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BACKGROUND: Fast and accurate diagnostics are key for personalised medicine. Particularly in cancer, precise diagnosis is a
prerequisite for targeted therapies, which can prolong lives. In this work, we focus on the automatic identification of
gastroesophageal adenocarcinoma (GEA) patients that qualify for a personalised therapy targeting epidermal growth factor
receptor 2 (HER2). We present a deep-learning method for scoring microscopy images of GEA for the presence of HER2
overexpression.
METHODS: Our method is based on convolutional neural networks (CNNs) trained on a rich dataset of 1602 patient samples and
tested on an independent set of 307 patient samples. We additionally verified the CNN’s generalisation capabilities with an
independent dataset with 653 samples from a separate clinical centre. We incorporated an attention mechanism in the network
architecture to identify the tissue regions, which are important for the prediction outcome. Our solution allows for direct automated
detection of HER2 in immunohistochemistry-stained tissue slides without the need for manual assessment and additional costly
in situ hybridisation (ISH) tests.
RESULTS: We show accuracy of 0.94, precision of 0.97, and recall of 0.95. Importantly, our approach offers accurate predictions in
cases that pathologists cannot resolve and that require additional ISH testing. We confirmed our findings in an independent dataset
collected in a different clinical centre. The attention-based CNN exploits morphological information in microscopy images and is
superior to a predictive model based on the staining intensity only.
CONCLUSIONS: We demonstrate that our approach not only automates an important diagnostic process for GEA patients but also
paves the way for the discovery of new morphological features that were previously unknown for GEA pathology.
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BACKGROUND
Gastroesophageal adenocarcinoma (GEA) is the seventh most
common cancer worldwide, with an increasing number of cases in
the western hemisphere. Despite multimodal therapies with
neoadjuvant chemotherapy/chemoradiation before surgery, med-
ian overall survival does not exceed 4 years [1–5]. Epidermal
growth factor receptor 2 (HER2) encodes a transmembrane
tyrosine kinase receptor and is present in different tissues, e.g.,
epithelial cells, mammary gland, and the nervous system. It is also
an important cancer biomarker. HER2 activation is associated with
angiogenesis and tumorigenesis. Various solid tumours display
HER2 overexpression, and targeted HER2 therapy improves their
treatment outcomes [6]. Clinical guidelines for GEA recommend
adding Trastuzumab—a monoclonal antibody binding to

HER2—to the first-line palliative chemotherapy for HER2-positive
cases. HER2 targeting drugs are also currently investigated in the
curative therapy for GEA [7].
Accurate testing for the HER2 status is a mandatory prerequisite

for the application of targeted therapies. The gold standard for
determining the HER2 status is an analysis of the immunohisto-
chemical (IHC) HER2 staining by an experienced pathologist, if
necessary followed by an additional in situ hybridisation (ISH). The
pathologist examines the immunohistochemistry staining of
cancer tissue slides for HER2 and determines the IHC score
ranging from 0 to 3. According to expert guidelines [8], the factors
determining the score include the staining intensity, the number
of connected positive cells, and the cellular location of the staining
(Supplemental Table 1). The IHC scores 0 and 1 define patients
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with a negative HER2 status that are not eligible for targeted anti-
HER2 therapy. An IHC score of 3 designates a positive HER2 status,
and these patients receive Trastuzumab. A score of 2 is equivocal.
In this case, an additional in situ hybridisation (ISH) assay resolves
the IHC score 2 as a positive or negative HER2 status. However,
both manual scoring and additional ISH testing are time-
consuming and costly.
Automated IHC quantification can support pathologists and is

one of the challenges in digital pathology and Convolutional
Neural Network (CNN)-based approaches currently offer the
highest accuracy in this task [9]. Tewary and Mukhopadhyay
using patch-based labelling created a three-level HER2 classifier
with an accuracy of 0.93 [10]. Han et al. combined a patch-level
classifier with a second one predicting HER2 score of a whole slide
image [11] achieving an accuracy of 0.94. The limitation of these
methods is the need for patch-level labelling, which is not typically
done in clinical evaluation. Annotations of individual patches are
not available in clinical datasets and thus require additional
manual work while patch-level predictions require developing
aggregation strategies to generate a prediction for the entire slide.
Additionally, all of the automated methods to date focus on breast
tumours, which have high prevalence and offer several large
public datasets. HER2 is however an important biomarker in other
cancers, notably oesophageal carcinoma.
Here, we ask whether CNNs can directly predict the HER2 status

