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Abstract: Necrotizing pneumonia (NP) is an uncommon complicated pneumonia with an increasing
incidence. Early recognition and timely management can bring excellent outcomes. The diagnosis
of NP depends on chest computed tomography, which has radiation damage and may miss the
optimal treatment time. The present review aimed to elaborate on the reported predictors for NP. The
possible pathogenesis of Streptococcus pneumoniae, Staphylococcus aureus, Mycoplasma pneumoniae and
coinfection, clinical manifestations and management were also discussed. Although there is still a
long way for these predictors to be used in clinical, it is necessary to investigate early predictors for
NP in children.
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1. Introduction

Necrotizing pneumonia (NP) is a rare complication of community-acquired pneu-
monia (CAP) and is characterized by catastrophic illness and a prolonged hospital stay
and disease course [1]. It has been reported that 3% of cases of CAP in the UK have
complications. Although NP alone and those co-existing with one or more other forms of
complications of CAP (including parapneumonic effusion, empyema, lung abscess and lo-
cal complications) are still deemed to be rare, the incidence of pediatric NP has increased [2].
A French study found that the proportion of NP among hospitalized CAP was 4.5% from
2006 to 2009, and the rate doubled to 9% from 2009 to 2011 [3]. In the United States, a
retrospective observational study including 80 cases of NP identified no cases in the period
1990–1993, 12 in the period 1993–1996 and 40 in the period 2001–2004 [4].

NP usually progresses rapidly in previously healthy children despite appropriate man-
agement. A study in Taiwan found that no underlying diseases may predict the occurrence
of necrosis and/or abscess independently [5]. However, a recent study has shown that NP
tended to occur in children with a complex chronic condition, and the mortality rate was
higher than that of NP in previously healthy children [6]. NP is characterized by necrosis
and liquification of lung parenchyma and loss of the normal pulmonary parenchymal
architecture [7]. Moreover, NP is associated with a higher risk of complications such as
parapneumonic effusion, pleural empyema, pyothorax, pneumothorax, pyopneumothorax,
septic shock, respiratory failure, hemolytic uremic syndrome (HUS) and bronchopleural
fistula (BPF) [8,9]. In view of the severity of NP and heavy burden of hospitalization
especially in developing countries, early prediction and management are essential for good
recovery and prognosis.

2. Etiology and Pathogenesis

Streptococcus pneumoniae, Staphylococcus aureus and Mycoplasma pneumoniae are the most
common pathogens reported in children with NP. Other bacterial infections associated with
NP in children include Pseudomonas aeruginosa, Streptococcus mitis spp., Streptococcus pyogenes,
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Klebsiella pneumoniae, Pseudomonas spp., Fusobacterium spp., Staphylococcus epidermidis, Enter-
obacter aerogenes, Burkholderia pickettii biovar, Mycobacterium tuberculosis, and Chromobacterium
violaceum [10–12]. Some viruses and fungi like influenza, parainfluenza, adenovirus, res-
piratory syncytial virus, Herpes group (including Cytomegalovirus, Varicella-Zoster and
the Epstein–Barr Virus), Aspergillus spp., Candida spp., Histoplasma capsulatum, Coccidioides
spp., Blastomyces spp. and Cryptococcus neoformans can also cause NP [6,10]. And a synergy
between viruses and bacteria is common and sometimes lethal. In order to recognize earlier
and develop novel therapeutic strategies, it is essential to understand the pathogenesis of NP.

2.1. Streptococcus pneumoniae (Pneumococcus)

Pneumococcus is a Gram-positive bacterium and is a leading cause of bacterial pneu-
monia in children worldwide. In 2000, it was reported that 741,000 children less than 5 years
old (accounting for 36% of all-cause pneumonia deaths) succumb to pneumococcal pneumo-
nia, with the majority of them from developing countries [13]. Necrotizing pneumococcal
pneumonia in children was first reported in 1994 [14], and an increase in its prevalence has
been observed since then. However, the detailed mechanism is still unknown.

