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Abstract: Atherosclerotic cardiovascular disease (ASCVD) is the primary cause of death globally, with
nine million deaths directly attributable to ischemic heart diseases in 2020. Since the last few decades,
great effort has been put toward primary and secondary prevention strategies through identification
and treatment of major cardiovascular risk factors, including hypertension, diabetes, dyslipidemia,
smoking, and a sedentary lifestyle. Once labelled “the forgotten organ”, the gut microbiota has
recently been rediscovered and has been found to play key functions in the incidence of ASCVD
both directly by contributing to the development of atherosclerosis and indirectly by playing a part
in the occurrence of fundamental cardiovascular risk factors. Essential gut metabolites, such as
trimethylamine N-oxide (TMAO), secondary bile acids, lipopolysaccharides (LPS), and short-chain
fatty acids (SCFAs), have been associated with the extent of ischemic heart diseases. This paper
reviews the latest data on the impact of the gut microbiome in the incidence of ASCVD.

Keywords: gut microbiota; gut microbiome; atherosclerotic cardiovascular disease; atherosclerosis;
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1. Introduction

Despite major advances in prevention and treatment strategies, atherosclerotic car-
diovascular disease (ASCVD) remains the leading cause of morbidity and mortality all
around the world [1]. This alarming statistic brought to light the complex etiology of
atherosclerosis, which has been recognized as not being solely induced by conventional
risk factors, such as hypertension, diabetes, dyslipidemia, male sex, and smoking. In 2000,
Haraszthy et al. proposed for the first time that the gut microbiota was associated with
the occurrence of ASCVD, after finding DNA from multiple bacteria species in a plaque of
cholesterol [2].

Trillions of micro-organisms weighing about 1.5 kg inhabit the gut, carrying out key
functions that the rest of the human body is incapable of performing [3]. These micro-
organisms have combined genomes (the microbiome) that exceed the human genome by
many times [4–6]. The gut microbiota is dominated by anaerobic bacteria, with Firmicutes
(Gram-positive) and Bacteroidetes (Gram-negative) composing more than 90% of intestinal
bacterial species [7].

This paper reviews the latest available information on the role of the gut microbiome
in the incidence and progression of ASCVD.

2. Metabolic Pathways

Major metabolites have been identified and linked to the development of cardiovas-
cular diseases, including but not limited to trimethylamine N-oxide (TMAO), secondary

Int. J. Mol. Sci. 2023, 24, 5420. https://doi.org/10.3390/ijms24065420 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms24065420
https://doi.org/10.3390/ijms24065420
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://doi.org/10.3390/ijms24065420
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms24065420?type=check_update&version=1


Int. J. Mol. Sci. 2023, 24, 5420 2 of 17

bile acids, lipopolysaccharides (LPS), short-chain fatty acids (SCFAs), and phenylacetyl-
glutamine (PAGln). Figure 1 illustrates major gut metabolic pathways leading to ASCVD.
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relation between these two entities was first reported by Wang et al. in 2011 [8]. TMAO 
goes through several enzyme modifications before being transformed into its final active 
form. In fact, the first step requires the intestinal conversion of one of three metabolites 
found in the food, namely L-carnitine, choline, and betaine, into TMA by the enzyme TMA 
lyase, which is derived from the Firmicutes species found in the gut microbiota [9]. These 
three nutrients are naturally found in foods, such as eggs, red meat, and fish. After their 
conversion into TMA, this amine is absorbed into the bloodstream before being trans-
ported to the liver, where it is transformed into TMAO by the enzyme flavin-dependent 
mono oxygenase 3 (FMO3) [10]. In physiologic states, the kidney excretes in the urine close 
to 95% of TMA oxidized into TMAO [11]. Hence, changes to any component along this 
metabolic pathway, from food ingestion to hepatorenal function together with the liver 
FMO3 activity, could lead to increased levels of TMAO with associated complications, 
such as ASCVD [12]. 