from IHC-stained tissue sections without additional ISH testing. We
investigate which image features the neural network learns to
make the prediction—whether it uses only the colour intensity or
additional morphological features. We explore a large tissue
microarray (TMA) with 1602 digitised images stained for HER2. We
use this image dataset as a training set to train two different CNN
classification models. We test these models on an independent
test dataset of 307 TMA images from an unrelated patient group
from the same centre. We also further validate the HER2 status
prediction accuracy of our approach on a patient cohort from a
different clinical centre. If successful, CNNs could assist patholo-
gists in evaluating IHC stainings and, therefore, save time and
expenses related to the ISH analysis.

METHODS
Tumour sample and image preparation
For training the CNNs, we used a multi-spot tissue microarray (TMA) with
165 tumour cases and a single-spot TMA with 428 tumour cases, as
described elsewhere [12]. We additionally prepared an independent single-
spot TMA with 307 tumour cases as the test dataset. The test set consisted
of tumour cases that occurred at a later time point compared to the
training set cases. This dataset construction strategy mimics how such a
model would be developed and deployed in a clinical routine.
Coincidentally, our test set does not include tumour cases with an IHC
score of 1. The multi-spot TMA was composed of eight tissue cores (1.2 mm
diameter) of each tumour—four cores punched on the tumour margin and
four in the tumour centre. To construct the single-spot TMA, we punched
one tissue core per patient from the tumour centre. The cores were
transferred to TMA receiver blocks. Each TMA block contained 72 tissue
cores. Subsequently, we prepared 4 µm-thick sections from the TMA blocks
and transferred them to an adhesive-coated slide system (Instrumedics
Inc., Hackensack, NJ).
We used a HER2 antibody (Ventana clone 4B5, Roche Diagnostics,

Rotkreuz, Switzerland) on the automated Ventana/Roche slide stainer to
perform immunohistochemistry (IHC) on the TMA slides. HER2 expression
in carcinoma cells was assessed according to staining criteria listed in
Supplemental Table 1. Scores 0 and 1 indicated negative HER2 status, and
score 3 indicated positive HER2 status. Immunohistochemical expression
evaluation was assessed manually by two pathologists (A.Q. and H.L.)
according to [13]. Discrepant results, which occurred only in a small
number of samples, were resolved by consensus review. Spots with a score
of 2 were analysed by fluorescence ISH to resolve the HER2 status. The ISH
analysis evaluated the HER2 gene amplification status using the Zytolight
SPEC ERBB2/CEN 17 Dual Probe Kit (Zytomed Systems GmbH, Germany)

according to the manufacturer’s protocol. A fluorescence microscope
(DM5500, Leica, Wetzlar, Germany) with a 63× objective was used for
scanning the tumour tissue for amplification hotspots. We counted the
signals in randomly chosen areas of homogeneously distributed signals.
Twenty tumour cells were evaluated by counting green HER2 and orange
centromere-17 (CEN17) signals. The reading strategy followed the
recommendations of HER2/CEN17 ratio ≥ 2.0 or HER2 signals ≥ 6.0 for
HER2 positive and a HER2/CEN17 ratio <2.0 for HER2-negative samples.
We digitised the slides with a slide scanner (NanoZoomer S360,

Hamamatsu Photonics, Japan) with 40-times magnification and used
QuPath’s [14] TMA dearrayer to slice the digitised slides into individual
images (.jpg files, 5468 × 5468 pixels). After discarding corrupted images,
this procedure yielded 1281 images for training, 321 validation, and 307
images for testing. The test set is from the same hospital as the train set
but was sampled in a time interval disjoint from and following the time
interval when the training dataset was collected. This study design not
only reflects potential real life clinical scenarios in which incoming patient
data is analysed with a model trained on data collected at an earlier time
point, but also it follows the guidelines formulated by Kleppe et al. [15].
To study the capability of the CNNs to generalise, we performed a

stringent evaluation of the model performance on an external cohort with
653 samples from a different, geographically separate clinical centre [16].
The same antibody was used to perform the HER2 staining, but the slides
showed certain deterioration due to aging. Each image was labelled with
the IHC score (0, 1, 2, or 3) and the HER2 status (0 or 1) that was
determined by the pathologists or by ISH analysis in equivocal cases. This
methodology corresponds to the gold standard, and we used this labelling
as ground truth.