The capsule polysaccharide is the major virulence factor. It assists pneumococcus
in interacting with the epithelium, avoiding entrapment by nasal mucus and inhibiting
opsonophagocytosis during infections [15,16]. According to structurally and antigenically
different capsular polysaccharides, more than 100 serotypes have been identified until
now. Pneumococcal conjugated vaccines (PCVs) bind the capsular polysaccharides to
a carrier protein. It can promote the immune system of young children to produce an
adequate response by enhancing immunogenicity [17]. In 2000, the 7-valent pneumococcal
conjugated vaccine (PCV-7) protecting against seven serotypes (serotypes 4, 6B, 9V, 14,
18C, 19F and 23F) was first licensed in the United States [18]. Beginning in 2010, PCV-10
containing additional serotypes 1, 5, 7F and PCV-13 containing additional serotypes 1,
5, 7F, 3, 6A and 19A have become available for use [19]. The introduction of PCV-7 led
to significant decreases in pneumonia in childhood but increased the incidence of NP
caused by non-vaccine serotypes [20]. PCV-13 has been reported to reduce the incidence
and hospitalization rates for empyema and parapneumonic effusion substantially without
serotype shift [21,22]. Similarly, PCV-13 implementation decreased the hospitalization rate
for NP in Italy significantly. However, the hospitalization rate increased during the late
post-PCV-13 period, and serotype 3 was prevalent in both the pre- and post-PCV-13 periods,
which confirmed the modest efficacy of PCV-13 against serotype 3 [23]. Serotypes 3 and
19A are associated with most necrotizing pneumococcal pneumonia [2] (Table 1).

Table 1. Prevalent serotypes of Streptococcus pneumoniae in NP.

Year Country No.

PCV Use in
National

Immunity
Program

Prevalent
Serotypes
Pre-PCV

Prevalent Serotypes Post-PCV PCV
Coverage References

1997–2006 Utah 33 PCV-7: 2001,
2 + 1

Pre-PCV7:
6B (40.0%),
19F (20.0%),

1 (20.0%) and
6A (20.0%)

Post-PCV7: 4 (3.6%), 1 (7.1%),
3 (39.3%), 7 (3.6%), 8 (3.6%),

17 (3.6%), 19 (14.3%) and
19A (14.3%)

PCV-7: 80% [20]

2005–2019 Italy 43 PCV-13: 2010,
2 + 1

Pre-PCV13:
1 (18.2%), 3 (27.3%),
5 (9.1%), 7F (9.1%)

and 19A (9.1%)

Early post-PCV13: 1 (25.0%),
5 (12.5%) and 7F (12.5%)

Late post-PCV13: 3 (80.0%) and
12 (20.0%)

PCV-7: 62.8%
PCV-13: 23.3% [23]

2012–2016 Catalonia,
Spain 35 PCV-13: 2016,

2 + 1 Not mentioned

Post-PCV13: 1 (14.3%), 3 (48.6%),
6B (2.9%), 7F (2.9%), 14 (5.7%),

19A (8.6%), 7A (5.7%),
6A/C (2.9%) and

12F/A/44/46 (2.9%)

PCV-13: 14.3% [24]
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In addition to the polysaccharide capsule, pneumolysin is another virulence factor
that can breach the membrane barrier of cells as a pore-forming toxin. In vitro, respiratory
epithelial cells can sense the osmotic stress of pore formation and then activate the p38
mitogen-activated-protein kinase [25]. The activation of mitogen-activated-protein kinase
may lead to an increase in chemokines and neutrophil influx [26]. Pneumolysin may also
activate complement and inhibit neutrophil respiratory burst and release of the antibacterial,
vasodilatory and nitric oxide from macrophages [27]. In the later phases of lung infection,
pneumolysin is released from the cytoplasm to the surrounding tissue by the lysis of
pneumococcus caused by neutrophils or activation of Lyt A [28]. Then this may lead to
widespread damage to host tissue and help pneumococcus survive. Nevertheless, the
increased virulence contributed by pneumolysin is not universal. For example, serotype
1 ST306, which is associated with invasive pneumococcal diseases, produces nonhemolytic
pneumolysin [29].