Primary bile acids are synthesized in the liver from cholesterol and are conjugated 
with glycine, subsequently leading to the formation of cholic acid and chenodeoxycholic 
acid. Then, primary bile acids are transported in the gut, in which the microbiota contrib-
utes to their deconjugation to form secondary bile acids in the distal ileum [13]. Secondary 
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Figure 1. Major metabolic pathways involving the gut microbiome and leading to the development
and progression of atherosclerotic cardiovascular disease. FXR: farnesoid X receptor, Gln: glutamine,
IL-1: interleukin-1, IL-6: interleukin-6, IL-8: interleukin-8, LPS: lipopolysaccharides, NF-κB: nuclear
factor-κB, SCFAs: short-chain fatty acids, TGR5: takeda G protein-coupled receptor 5, TLR: toll-like
receptor, TMA: trimethylamine, TMAO: trimethylamine N-oxide, TNF-α: tumor necrosis factor-α.

First, TMAO directly contributes to the pathogenesis and extent of ASCVD. The
correlation between these two entities was first reported by Wang et al. in 2011 [8]. TMAO
goes through several enzyme modifications before being transformed into its final active
form. In fact, the first step requires the intestinal conversion of one of three metabolites
found in the food, namely L-carnitine, choline, and betaine, into TMA by the enzyme TMA
lyase, which is derived from the Firmicutes species found in the gut microbiota [9]. These
three nutrients are naturally found in foods, such as eggs, red meat, and fish. After their
conversion into TMA, this amine is absorbed into the bloodstream before being transported
to the liver, where it is transformed into TMAO by the enzyme flavin-dependent mono
oxygenase 3 (FMO3) [10]. In physiologic states, the kidney excretes in the urine close to 95%
of TMA oxidized into TMAO [11]. Hence, changes to any component along this metabolic
pathway, from food ingestion to hepatorenal function together with the liver FMO3 activity,
could lead to increased levels of TMAO with associated complications, such as ASCVD [12].

Primary bile acids are synthesized in the liver from cholesterol and are conjugated with
glycine, subsequently leading to the formation of cholic acid and chenodeoxycholic acid.
Then, primary bile acids are transported in the gut, in which the microbiota contributes
to their deconjugation to form secondary bile acids in the distal ileum [13]. Secondary
bile acids permit absorption of lipid nutrients and fat-soluble vitamins [14]. They are
also involved in the activation of two key receptors, namely farnesoid X receptor (FXR)
and takeda G protein-coupled receptor 5 (TGR5). These receptors modulate glucose and
cholesterol metabolism. In fact, TGR5 leads to an increased secretion of glucagon-like
peptide 1 (GLP-1), which contributes to an improved glucose tolerance [15,16]. TGR5
is also thought to possess anti-inflammatory properties by inhibiting nuclear factor-κB
(NF-κB), thus decreasing the production of pro-inflammatory cytokines [17]. In another
trial, simultaneous inhibition of both FXR and TGR5 exacerbated atherosclerotic formation,
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thereby highlighting their benefits in disease control [18]. Their anti-inflammatory and
anti-atherogenic properties arise from suppression of tumor necrosis factor-α (TNF-α)
and NF-κB signaling pathways in addition to a decreased secretion of pro-inflammatory
cytokines [19]. Therefore, secondary bile acids activate two key receptors involved in the
inhibition of major atherosclerotic pathways.

Similar to TMAO, LPS are endotoxins found on the outer membrane of Gram-negative
bacteria and are involved in the pathogenesis of ASCVD. LPS are recognized by the innate
immune system by toll-like receptor 4 (TLR4), which is a subtype of pattern recognition
receptors (PRR) [20]. Upon recognition of LPS, TLR4 induces a pro-inflammatory state
with an increased production and secretion of cytokines and chemokines [21]. LPS are
also identified by other receptors, such as LPS-binding protein (LBP), myeloid differen-
tiation protein 2 (MD-2), and cluster of differentiation 14 (CD14) [22]. These receptors,
which are mainly expressed on macrophages, activate and enhance several protein kinases,
such as IL-1 receptor-associated kinase (IRAK-1) and myeloid differentiation factor 88
(MyD88). NF-κB is subsequently activated, which, along with LPS, stimulate numerous
pro-atherosclerotic inflammatory pathways [23–25]. In fact, LPS induce endothelial dys-
function, increase oxidative stress through production of reactive oxygen species (ROS),
and produce several pro-inflammatory cytokines, such as TNF-α, interleukin-1 (IL-1),
interleukin-6 (IL-6), and interleukin-8 (IL-8) [26–28]. Therefore, LPS contribute to ASCVD
by promoting inflammation through various pathways.