Classification models
We implemented a method that allows training neural networks on large
images at their original resolution by exploiting weakly supervised
Multiple-instance learning (MIL) [17]. In the weakly supervised multiple-
instance-learning approach, each slide is considered as a bag of smaller
tiles (instances) whose respective individual labels are unknown. To make a
bag-level prediction, image tiles are embedded in a low-dimensional
vector space, and the embeddings of individual tiles are aggregated to
obtain representation of the entire image. This representation is used as
input of a bag-level classifier.
For the aggregation of the tile embeddings, we used the attention-

based operator proposed by Ilse et al. [18]. It consists of a simple feed-
forward network that predicts an attention score for each of the
embeddings. These scores indicate how relevant each tile is for the
classification outcome, and are used to calculate a weighted sum of the tile
representations as the aggregation operation. Weights of a bag sum to
one, this way the bag representation is invariant to bag size. Finally, the
bag vector representation is used as the input of a feed-forward neural
network to perform the final classification.
In this approach, non-overlapping tiles of 224 × 224 pixels were

extracted from each slide, and their embeddings were derived from a
ResNet34 model. Empty tiles were discarded beforehand. As in the fully
supervised approach, the MIL classifier was trained separately to predict
IHC score and HER2 status.
To test the importance of image resolution in prediction we used a

ResNet34 architecture [19] for prediction of IHC score and HER2 status. The
network was trained as a four class IHC score classifier and separately as a
binary classifier of the HER2 status. Given the large resolution of the tissue
images (5468 × 5468 pixels), this approach required scaling them down by
5.34 to the size of 1024 × 1024 pixels to allow the network to train within
our hardware memory limits.
We also constructed a method for predicting IHC score and

HER2 status based on the staining intensity of the slides, a feature that
is conventionally used by automatic IHC scoring software. This method
was constructed to compare how predictive the single feature of
staining intensity is compared to the higher level features learned by our
CNN models. To extract the IHC staining expression from the images we
used colour deconvolution [20]. From the staining channel, non-
overlapping tiles of 224 × 224 pixels were extracted and the average
staining intensity was calculated for each tile. The staining intensity of
each slide was then calculated as the maximum of the average
intensities of its tiles. The proposed slide descriptor was used as input
in two logistic regression classifiers to predict IHC score and HER2 status
separately. This approach can also be seen as a multiple-instance
classification formulation where the feature extracted for each instance
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is its average staining intensity value, and the bag is aggregated using
the maximum operator.

Network training
The dataset showed an unbalanced distribution of the IHC score
(Supplemental Fig. 1) reflecting the frequency of HER2 expression in the
population [21]. To obtain representative training and validation sets, we
split images of each IHC score in 80-20 proportions. For the samples with
score 2, the 80-20 split was done separately for those with positive status
and those with negative status. During training, we performed a weighted
sampling of the images of each score such that each of the IHC scores is
equally represented during training. We performed random horizontal and
vertical flips as data augmentation.
We used Adam optimiser in training [22], with weight decay of 1 × 10–8

and betas of 0.9 and 0.999. The learning rates as well as their schedulers
were chosen based on a hyperparameter search. The ResNet classifiers
were trained using a learning rate 1 × 10–5, which was reduced by a factor
of 0.1 if the accuracy of the validation set does not improve after 20 epochs
of training. The MIL classifier was trained using a learning rate of 5 × 10–9,
decreasing it by a factor of 0.3 if the accuracy of the validation set does not
improve after 40 epochs. We used a batch size of 32 in the ResNet classifier
and a batch size of only one full resolution image with a bag size
depending on the amount of extracted tiles in the MIL classifier.
Our study is compliant with the guidelines summarised by Kleppe et al.

[15]. We perform data augmentations, our test set is disjoint in time from
the train set, and we demonstrate the method’s performance on an
external validation set. Our primary analysis was predefined and we report
balanced accuracy metrics throughout this study.
Computational work was performed on the CHEOPS high performance

computer, on nodes equipped with 4 NVIDIA V100 Volta graphics
processing units (GPUs). We used PyTorch (version 1.8.1) [23] for data
loading, creating models, and training.

