case, relatively small transmission delays can

lead to the emergence of out-of-phase synchronization

(cyan color) followed by fully asymmetric coupling

A1

A2

A3

B1

B2

B3

Fig. 4 Delay-induced phase

synchronization in the two-

neuron motif due to coupling

asymmetry when STDP was

OFF. A1-A3 Reciprocally

coupled type-I phase oscillators

and WB neurons. B1-B3
Reciprocally coupled type-II

phase oscillators and HH

neurons. The coupling

asymmetry index is increased

from fully symmetric (c ¼ 0:0;
top) to fully asymmetric

(c ¼ 1:0; bottom) regime.

Orange curves show the slope of

the analytical PRC in the case of

type-I (sinw) and type-II

(� cosw) phase oscillators. The

spiking period of phase

oscillators is T ¼ 2p. The
spiking period of WB and HH

neurons is T � 14ms and T �
16ms when injected by Iapp ¼
1 lA=cm2 and Iapp ¼
10lA=cm2 currents,

respectively. (Color

figure online)

530 Cognitive Neurodynamics (2023) 17:523–536

123



between neurons (magenta color). However, in greater

delays either in-phase or anti-phase synchronization results

in the emergence of a fully symmetric connection between

neurons. Fig. 5C1,C2 shows the time course of the steady-

state phase lag and the emergent coupling asymmetry index

for two examplary points marked by c1 and c2 in Fig. 5B2.

The two-neuron motif achieved a nearly in-phase syn-

chronization state (cyan color) characterized by a fully

asymmetric coupling regime (magenta color) in Fig. 5C1

when w ¼ T=8. On the contrary, when the transmission

delay was w ¼ T=2, nearly anti-phase synchronization

state emerged with a fully symmetric connection between

neurons in Fig. 5C2.

Heterogeneity of the transmission delays

So far, we assumed that the transmission delays between

neurons are identical for both directions. To inspect how

the heterogeneity of the transmission delays can impact on

the neuronal activity and synaptic connectivity, we sys-

tematically varied the transmission delays in both direc-

tions (w21 and w12) and observed the phase lag and

coupling asymmetry index in computer simulations for

both the type-I and type-II phase oscillators subjected to

STDP. Due to the dynamical correspondence between the

conductance-based model and phase oscillator model, one

can assume that similar behavior would appear in the

conductance-based neurons.

The results are shown in Fig. 6A1-A4 which fairly fol-

low the theoretical predictions presented in Fig. 2A1,B1

for the identical transmission delays. In fact, the symmetry

of the two-neuron motif leads to the emergence of a phase

lag (Fig. 6A1,A2) and coupling asymmetry index

(Fig. 6B1,B2) so that there is no preferred direction for the

transmission delay. The notable observation is that the

previously obtained theoretical and simulation results are

robust to the heterogeneity of the transmission delays such

that keeping w21 fixed and changing w12 yields the same

result as when w12 is fixed and w21 is changed.

In the type-I phase oscillator model, the asymmetric

coupling (Fig. 6B1, dark color) can only emerge when one

of the transmission delays is small (in comparison to the

spiking period of the oscillators). In this case, the phase lag

fluctuates between in-phase and anti-phase synchronization

states (Fig. 6A1, green). When the transmission delays are

increased, the phase lag saturates to an anti-phase state

(Fig. 6A1, red) and then to an in-phase state (Fig. 6A1,

blue), but the coupling structure favors a symmetric con-

nection in either case (Fig. 6B1, light color).

However, in the type-II phase oscillator model, for

transmission delays smaller than half of the spiking period,

the phase lag attains a nearly in-phase synchronization state

(Fig. 6A2, blue), whereas for greater delays the phase lag is

A1

A2

B1

B2

C1 C2

Fig. 5 STDP determines the

level of synchronization by

shaping coupling symmetry.

A1,A2 Reciprocally coupled

type-I phase oscillators (A1)

and WB neurons (A2). B1,B2
Reciprocally coupled type-II

phase oscillators (B1) and HH

neurons (B2). The spiking

period of phase oscillators is

T ¼ 2p. The spiking period of

WB and HH neurons is T �
14ms and T � 16ms when

injected by Iapp ¼ 1 lA=cm2

and Iapp ¼ 10 lA=cm2 currents,

respectively. C1,C2 Examplary

time course of the phase lag and

coupling asymmetry index is

shown for the HH neurons at

delays marked in panel B2 by

arrows: (c1) w ¼ T=8 and (c2)

w ¼ T=2. (Color figure online)
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saturated to a nearly anti-phase synchronization state

(Fig. 6A2, red). For either of these cases, the two-neuron

motif favors the emergence of symmetric connections

(Fig. 6B2, light color), except at those transmission delays

where the gradient of the PRC of the neurons changes its

sign (Fig. 6B2, dark color).