In contrast to TMAO and LPS, SCFAs are protective against the occurrence of atheroscle-
rosis and are the result of the ingestion and digestion of complex carbohydrates by nu-
merous gut bacteria, including Anaerostipes butyraticus, Faecalibacterium prausnitzii, and
Roseburia intestinalis [29,30]. The most frequent SCFAs produced are acetate, butyrate,
and propionate [31]. These nutrients serve many roles, but their primary function is to
modulate the host immune system through increased production of regulatory T cells and
suppression of histone deacetylases (HDACs) [32,33]. By inhibiting HDACs, SCFAs inhibit
inflammatory pathways owing to a decrease in NF-κB activation together with a reduced
production of pro-inflammatory cytokines [34]. Other functions attributed to SCFAs include
enhanced intestinal barrier stability and protection against pathogen invasion [32,33]. Thus,
SCFAs protect against atherosclerosis by modulating inflammatory pathways.

Phenylacetylglutamine (PAGln) is a metabolite that was recently discovered and was
shown to be positively associated with the development of cardiovascular diseases [35].
PAGln is derived from a simple amino acid, phenylalanine, that undergoes a series of
alterations before arriving to its active metabolite. In fact, Nemet et al. have demonstrated
that the microbial porA gene permits the transformation of phenylalanine into phenylacetic
acid, with subsequent hepatic metabolization of phenylacetic acid into PAGln [36]. PAGln
was first reported to be positively correlated with ASCVD and overall mortality in patients
suffering from chronic kidney disease (CKD) [37]. Several pathophysiologic mechanisms
were hypothesized to explain this association. As a matter of fact, PAGln was shown
to increase platelets’ activation and responsiveness, resulting in increased thrombosis
potential leading to ASCVD. [38] PAGln also transmits cellular events via G-protein cou-
pled receptors, specifically the α2A, α2B, and β2 adrenergic receptors [36]. Interestingly,
carvedilol, a commonly used β-blocker in clinical practice, was shown to inhibit these
prothrombotic effects [36]. Thus, PAGln is involved in the occurrence of ASCVD through
an accelerated rate of thrombus generation and vessel occlusion, potentially giving rise to
acute myocardial infarction.

3. Gut Microbiome and Hypertension

Arterial hypertension is a well-recognized and major risk factor for the development
of ASCVD [39–41]. Leading medical communities of cardiology recommend blood pres-
sure control both pharmacologically and non-pharmacologically as part of cardiovascular
diseases’ primary and secondary preventions [42–44]. Even though the exact cause of
essential hypertension remains unclear, many risk factors are thought to contribute to its
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development, including advanced age, positive family history, obesity, a high-sodium diet,
and a sedentary lifestyle [42–44].

Recently, the gut microbiota has been found to play a role in the development of
hypertension [45–54]. Li et al. have demonstrated that high blood pressure was trans-
ferrable through fecal transplantation from hypertensive subjects to germ-free mice, thus
confirming the implication of the intestinal microbiome [47]. Additionally, compared to
healthy controls, pre-hypertensive and hypertensive individuals have decreased micro-
bial richness and variety with an overgrowth of specific bacteria, namely Prevotella and
Klebsiella [47]. A decrease in microbial richness constitutes an alteration in gut microbiome,
thus defining dysbiosis. Dysbiosis is thought to induce low-grade inflammation, which in
turn can provoke hypertension when the inflammation is persistent [55,56]. Additionally, a
reduction in Lactobacillus abundance can induce higher blood pressure values in both mice
and humans when compared to healthy controls [57].

Yang et al. recently proved that the Firmicutes on Bacteroidetes ratio was increased
in spontaneously hypertensive rats, in angiotensin II-induced hypertensive rats, and in a
small group of humans with hypertension [51]. It is noteworthy to note that by normalizing
this ratio with the administration of minocycline, blood pressure of spontaneously and
induced-hypertensive rats also normalizes [51]. Additionally, fasting for a five-day period
seems to induce a modification in the gut microbiota, subsequently reducing blood pressure
in hypertensive patients [58].

The gut microbiota produces various metabolites with different effects on blood
pressure regulation [59]. Beneficial metabolites include SCFAs and vitamins. Acetate,
propionate, and butyrate account for 80% of the total SCFAs produced [60]. SCFAs are
thought to be beneficial in blood pressure reduction through mainly their vasorelaxant
and anti-inflammatory effects [61]. Indeed, Bartolomaeus et al. demonstrated that the
administration of propionate in mouse models was associated with a better control of high
blood pressure together with a decrease in vascular inflammation and cardiac damage [62].
In another mouse model, acetate was shown to be highly effective in improving cardiac
function by reducing left ventricular wall thickness and body weight in addition to a
decrease in systemic blood pressure [63].