RESULTS
IHC score prediction
First, we implemented a multiple-instance-learning (MIL) [17]
method allowing us to make the classification of the images at
their highest resolution. Using this technique, the images are split
into smaller tiles, encoded into their numeric embeddings and
ranked using the attention mechanism as proposed by Ilse et al.
[18]. The attention mechanism allows for automatic identification
of areas in the image that are important for the predicted score,
this way providing means to inspect and interpret the prediction
outcomes of the network.

This technique has shown a balanced accuracy of 0.8249,
precision of 0.9470 and recall of 0.9185 (Fig. 1: left, Table 1). Given
the score imbalance and the lack of samples with an IHC score 1 in
the test set, the reported performance metrics were calculated in a
balanced manner as an average of the metric of each individual
label weighted by their number of samples of that given label.
Most notably, the outermost classes 0 and 3 were predicted with
the highest accuracy while ~ 33% of score 2 images were
incorrectly predicted.
We next examined whether a simpler CNN-based classification

approach allows for predicting the IHC score from the TMA
images. In order for these images to fit within our hardware
constraints, we downsampled them by a factor of 5.34 to a size of
1024 × 1024 pixels. We trained classification architecture ResNet34
[19] on the rescaled dataset and analysed it on the test set of
images adjusted correspondingly. This approach resulted in
balanced accuracy of 0.8536, precision of 0.9544 and recall of
0.8859. The almost equal accuracy and precision of this model
suggests that relatively large visual details visible at a lower
resolution are sufficient for the most accurate prediction.

HER2 status prediction
We next addressed the question whether the HER2 status can be
predicted from the IHC-stained images directly, without additional
ISH testing. Images in our dataset with IHC score of 0 or 1 are HER2
negative, those with a score of 3 are positive. Those with a score of
2 were additionally resolved using ISH resulting in the following
positive/negative HER2 status split: 77/33% in the train set, 53/
47% in the test set. Out of 15 IHC score 2 images in the test set,
there were eight HER2 positive and seven HER2 negative. The
train-validation split was done in such a way that all the score and
status combinations are distributed equally in both sets.
The MIL classifier resulted in performance with balanced

accuracy of 0.9429, precision of 0.9705 and recall of 0.9478 (Fig. 1
and Table 1). As in the IHC score prediction task, the results were
calculated as a weighted average of the individual metrics for class
0 (HER2 negative) and class 1 (HER2 positive) to take account of
the class imbalance. Within both the HER2-negative and HER2-
positive classes, less than 7% of images were misclassified
resulting in balanced precision and recall >0.94. To better
understand the errors of the model, we additionally inspected
the HER2 status prediction accuracy within images of different IHC
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Fig. 1 Confusion matrices of the IHC score and status prediction. Score prediction evaluated on the test set is shown on the left, and
HER2 status prediction evaluated on the test set and on the external cohort are shown in the middle and on the right, respectively.

Table 1. Results of the Attention-Based MIL method on the tasks of IHC score prediction and HER2 status prediction.

Task Balanced acc. Precision Recall F1 score

IHC score prediction 0.8249 0.9470 0.9185 0.9302

HER2 status prediction 0.9429 0.9705 0.9478 0.9551
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scores (Table 2). With ~27% false-positive and ~7% false-negative
predictions, the highest error rate occurred in images with the IHC
score of 2. The higher proportion of false positives among the
score 2 images could be due to the underrepresentation of
samples with this IHC score and negative HER2 status in the
training set in the score 2 images. In images with IHC scores 0 and
3, the prediction error was below 4%. The difference in
performance between the 4-class and the binary classifiers
suggests that the inter-score differences are more subtle than
the ones differentiating the two HER2 statuses.

Performance on external cohort
Even if independently, our train and test datasets were collected
and prepared within one hospital. To verify how the performance
of our model is dependent on the aspects related to the data
preparation, we evaluated our models on an independent cohort
from a different clinical centre [16]. In particular, we aimed to
investigate whether HER2 status prediction is indeed possible
using IHC-stained images only. The external cohort included 653

tissue samples belonging to 297 patients with the following IHC
score distribution: 416/186/14/37 samples of scores 0/1/2/3
respectively. Out of the score 2 samples, 12 showed a negative
HER2 status and 2 samples showed positive HER2 status.
Given the different colour distribution and potential staining

quality deterioration due to the sample age, we applied a
preprocessing step to these images. We used Macenko’s method
for stain estimation [24] together with colour deconvolution/
convolution [20] to match the staining to our in-house dataset.
The MIL classifier yielded a balanced accuracy of 0.8688, precision
of 0.9490 and recall of 0.8908 (Fig. 1). These results support the
applicability of our approach in an important clinical context
where the distinction of HER2 status is key for further treatment.