Pathologic examinations have shown that suppurative necrosis with extensive infil-
tration and accumulation of neutrophils in the lung parenchyma and coagulative necrosis
with anucleated and eosinophilic cell contours in preserved outlines of lung architecture is
observed in children with NP [30]. Therefore, cytokines that promote neutrophilic inflam-
mation and activate coagulation may be associated with the severity of NP. For example,
IL-8 can effectively recruit and activate neutrophils, and the level of IL-8 has been reported
to be related to the severity of lung necrosis [31].

2.2. Staphylococcus aureus

Staphylococcus aureus is a Gram-positive, coagulase-positive bacterium. Staphylococcus
aureus infections have increased in recent years and are mainly associated with community-
acquired methicillin-resistant Staphylococcus aureus (CA-MRSA). The morbidity of CA-
MRSA doubled in the past decade [32]. CA-MRSA has a higher proportion of Staphylococcus
aureus producing Panton-Valentine leucocidin (PVL) at 74–100%, which depends on the
prevalence of methicillin-resistant Staphylococcus aureus (MRSA) in each region [33]. And
there is no significant difference in PVL concentrations between PVL-positive methicillin-
sensitive Staphylococcus aureus (MSSA) and PVL-positive MRSA [34]. PVL-positive strains
are often associated with rapidly progressive, hemorrhagic NP [35].

PVL is a pore-forming toxin consisting of two components, LukS-PV and LukF-PV.
It can form pores in the cell membrane of phagocytic leukocytes, especially polymor-
phonuclear leukocytes (PMNs), leading to leukocyte destruction and tissue necrosis [36].
Recombinant PVL is commonly used in experiments to explore the effects of PVL. In vitro,
PVL was found to be a strong inducer for the release of histamine, proinflammatory media-
tors (IL-8, leukotriene-B4), granule enzymes (β-glucuronidase, hydrolase and lysozyme)
and the production of reactive oxygen metabolites as a consequence of its effects in the
activation and lysis of PMNs [36,37]. The increased influx of PMNs, infiltration of inflam-
matory cells, local vasodilation and tissue injury may result from this action. Similarly, PVL
has been shown to induce the release of IL-8 in a rabbit model of NP [38]. Recombinant
PVL can trigger the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflam-
masome activation inducing macrophage death and IL-1β secretion [39]. Recombinant
LukS-PV alone has been shown to induce the release of inflammatory cytokines from
alveolar macrophages, and the toxicity of recombinant LukS-PV and LukF-PV has been
found to form pores on the membrane of alveolar macrophages through binding to C5a
receptor [40].