By contrast, TMAO, another metabolite produced by the gut microbiome, is posi-
tively associated with hypertension [64]. TMAO has a proatherogenic and prothrombotic
effect [65,66]. This toxic metabolite is thought to induce hypertension through prolonga-
tion of the hypertensive effect of angiotensin II and facilitation of angiotensin II-induced
vasoconstriction [67,68]. TMAO also enhances stiffening of the large arteries, namely the
aorta and carotid arteries, which amplifies the risk of ASCVD both directly and indirectly
through increased systolic blood pressure [69].

Thus, the gut microbiome fabricates different metabolites with various effects on blood
pressure. SCFAs improve its control while TMAO is deleterious.

4. Gut Microbiome and Diabetes

In 2019, diabetes was estimated to affect around 463 million people worldwide [70].
That alarming number is expected to rise to 700 million by 2045 [70]. Obesity contributes to
the development of type 2 diabetes (T2D) through many pathophysiologic mechanisms,
mainly insulin resistance [71]. Diabetes results in microvascular and macrovascular com-
plications, with cardiovascular disease being the most common cause of morbidity and
mortality among people suffering from diabetes [72]. Like hypertension, the exact etiology
of diabetes remains unclear but many risk factors have been identified, including a posi-
tive family history, advanced age, obesity, hypertension, and a history of cardiovascular
disease [73,74].

In 2004, Backhed et al. suggested for the first time that the gut microbiota could be
linked to the development of T2D by inducing alterations in glucose metabolism [75]. Many
studies have reported that obesity and alterations in glucose metabolism were associated
with an altered ratio between the two most common bacteria composing the intestine, with
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increased Bacteroidetes and decreased Firmicutes levels [76–78]. Thereafter, experiments
using metagenomic sequencing in human volunteers established that people with T2D
have a dysbiotic gut microbiota [7,79]. Both trials reported that people with diabetes had
less butyrate-producing bacteria. Butyrate is one of the three main SCFAs and is thought
to possess an advantageous effect on insulin sensitivity and energy balance [80]. Several
studies have followed and have reported that gut microbiome dysbiosis contributes to a
less favorable course of T2D by inducing a rapid progression of insulin resistance [81–85].

More than 80% of patients with T2D are overweight [86]. The underlying patho-
physiological mechanism linking these two conditions is insulin resistance induced by
obesity [87]. Numerous studies from animal models have demonstrated that the gut micro-
biota is implicated in the development of obesity [75–77,88,89]. Several trials have provided
an explanation, with one interesting experiment reporting that low bacterial variety in
the microbiome is associated with insulin resistance, fatty liver, low-grade inflammation,
and obesity when compared to high bacterial diversity [90]. In another experimentation,
scientists isolated the microbiota of obese animals and transplanted it into germ-free an-
imals; obesity developed after 14 days [75]. Other trials have focused on the potential
role of SCFAs and have found that mice suffering from diabetes exhibit lower levels of
butyrate-producing bacteria, such as Fecalibacterium prausnitzii, Eubacterium rectale, and
Roseburia intestinalis, when compared to healthy controls [91,92]. Thus, SCFAs, particularly
butyrate, are beneficial metabolites that seem to protect against the incidence of diabetes.

In addition, LPS have been found to be early triggers of obesity by inducing an inflam-
matory state through secretion of cytokines and chemokines [93]. In healthy individuals,
the ingestion of a high-fat meal leads to a transitory increase in plasma LPS levels while
in patients suffering from obesity and insulin resistance, LPS levels were found to be
chronically elevated, thus contributing to the development of T2D [94,95].

Furthermore, recent animal studies have suggested that elevated levels of circulating
TMAO are associated with an increased risk of developing T2D, mainly through impaired
glucose tolerance, insulin resistance, and oxidative stress [96,97]. Chronic high levels of
TMAO are also linked with an increased risk of obesity via secretion of inflammatory
cytokines, thus contributing to the occurrence of T2D [98]. A recently published meta-
analysis confirmed previous findings and suggested a positive association between T2D
and TMAO levels in a dose-dependent manner [99].