Insights into the learning process of the MIL classifier
The ResNet and the MIL classifiers achieved almost identical accuracy
on our in-house test set in both the IHC score and the HER2 status
prediction. However, the advantage of the more compute-intensive
weakly supervised MIL approach is the possibility to inspect the
visual features that the network utilises in the classification process.
The embeddings and attention scores assigned to individual
224 × 224 pixel tiles can provide insights into the key visual features
used by the MIL approach in the classification.
First, we examined via t-distributed stochastic neighbour embed-

ding (t-SNE) dimensionality reduction method [25] the embeddings
of the image tiles in the test set generated by the IHC score
prediction network (Fig. 2). In this visualisation, spatial proximity of
tiles reflects the similarity of their embeddings. Although the
network was trained on the IHC score, it also correctly separates
the HER2 status of the parent TMA image. HER2-negative tiles with a

Table 2. Cross-tabulation of true IHC score and predicted HER2 status
of the test dataset. ‘2–’ and ‘2+’ scores stand for IHC score 2 and HER2-
negative and -positive status, respectively.

True IHC score

Predicted HER2 status 0 2- 2+ 3

Negative 273 3 1 0

Positive 11 4 7 8

t-SNE of patch embeddings

Score 0
Score 2–
Score 2+
Score 3

t-
S

N
E
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om

po
ne

nt
 2

t-SNE component 1

Fig. 2 t-SNE visualisation of tile embeddings produced by the IHC score MIL classifier on the test set images, with the vectors coloured
according to the score of their respective slides. Visual similarity of the tiles is reflected in their neural network-derived representations and
the embeddings of similar tiles are close in the learned vector space. Coincidentally, there are no TMA images with a score of 1 in the test set
because the test set consisted of the consecutive tumour cases that followed the training set cases.
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score of 2 (2–) group together with score 0 tiles, and HER2-positive
tiles with a score of 2 (2+) group together with score 3 tiles.
Additionally, neighbouring tiles in the t-SNE projection show

visual similarity. Most strikingly, tiles grouped together show a
similar staining intensity and this intensity gradually changes
along the 2D projection of the embeddings. Staining intensity is,
however, not the only visual feature determinant of the
HER2 scoring, which also takes additional morphological features
into account (potentially such as those listed in Supplemental
Table 1). We expect these morphological features to also be
encoded in the learned vector space.
Next, we inspected the attention values of the MIL classifier and

their distribution within the tissue slides. The attention value reflects
the importance of a given image tile for the final prediction score
and this way provides information on spatial distribution of the visual
features in the tissue that the network is exploiting in the prediction.
Since the IHC staining is insufficient to resolve the HER2 status if the
tissue IHC score is 2, we inspected which visual features are exploited

by the network in resolving the HER2 status of the score 2 tissue
slides (Fig. 3). Strikingly, the attention of the MIL classifier for the
HER2 status focuses on areas of high staining intensity and
corresponds to the mean intensity of the tiles at first sight.
Given the relationship of the embeddings as well as attention

value to the staining intensity, we tested the accuracy of a
predictive model based on the staining intensity only. Similar to
the tiling approach of the MIL classifier, we split the tissue slides in
224 × 224 pixel tiles and averaged the staining intensity in each of
the tiles. We, then, used the maximum of the average intensities
across the tiles of an image as the quantitative descriptor of the
entire image. We trained two logistic regression models to predict
IHC score and HER2 status, respectively. The stain intensity-based
model showed a balanced accuracy of 0.6876 in the prediction of
the IHC score, markedly lower compared to the MIL classifier with
a balanced accuracy of 0.8249. The major difference in perfor-
mance between these models is in images with an IHC score of 2
(Fig. 4). In the task of predicting the HER2 status, the balanced
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Fig. 3 Heatmap visualisations of the attention value and mean-staining intensity in tiles within the tissue image. The values are
normalised to [0, 1]. a Slides with IHC score 2 and negative HER2 status. b Attention score heatmap of HER2 status MIL classifier. c Attention
score heatmap of IHC score MIL classifier. d Patchwise mean-staining intensity heatmap. White arrows point to locations where the attention
values do not match staining intensity.
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accuracy of the staining intensity-based model reached 0.8457
compared to 0.9429 of the MIL classifier.
These results suggest that not only the staining intensity but