The time course of the phase lag and coupling asym-

metry index is examplary shown for two sets of transmis-

sion delays in Fig. 6C1,C2 marked by points c1 and c2 in

Fig. 6A1-B2. When w12 ¼ T=2 and w21 ¼ T=10, the type-I

phase oscillator model achieves an out-of-phase state

characterized by a nearly asymmetric coupling regime

(Fig. 6C1). However, the type-II phase oscillator model

attains a nearly in-phase synchronization state accompa-

nied with a fully symmetric coupling regime at the same

delay setting. This observation suggests that the range of

the transmission delays does not solely determine the

emergent neuronal activity and synaptic connectivity

between neurons, and the dynamical nature of the neuron

(i.e., type-I vs. type-II excitability) is crucial.

Potentiation-depression imbalance of the STDP profile

In this study, we assumed a generic STDP profile charac-

terized by a greater amplitude and smaller time window for

potentiation regime in comparison to the depression

regime, i.e., Aþ [A� and sþ\s� (also see Fig. 1A, red

regime vs. blue regime), so that the stability condition is

ensured, i.e., Aþsþ � A�s�\0. Such a STDP profile is

typically observed in stimulus pairing experiments in hip-

pocampal (Bi and Poo 1998) and cortical (Froemke and

Dan 2002) slices. However, to explore the effect of STDP

potentiation-depression imbalance on the emergent neu-

ronal activity and synaptic connectivity in the two-neuron

motif we systematically varied the ratio of potentiation-

depression amplitude (i.e., Aþ=A�) and time constant (i.e.,

sþ=s�) by keeping the depression parameters fixed.

The results are shown in Fig. 7A1-A4 for the type-I

phase oscillator model and in Fig. 7B1-B4 for the type-II

phase oscillator model. Each column is plotted at a par-

ticular transmission delay denoted above the corresponding

panel. Overall, the emergent phase lag and coupling

asymmetry index is fairly robust to the imbalance of STDP

potentiation and depression regimes. In the two-neuron

motif modeled by the type-I phase oscillators, the phase lag

achieved a nearly anti-phase synchronization state char-

acterized by nearly symmetric coupling regime both at w ¼
T=4 (Fig. 7A1,A3) and w ¼ T=3 (Fig. 7A2,A4).

The Aþsþ � A�s� ¼ 0 threshold (marked by arrow in

Fig. 7A1) qualitatively divides the phase synchronization

states shown in Fig. 7A1,A2. For instance, in the type-I

oscillator, the fully anti-phase synchronization state is

destabilized (Fig. 7A1, orange) when Aþsþ � A�s� [ 0.

In the type-II oscillator at w ¼ T=4, shifting from the

Aþsþ � A�s�\0 regime to the Aþsþ � A�s� [ 0 regime

leads to a transition of the phase synchronization from the

A1 A2

B1 B2

C1

C2

Fig. 6 Heterogeneity of the transmission delays. A1,A2 The color-

coded steady-state phase lag between neurons is shown for two

reciprocally coupled type-I (A1) and type-II phase oscillators (A2) for

non-identical transmission delays. B1,B2 The color-coded coupling

asymmetry index is shown for two reciprocally coupled type-I (B1) and

type-II phase oscillators (B2). C1,C2 Examplary time course of the

phase lag and coupling asymmetry index is shown for delaysmarked by

points (c1) and (c2) denoted above each panel. (Color figure online)
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in-phase state to the nearly anti-phase state (Fig. 7B1, blue

to red). This is accompanied with a fair transition of cou-

pling structure from a fully symmetric regime (Fig. 7B3,

light color) toward more asymmetric regimes (Fig. 7B3,

dark color). The separation of time scales of phase

dynamics and synaptic change allows the fixed point of

phase lag from Eq. (5) to enter Eq. (2) and modify the

slowly-varying synaptic weights (Ratas et al. 2021). This

leads to a full coevolutionary dynamics that determines the

future state of the system. On the other hand, both the

phase synchronization and coupling asymmetry index were

robust to these changes when w ¼ T=3 (see Fig. 7B2,B4).

Discussion

In this study, we employed theoretical approximations and

computer simulations to demonstrate that transmission

delays and STDP jointly determine the phase synchro-

nization properties and coupling structure between neu-

rons. We tested our hypothesis by using both the phase

oscillator models and conductance-based spiking neuron

models in a two-neuron motif. As shown previously, with a

reasonable assumption that the neurons remain nearly

phase-locked, the two-neuron results can be translated to

large neuronal networks where pairwise interactions

between neurons build up to shape the future state of the

network (Babadi and Abbott 2013; Madadi Asl et al.

2017). Our results showed that the excitability nature of the

neurons determines the tendency of the motif to achieve an

in-phase/anti-phase synchronization state at a given delay.