α-hemolysin is another critical virulence factor associated with NP. Purified α-hemolysin
can establish a ferret NP model [41]. Like PVL, α-hemolysin can also activate NLRP3
inflammasome to induce IL-1β production and programmed necrotic cell death [42]. α-
hemolysin can induce platelet-neutrophil aggregates formation, which plays an important
role in alveolar capillary destruction in hemorrhagic/necrotizing pneumonia caused by
CA-MRSA [43]. In fact, NP may be a shared consequence of numerous virulence factors
like PVL, α-hemolysin, LukAB, Spa, toxic shock syndrome toxin-1, staphylococcal entero-
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toxin B and C, collagen adhesion, alpha toxin, staphylococcal enterotoxin-like toxin X,
microbial surface components recognizing adhesive matrix molecules, clumping factors
A and B, SdrE and the PSMs [44–48]. PVL promotes increased production of proinflam-
matory factor Spa, and they work together to cause overwhelming inflammation and
tissue necrosis [48]. Clumping factors A and B, SdrE and Spa are able to activate platelet
aggregation [49]. PVL also upregulates the expression of microbial surface components rec-
ognizing adhesive matrix molecules, which may enhance tissue adherence and colonization
of PVL-positive stains [48]. Toxic shock syndrome toxin-1, staphylococcal enterotoxin B
and C and staphylococcal enterotoxin-like toxin X are superantigens that have the ability to
stimulate dysregulated T-cell proliferation [46]. Staphylococcus aureus can survive and pro-
liferate within human cells free from the host immune system and antibiotic treatment [50].
Intracellular Staphylococcus aureus may cause apoptotic and/or necrotic cell death with sev-
eral virulence factors involved by disturbing the host cell Ca2+ homeostasis and inducing
cytoplasmic Ca2+ overload [51]. One possible mechanism is to create receptor-independent
pore formation from the inner side of the plasma membrane [51]. For instance, α-hemolysin
may induce Ca2+ permissive pores by nonspecifically integrating into membranes at high
concentrations [52,53].

2.3. Mycoplasma pneumoniae

Mycoplasma pneumoniae is a common pathogen causing CAP in children and young
adolescents. In some countries with PCV-13 included in national immunization programs,
Mycoplasma pneumoniae has taken the leading role in pediatric CAP [54,55]. Mycoplasma
pneumoniae is known as an “atypical” pathogen. In general, the clinical course of My-
coplasma pneumoniae pneumonia (MPP) is benign with high- or middle-grade fever and
dry cough partly accompanied by chills, headaches and chest pain or tightness. In the
past few years, there have been many reports of Mycoplasma pneumoniae NP in China
and around the world [56,57]. One possible reason is that severe Mycoplasma pneumoniae
pneumonia (SMPP) and refractory Mycoplasma pneumoniae pneumonia (RMPP) have been
increasingly reported [58,59]. The appearance of macrolide resistance may have no effect
on the disease severity, but delayed effective antimicrobial treatment can contribute to
RMPP development and progress by leading to incapability to clear bacteria and excessive
immune response [60,61]. In addition to the persistent infection, the older age of children
with Mycoplasma pneumoniae NP may be associated with a strong immune response which
is closely related to the severity of MPP [57]. Finally, severe bacterial or viral infections
may follow or coincide with Mycoplasma pneumoniae, and NP may be the result of mixed
infections [62,63]. Moreover, the early use of antibiotics makes the detection of coinfection
with other pathogens more difficult.

Community-acquired respiratory distress syndrome (CARDS) toxin, membrane lipopro-
teins, hydrogen peroxide and superoxide are the main virulence factors of Mycoplasma
pneumoniae [64]. CARDS toxin, the only exotoxin produced by Mycoplasma pneumoniae, pos-
sesses ADP-ribosyltransferase and cellular vacuolization properties [65]. ADP-ribosylation
can induce inflammatory responses like activating NLRP3 inflammasome [66]. Thus
CARDS toxin can cause cell swelling, nuclear lysis, cell vacuolization and ultimate cell
death. Membrane lipoproteins, as lipopolysaccharides, can activate NLRP3 inflammasome
and autophagy via TLR-4 [67]. Hydrogen peroxide and superoxide are both strong oxidants
generated by Mycoplasma pneumoniae [68]. Moreover, superoxide has been reported to in-
hibit catalase activity [69]. Protein degradation and DNA lesions caused by hydroxylation
and cell membrane damage caused by peroxidation of lipids may lead to cell death [70].