also additional morphological features are considered by the
deep-learning models in the classification. These features are
particularly important for correct recognition of images belonging
to the intermediate IHC score 2. We indicate examples of such
features in Fig. 3 and Supplemental Fig. 2. Even though attention
value and staining intensity largely match, the heatmaps in Fig. 3
demonstrate prominent exceptions where features of high
attention do not show high staining intensity.

Comparison to existing classifiers
Several computational toolboxes currently allow for training
predictive models on whole slide images (WSIs) stained using
hematoxylin and eosin (H&E) [26–29]. We compared the results of
our approach against CLAM [26], a publicly available pipeline for
WSI classification. This pipeline extends the attention-based deep
MIL proposed in [18] by including a clustering performed on the
embedding space during training, which improves prediction.
Similar to our approach, CLAM performs weighted sampling of
images to overcome the class imbalance bias. Training and testing
CLAM on the same data as our method resulted in balanced
accuracy of 0.7166 (precision of 0.9479, recall of 0.7394) in the
score prediction task and balanced accuracy of 0.8997 (precision
of 0.9611, recall of 0.9218) in the status prediction task, markedly
lower compared to our approach.

DISCUSSION
Automated and accurate image-based diagnostics help to
accelerate medical treatment and decrease the work burden of
the medical personnel. Here, we demonstrate that deep-learning-
based prediction of the IHC score (0–3) and the HER2 status
(negative or positive) is generally possible with a balanced
accuracy of ~0.85 and ~0.94, respectively. Among the scores,
IHC score 2 images show the highest proportion of misclassified
samples. These score 2 images cannot be unequivocally classified
regarding their HER2 status by the pathologists and need further
ISH-based evaluation. While it is considered that it is not possible
to resolve the HER2 status based on the IHC staining of the IHC
score 2 images, our models correctly predict the HER2 status of
73% of these images in our test dataset. Notably, score 2 samples
are strongly underrepresented in our datasets. We expect that
with more training samples of the underrepresented scores this
prediction accuracy will improve.
Several computational toolboxes currently allow for training

predictive models on WSIs. These multipurpose pipelines for
digital pathology are crucial to the research community because
they produce good results, allow for quick insights in the data with
an enormous ease of use. Our comparison with an existing,
publicly available WSI classification toolbox CLAM [26], suggests
however that problem-tailored approaches such as ours offer
refined control over parameterisation and data formatting, which
allows to achieve higher accuracy and computational efficiency.
Dedicated, problem-specific computational solutions might also
be easier to further develop into clinical tools.
One of our key findings is that not only staining intensity—

conventionally used in automated prediction tools—but also
additional morphological properties are taken into account by the
neural networks in the classification. We identified multiple
images in which the attention maps of the MIL classifier do not
match the staining intensity (Fig. 3). Additionally, prediction based
on the intensity yields markedly lower accuracy suggesting that
the CNN uses morphological features of the image beyond mere
staining intensity. This additional information is key for the CNN to
correctly predict the equivocal cases with HER2 score 2.
Identification of the specific morphological signatures of HER2

not captured by the staining will require pathologists’ as well as
computational analysis of the high-attention and low stain
intensity regions (Supplemental Fig. 2).
Neural networks for quantification of tumour morphology,

especially in the H&E stainings, emerge as a novel approach for
detecting tumour features invisible to the human eye, such as
those corresponding to DNA mutations. Kather et al. predict
microsatellite instability in gastrointestinal tumours directly from
H&E stainings [30]. Couture et al. predict various breast cancer
biomarkers, including the oestrogen receptor status, with an
accuracy > 0.75 [31]. The authors suggest the presence of
morphological features indicative of the underlying tumour
biology in H&E images accessible to deep-learning methods. Lu
et al. predict the HER2 status directly from H&E WSIs in breast
cancer using a graph representation of the cellular spatial
relationship [32] yielding an area under the receiver operator
curve (AUROC) of 0.75 on an independent test set.
While inferring information imperceptible to the human eye