Gut microbiota is strongly linked with both microvascular and macrovascular diabetic
complications [100–103]. Indeed, patients with end-stage diabetic nephropathy were found
to have an abundance of Haemophilus and Lachnospiraceae bacteria when compared to earlier
stages [104]. Furthermore, Pasteurellaceae bacteria are significantly lower in patients with
diabetic retinopathy as compared to patients without this complication [105]. Plasma
TMAO levels are also significantly increased in individuals with diabetic retinopathy, and
its levels are associated with the incidence of this microvascular complication [106,107].
These data highlight the importance of the intestinal microbiome and suggest that dysbiosis
could play an important role in the development of diabetic complications.

5. Gut Microbiome and Dyslipidemia

Dyslipidemia is one of the major risk factors for both the occurrence and progression of
cardiac diseases [108]. In recent decades, primary and secondary prevention strategies were
implemented to decrease cholesterol levels. Despite major improvements, dyslipidemia
still affects around 12% of adults in the United States [109]. Some of the identified risk
factors for increased cholesterol levels are obesity, lack of physical activity, smoking, an
unhealthy diet, and diabetes [110–112]. Uncontrolled diabetes is one of the most common
conditions contributing to dyslipidemia through insulin resistance, therefore leading to
hyperinsulinemia. Elevated insulin concentrations contribute to increases in both low-
density lipoprotein-cholesterol (LDL-C) and triglycerides levels in contrast to fewer high-
density lipoprotein-cholesterol (HDL-C) particles [113–115].
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Gut microbiota has been shown to be involved in the occurrence of hyperlipidemia [116].
In fact, a recent study reported that people with dyslipidemia exhibit lower levels of fe-
cal butyrate, acetate, and propionate when compared to healthy controls [117]. These
metabolites represent the main SCFAs and are produced by a variety of gut bacteria, such
as Bifidobacterium, Lactobacillus, Faecalibacterium prausnitzii, and Roseburia [118]. Indeed,
they are thought to protect against obesity and diabetes by improving lipid and glucose
homeostasis as well as glucose tolerance [80,119–121].

Additionally, in contrast to a lower abundance of SCFAs, patients with high levels
of cholesterol excrete feces with a higher quantity of LPS-producing bacteria, such as
Escherichia coli and Enterobacter cloacae [118]. LPS compose the cell walls of Gram-negative
bacteria and are responsible for the release of pro-inflammatory cytokines [122]. An
overproduction of these cytokines leads to increased circulating levels of nitric oxide,
subsequently triggering a global activation of inflammatory reactions resulting in cardiac,
renal, hepatic, and pulmonary failures [123–125].

Furthermore, patients with dyslipidemia tend to exhibit high levels of TMAO, which
reduce levels of HDL-C, therefore increasing the risk of ischemic heart disease [126,127].
TMAO was also shown to reduce the expression of cytochrome P450 family 7, subfamily
A member 1 (CYP7A1), which is a key enzyme in cholesterol and bile acid metabolism,
in addition to inhibiting cholesterol transport, thus inducing cholesterol accumulation in
cells [128].

Finally, the gut microbiome is involved in the production of secondary bile acids,
which were shown to be protective against the development of dyslipidemia [129,130]. In
fact, these metabolites modulate glucose and cholesterol metabolism through the activation
of two key receptors, specifically FXR and TGR5 [131,132]. Several studies have established
that a deficiency in any one of these receptors, particularly FXR, leads to dyslipidemia,
with increased triglycerides and non-HDL-C levels [133–135]. In contrast, the activation
of FXR by secondary bile acids increases the activity and expression of LDL receptors in
addition to an inhibition of the activity of proprotein convertase subtilisin/kexin type 9
(PCSK9) [136–138]. Thus, FXR activation by the gut microbiome could lower LDL-C levels
and contribute to a better control of dyslipidemia.

Altogether, the previous data suggest that SCFAs and secondary bile acids are protec-
tive against the incidence of dyslipidemia while other metabolites, such as LPS and TMAO,
are detrimental, contributing to an increase in cholesterol levels.

6. Gut Microbiome and Atherosclerotic Cardiovascular Disease

Even though there has been substantial improvement in cardiovascular disease out-
comes in the past few decades, ASCVD remains the leading cause of death around the
world [139–141]. Insufficient prevention strategies and uncontrolled risk factors are the rea-
sons why cardiac diseases still top the list [139,140]. Uncontrolled dyslipidemia, persistent
inflammation, and high levels of oxidative stress greatly contribute to atherosclerosis [142].