Depending on the phase synchronization state and the

range of delays, STDP stabilizes the coupling structure of

the motif in a symmetric/asymmetric regime.

Our findings indicated that when the coupling between

neurons is symmetric, the spiking events of the neurons

remain in a perfectly in-phase or anti-phase synchronized

state. On the contrary, asymmetric coupling between neu-

rons leads to a mixture of phase synchronization states. For

instance, in-phase firing can remain stable between several

neurons, e.g. in a three-neuron motif, but anti-phase state

(p phase lag) gives rise to multiple competing

metastable states leading to frustrated dynamics in three-

neuron loops (Madadi Asl et al. 2017). By changing the

delay, the dynamics of the system undergoes a transition

between in-phase/anti-phase synchronization states and

symmetric/asymmetric coupling regimes. When STDP

comes to play, the coupling symmetry is interactively

modulated by the phase synchronization properties and

symmetric/asymmetric coupling transitions may occur. The

A1 A2

A3 A4

B1 B2

B3 B4

Fig. 7 Potentiation-depression imbalance of the STDP profile. A1-A4
The color-coded steady-state phase lag (A1,A2) and coupling

asymmetry index (A3,A4) are shown for two reciprocally coupled

type-I phase oscillators subjected to STDP with imbalanced poten-

tiation and depression regimes. Each column was depicted at a

specific transmission delay (denoted above panel). STDP depression

parameters were A� ¼ 0:005 and s� ¼ 20ms, whereas STDP poten-

tiation parameters were varied. B1-B4 Same as panels A1-A4, but for

two reciprocally coupled type-II phase oscillators. (Color

figure online)
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response of the motif to changing the range of delay cru-

cially depends on the PRC of the system. However, these

behaviors are relatively robust to the heterogeneity of

transmission delays and the potentiation-depression

imbalance of the STDP profile. In addition, transmission

delays have dual effects on the dynamics of the motif: The

sum of dendritic and axonal delays modify the neuronal

dynamics, whereas their difference adjusts the synaptic

dynamics.

Inter-areal connections between different brain regions

may assume transmission delays as large as tens of mil-

liseconds (Stoelzel et al. 2017). Dendritic delays are typi-

cally smaller than axonal delays (Lubenov and Siapas

2008), ranging from sub-millisecond to a few millisec-

onds (Agmon-Snir and Segev 1993; Schierwagen and

Claus 2001). Axons, however, can exhibit significant

transmission delays, e.g., about 10-20 ms in cortico-corti-

cal loops (Swadlow 1990), and even more up to 40-50 ms

in cortico-thalamic pathways (Stoelzel et al. 2017).

Transmission delays can crucially impact on the neuronal

dynamics required for reliable generation and transmission

of synchronized neuronal activity (Rezaei et al. 2020;

Ziaeemehr and Valizadeh 2021). For instance, long-range

delays between two bidirectionally coupled cortical popu-

lations can self-organize the two-module system to either

in-phase or anti-phase synchronized states and affect

information transfer between the two populations (Barardi

et al. 2014). When the synaptic strengths are adjusted by

STDP, continuous feedback between the synaptic modifi-

cations and the coherence in the neuronal firing leads to the

simultaneous regulation of neuronal activity and synaptic

connectivity (Aoki and Aoyagi 2009; Madadi Asl et al.

2018b). In this way, STDP can enhance in-phase or anti-

phase synchronization by promoting the coupling dynamics

between neurons (Ren and Zhao 2007; Xie et al. 2016).

Transmission delays determine the transitions between in-

phase and anti-phase synchronization states, or symmetric

and asymmetric coupling dynamics (Xie et al. 2016). The

interplay between different phase synchronization states

and synaptic coupling regimes shaped by STDP plays a key

role in cognitive tasks related to learning and memory in

cortical areas (Matias et al. 2015).

Ultimately, maladaptive synaptic plasticity is implicated

in a number of neuropsychiatric disorders (Madadi Asl

et al. 2019, 2022b; Asadi et al. 2022). STDP provides a

temporally precise mechanistic model for synaptic plas-

ticity that may help the brain to preserve collective neu-

ronal oscillations in their healthy range despite long-range

transmission delays emerging from the physical distance

between neurons embedded in different brain regions (-

Knoblauch and Sommer 2004; Buzsáki et al. 2013). This

may be realized by shaping qualitatively different

stable attractor states, i.e., physiological states (strong

synchronization, strong connectivity) as opposed to

pathological states (weak synchronization, weak connec-

tivity) (Madadi Asl et al. 2022a, b). Taking into account

the interplay between transmission delays and STDP in

simple modeling studies may shed light on the complex

role of their interaction in shaping the structure-function

relationships in brain networks. This can contribute to the

development of brain-inspired cognitive computing devices

designed to emulate the essential properties of biological

neurons and synapses (Madadi Asl and Ramezani Akbar-

abadi 2021).
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