from H&E stained tumour slides is a powerful approach pushing
the boundaries of digital pathology, we use IHC-stained images in
our study. Compared to H&E images, IHC stainings directly
visualise the molecular HER2 expression and thus present more
specific and interpretable data for pathologists. Our approach
explores this information to an extent beyond human perception
and staining intensity producing an AUROC curve of 0.91 (see
Fig. 4). While leaving a clinical decision up to an automated
method is not practiced due to its associated ethical questions,
our IHC-based MIL approach could readily be used to assist
pathologists. The attention maps could point clinicians to the
relevant regions in the IHC images and thus save time and manual
workload of clinicians.
In this study, our data is in the form of TMA, our approach is

however readily applicable to WSIs and expandable to different
file formats. Processing optimisations, such as precalculating tile
embeddings prior to inference, might be needed if the volume of
WSIs exceed the hardware memory limitations. Our results on the
external test set suggest that with appropriate image normal-
isation our model can generalise to other datasets.
Unexpectedly, the classifiers based on low- (1024 × 1024 pixel)

and high- (5468 × 5468 pixel) resolution images achieve matched
accuracy. Potentially, the lower resolution used in this study is
sufficient to encode the key morphological features of the images.
This resolution was the highest that still allowed for training
ResNet within our hardware memory. Notably decreasing the size
of the images further to 512 × 512 pixel size resulted in the
decrease of the model balanced accuracy to 0.8200 for the
prediction of IHC score. Unlike in this study, WSIs instead of TMAs
are used in the diagnostic pathological assessment. The WSI size is
several orders of magnitude larger than the images in our dataset,
which does not allow for using simple classification architectures
such as ResNet and MIL approaches are typically used instead. Our
results suggest however that reducing image resolution even
5-fold does not affect the deep-learning model performance,
which could accelerate model training and reduce computational
costs of models built on WSIs without compromising their
accuracy.
Given the class imbalance of our datasets, we report the balanced

accuracy and weighted recall, precision and F1 metrics, as the
unbalanced and unweighted metrics may be misleading in
describing performance of the models. As an example, if
unbalanced, the accuracy score of an IHC score classifier that
always predicts score 0 would be 0.92 in our dataset, and an
analogous HER2 status classifier would achieve accuracy of 0.94. The
unbalanced precision (and subsequently, F1) of our HER2 status
classifiers would be similarly inaccurate. If we take, for example, the
MIL HER2 status classifier, its unbalanced precision score is 0.51,
while its false-positive rate is only 0.04. For these reasons we
calculate our accuracy metrics in a balanced manner.
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We propose that artificial intelligence-based HER2 status
evaluation represents a valuable tool to assist clinicians. In
particular, the attention map generated by the MIL classifier can
aid the pathologists in their daily work by indicating the image
areas of high information content for the evaluation. This
approach could facilitate and speed up the manual analysis of
large tissue images. The IHC score determination network can
easily be transferred to any IHC staining other than HER2, further
paving the way for digital pathology. We additionally demonstrate
the capacity of our method to perform on samples from external
clinical centres with similar prediction accuracy. We expect the
power and generalisability of our deep-learning model to increase
with larger, multi-centre datasets.
Finally, the high performance of our models in predicting the

HER2 status of score 2 samples for which the status is considered
as unresolvable based on the IHC staining, suggests that there
exist visual features predictive of the HER2 status in these images.
While identification of these features would require more IHC
score 2 image data than available in our dataset, we expect that
further deployment of the MIL models might lead to the discovery
of novel morphological signatures improving image-based
diagnostics.

CONCLUSION
We demonstrate that it is possible to automatically predict HER2
overexpression directly from IHC-stained images of gastroesopha-
geal cancer tissue, an important diagnostic process in the
treatment of GEA patients. CNNs not only replicate the IHC
scoring system used by pathologists, but can directly predict
HER2 status in cases where it is considered not possible to resolve
this condition by IHC staining alone.
Interestingly, staining intensity is not the only predictive feature

for HER2 overexpression in the IHC images. Deep-learning
algorithms can capture complex molecular features like the
HER2 status from the tissue morphology. The attention map of
the MIL classifier identifies key morphological features beyond
staining intensity that might be important indicators to assess
individual tumour biology.
We conclude that deep-learning-based image analysis repre-

sents a valuable tool both for the development of useful digital
pathology applications and the discovery of visual features and
patterns previously unknown to traditional pathology.
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