Traditionally, ASCVD prevention strategies focused solely on lifestyle modifications,
such as eating a healthy diet and doing exercise, in addition to taking beneficial medications,
such as aspirin and beta-blockers [143–145]. The gut microbiota was neglected until the
scientific community realized its importance in playing key functions in the body, thus
labeling it “the forgotten organ” [146]. At the beginning of the millennium, a relationship
between the microbiota and atherosclerosis was demonstrated for the first time, after
multiple studies reported the presence of DNA of numerous bacterial species in a plaque
of cholesterol [2,147]. Another trial suggested the presence of dysbiosis in individuals
suffering from atherosclerosis, with an abundance of Actinobacteria in their intestine as
compared to a large quantity of butyrate-producing bacteria in healthy controls [148].

Recent studies in mice have suggested an important role of the gut microbiota in
converting dietary phosphatidylcholine to TMA, which is then oxidized in the liver to
TMAO [8,149]. TMAO is a pro-atherosclerotic molecule, with patients suffering from
ASCVD displaying significantly higher levels of TMAO as compared with healthy indi-
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viduals [149]. Several experiments have demonstrated that TMAO was involved in all
steps leading to atherogenesis, specifically foam cells’ formations, endothelial dysfunction,
thrombus generation, and plaque instability leading, ultimately, to plaque rupture and
acute coronary syndrome [8,65,66,150].

Five mechanisms linking TMAO to ASCVD have been recently proposed. Figure 2
summarizes these mechanisms. The first pro-atherosclerotic mechanism is an increased
migration of macrophages and an augmented formation of foam cells in cholesterol
plaques [151,152]. In a trial involving mice supplemented with either choline or TMAO,
Park et al. found that scavenger receptor-A (SR-A) and CD36, two macrophage receptors
associated with atherosclerosis, were both increased when compared to control mice [153].
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The second metabolic pathway states that TMAO impacts cholesterol metabolism
by inhibiting the reverse cholesterol transport (RCT) system and diminishing cholesterol
excretion through the biliary system [66]. The RCT system helps maintain cholesterol
homeostasis by transporting cholesterol from peripheral tissues to the liver for biliary
excretion [154]. A recently published study demonstrated a 35% decrease in the RCT system
in mice fed with a diet containing TMAO when compared with healthy controls [66]. TMAO
also increases cholesterol levels by downregulating two cytochromes, namely CYP7A1 and
CYP27A1. Downregulation of these enzymes leads to decreased bile acid secretion, which
reduces cholesterol excretion, thereby contributing to accelerated atherosclerosis [155,156].

The third likely pathway is TMAO-induced endothelial dysfunction [157]. Indeed,
TMAO induces vascular inflammation by increasing recruitment of leucocytes to endothe-
lial cells through a G-protein-coupled receptor (GPCR) pathway [158]. TMAO also causes
inflammation through mitogen-activated protein kinase (MAPK) and NF-κB signaling
pathways [158]. Finally, protein kinase C is a known mediator of endothelial dysfunction,
and its activity was found to be significantly increased in response to a diet enhanced with
TMAO [159,160].

The fourth pathway involves an increase in oxidative stress. Recent trials have demon-
strated that TMAO activates the nucleotide-binding oligomerization domain-like receptor
family pyrin domain-containing 3 (NLRP3) inflammasome in endothelial cells. Activation
of the NLRP3 inflammasome is involved in the production of ROS through activation of
the mitochondrial reactive oxygen species signaling pathway [161,162]. Oxidative stress
causes cell damage and is involved in the pathogenesis of multiple diseases, including
ASCVD [163].

The fifth and last identified pathway mediates TMAO-associated atherosclerosis
through suppression of endothelial progenitor cells’ (EPC) production [164]. Several trials
have demonstrated that decreased levels of EPCs contribute to endothelial dysfunction,
since EPCs are known for their role in repairing and regenerating damaged endothelium
following vascular injury [165–167]. Chou et al. have found that TMAO levels were propor-
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tional to plasmatic inflammatory markers, specifically high-sensitivity C-reactive protein
(hsCRP), IL-6, and TNF-α [164]. By contrast, TMAO levels are inversely proportional to
EPC levels, thus leading to impaired endothelial function [164].