2.4. Co-Infection

Co-infection has the tendency to lead to severer pneumonia. In recent years, severe
pediatric CAP caused by bacterial (pneumococcus, Staphylococcus aureus, Pseudomonas
aeruginosa) or viral (adenovirus, rhinovirus, respiratory syncytial virus, parainfluenza
virus, coronavirus, influenza virus, enterovirus, among others, respectively) coinfection
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with Mycoplasma pneumoniae has been increasingly reported [71–73]. NP associated with
influenza virus or parainfluenza virus infections prior to pneumococcus or Staphylococcus
aureus infections has been long reported [47,74–78]. Children co-infected with influenza
A and Staphylococcus aureus are more likely to cause severe complications rapidly and
have a higher mortality rate partly because of the difficulty of getting accurate and timely
treatment [76].

Several hypothetical mechanisms of influenza virus during co-infection have been
reported. Influenza virus can increase bacterial adhesion and growth by damaging lung
epithelial cells, upregulating the host cell surface receptors and removing terminal sialic
acid residues from host glycoconjugates [79,80]. Dysregulation of the immune system
induced by the influenza virus may hinder the ability to clear the bacteria, for example,
impairing the innate and adaptive immune responses by suppressing the Th1 immune
cascade and the production of CD4- and B- lymphocytes and upregulating the production
of T regulator cells [80,81]. The effect of PVL to damage the airway epithelium by killing
neutrophils and the release of neutrophil proteases may be promoted by the influenza
virus, which activates the lung epithelium to induce a massive influx of neutrophils. This
activation of epithelium leads to the development of NP [82]. The influenza virus has been
shown to modulate host metabolism, which is closely related to the levels of inflammatory
cytokines expression and the promotion of influenza virus replication [83,84].

3. Clinical Manifestations

The common clinical manifestations of NP have no difference from those of uncompli-
cated pneumonia, including fever, cough, sometimes with chest pain, emesis, abdominal
pain, dyspnea, anemia and fatigue [2]. But patients with NP have a more serious clinical
course, longer duration of fever and length of stay, higher mortality, higher incidence of
extra-pulmonary complications such as septic shock, respiratory failure and HUS and
pulmonary complications such as parapneumonic effusion, pleural empyema, pyothorax,
pneumothorax, pyopneumothorax and BPF [8,85]. PVL-positive Staphylococcus aureus is
associated with high fever and an enhanced risk of purulent expectoration and hemopty-
sis [10]. And it has been shown that erythroderma, leucopenia and airway bleeding can
predict the mortality of PVL-positive Staphylococcal NP [86]. Age and gender have no
significant influence on the incidence of NP. The majority of reported cases are previously
healthy and immunocompetent children [85]. When patients have flu-like symptoms,
we should consider the possibility of viruses, especially during influenza season. When
patients have malnutrition, cardiopulmonary diseases, underlying immunodeficiency con-
ditions, or an experience of traveling or being in contact with birds or other animals, we
should take the possibility of fungi into account [87]. Influenza-MRSA coinfection usually
happens in previously healthy adolescents. They may have leukopenia or neutropenia and
need ECMO support [88].

The laboratory characteristics of NP are mainly associated with mild-to-moderate
anemia, hypoalbuminemia and elevated inflammatory markers, like white blood cell (WBC)
counts and C-reactive protein (CRP) levels [2]. The typical pleural fluid of NP caused by
bacteria has increased WBC counts, high protein content, low glucose concentration and
high lactate dehydrogenase (LDH) concentration, while Mycoplasma pneumoniae NP is often
dominated by lymphocytes, high protein content and normal glucose concentration in
pleural fluid [4,89]. And organisms may be seen on Gram- or acid-fast-stained smears. The
results of radiologic examinations could be large cavities and pleural effusions in the X-ray
or on chest computed tomography (CT) [10].