Other than TMAO, LPS are other pro-atherosclerotic metabolites released by Gram-
negative bacteria [168]. In healthy individuals, butyrate is secreted by the gut microbiota
in a sufficient amount to maintain the intestinal barrier [169]. In atherosclerosis, gut
microbiome dysbiosis results in a reduced number of butyrate-producing bacteria, subse-
quently leading to increased intestinal permeability and increased LPS levels [170,171]. LPS
activate numerous inflammatory pathways that contribute to the occurrence of atheroscle-
rosis. Indeed, LPS induce the generation of ROS by activating nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase [172]. NADPH oxidase produces ROS and
induces the production of pro-inflammatory cytokines, such as TNF-α, IL-6, and IL-8 [173].
Furthermore, LPS provoke expression of inflammatory mediators, resulting in increased
infiltration of inflammatory cells in cholesterol plaques [174]. These inflammatory cells in-
clude neutrophils, monocytes, selectins, and integrins, and are involved in the progression
of atherosclerosis [175]. Thus, LPS directly contribute to the development and progression
of atherosclerosis.

Moreover, the gut microbiome produces secondary bile acids, which are involved in
the activation of two key receptors, the membranous TGR5 and the nuclear FXR [130]. Their
activation is associated with a slowed progression of atherosclerosis through an inhibition of
NF-κB activity, resulting in a decreased production of pro-inflammatory cytokines, as well
as inhibited LDL uptake via a lowered expression of CD36 [130]. In contrast, the absence of
FXR in mouse models was demonstrated to be linked with a decreased survival rate owing
to more severe atherosclerosis with increased atherosclerotic plaque burden [176].

Likewise, SCFAs are thought to be beneficial on ASCVD by inhibiting various inflam-
matory mechanisms thought to induce atherosclerosis. SCFAs are produced by the gut
microbiota through fermentation of dietary fibers [60,177]. Ingestion of a high-fiber diet
contributes to an improved glycemic control and weight loss as well as increased blood
concentrations of SCFAs [178–180]. SCFAs, particularly butyrate, were recently shown
to suppress atherosclerotic lesions in mice supplemented with a high-fiber diet [181,182].
Butyrate is thought to increase plaque stability by decreasing ROS and nitric oxide release
from macrophages as well as reducing production of known inflammatory molecules, such
as chemotaxis protein-1, vascular cell adhesion molecule-1, and matrix metalloproteinase-
2 [181,182].

A recently published trial demonstrated that a dysbiotic microbiota is positively asso-
ciated with an increase in the size of acute myocardial infarction in rats [183]. Probiotics
were shown to attenuate the infarct size observed in the dysbiotic group suggesting that
microbiota is an important component of ischemic damage. In addition to an increase in in-
farct size, other noteworthy findings include a higher plasma LPS concentration secondary
to increased gut permeability together with an increased Firmicutes to Bacteroidetes ratio.

Thus, dysbiosis contributes to the development of atherosclerosis through increases
in TMAO and LPS levels while secondary bile acids and SCFAs are protective. Figure 3
illustrates the implication of the gut microbiome in the occurrence of ASCVD.
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Figure 3. Role of the gut microbiome in the incidence of atherosclerotic cardiovascular disease.
A low-fiber diet is associated with a decreased production of the short-chain fatty acid butyrate,
subsequently aggravating dysbiosis as well as sustaining local and systemic inflammation through
leakage of bacterial toxins, notably LPS. A modern western diet rich in red meat promotes bacterial
production of TMA, which is then oxidized to the pro-atherosclerotic metabolite TMAO in the liver.
FMO3: flavin-containing monooxygenase 3, LPS: lipopolysaccharides, TMA: trimethylamine, TMAO:
trimethylamine N-oxide.

7. Conclusions

In the last few decades, major advances have been made in the understanding of
physiological and pathological functions of the gut microbiota. In the cardiovascular field,
there is no doubt nowadays that the microbiome plays a crucial role in the development
of ASCVD. The microbiome is directly involved in all steps leading to atherogenesis,
including all major cardiovascular risk factors, specifically hypertension, obesity, diabetes,
and dyslipidemia. In the upcoming years, the challenge will be to transition from theoretical
understanding to clinical practice as major pathophysiologic mechanisms linking the gut
microbiota to ASCVD have been elucidated. In the near future, can an in-depth analysis of
the gut microbiota be used as a cardiovascular risk marker for which the use of probiotics
might prove beneficial when used adequately?
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