4. Prediction and Early Recognition

In spite of the serious condition of NP, it always has a good prognosis with early
recognition and management. Due to the variable evolution of NP, physicians’ awareness
and experience, improved diagnostics, as well as the propensity of pathogens, is essential
to predict the severity of the clinical course of CAP before deterioration happens.
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4.1. Chest Computed Tomography and Lung Ultrasound

Diagnostic imaging is indispensable to NP. Chest radiography can reveal the presence
of large cavities and large pleural effusions, but its accuracy does not compare with that of
chest CT, especially in the initial phase of NP [90]. Ultrasonography is an effective modality
to detect parenchymal lesions, pleural thickening and pleural effusion with no radiation
exposure, low cost and wide availability [91]. And it has been shown to be as effective as CT
in the diagnosis of NP and has been proposed to be used in the follow-up of imaging [92].
More importantly, impaired perfusion of Doppler ultrasound can predict massive necrotic
changes early [93]. In the future, the use of chest CT in children with NP may be limited to
particular occasions when patients do not respond well to appropriate management or are
suspected of having complications or even other diseases. Currently, contrast-enhanced
chest CT is still the most sensitive modality for the diagnosis of NP and can differentiate
NP from a lung abscess [94]. It has been observed through CT scans that liquefaction
transits to cavitation within 48 h [4]. In the lung consolidation area of NP, there are multiple
thin-walled cavities or vesicles which can fuse into a large cavity. Compared with a single
thick wall cavity of lung abscess, NP has no enhancement at the edge of the cavity. Some
cavities have liquid levels and gas surfaces [94]. Pulmonary consolidations present several
weeks before cavities appear. It has been shown that the CT value of pulmonary lesions in
NP was lower than that in non-NP and may help predict NP early [95]. In order to reduce
radiation damage, recent studies tried to adopt a machine-learning radiomics model based
on radiographic features observed on non-enhanced CT scans or low-dose CT scans to
recognize pulmonary consolidation in the early stage of NP in children [96,97]. Moreover,
studies have found that lower kV combined with high Iterative Reconstruction in the CT
pulmonary angiogram can maintain image quality [98,99].

4.2. Laboratory Data

The level of serum albumin has been extensively used to reflect the severity of pa-
tients’ conditions [100], and a recent study found hypoalbuminemia on admission was
common in the pediatric intensive care unit and is a good predictor of mortality [101].
So it is meaningful to measure serum albumin routinely for NP patients. A retrospective
observational study has shown that serum albumin less than 30.8 g/L is an independent
risk factor for massive necrosis compared with mild and moderate necrosis [85]. WBC
counts and CRP levels are common inflammatory markers. Increased WBC (≥15.1 × 109/L)
and CRP (≥121.5 mg/L) may have predictive significance for NP in children [102]. LDH,
a pan-necrosis marker, can be released by cells undergoing either primary or secondary
necrosis [103]. The level of pleural fluid LDH is often >1000 U/L in NP among children,
while serum LDH is ≥353.5 U/L [2]. Thus, paying attention to the high level of LDH may
be useful in informing clinicians of the possibility of ongoing necrosis or liquefaction of
the pulmonary parenchyma [104]. In addition to these biomarkers that only predict the
possibility of NP, some available biomarkers are expected to differentiate certain etiologies.

Streptococcus pneumoniae can produce neuraminidase which removes N-acetyl-neuraminic
acid from cell membrane surfaces and exposes Thomsen-Friedenreich antigen (TA) present
on erythrocytes, platelets and glomeruli [105]. The interaction between TA and anti-TA
antibodies, called TA activation, can be assessed and might indicate a higher risk for
NP [106]. Fetuin-A is a kind of sialoglycoprotein, and it can protect erythrocytes from TA
exposure. The level of fetuin-A less than 340 mg/L might be a predictor for pneumococcal
NP with or without HUS in children [107]. The presence of immature PMNs in peripheral
blood, high CRP levels (>12 mg/dL) and no underlying disease at presentation have also
been identified as independent predictors of the occurrence of necrosis or/and abscess
caused by Streptococcus pneumoniae [5].

The critical factor of the severity of staphylococcal NP is PVL but not methicillin
resistance [108]. Current approaches for detecting PVL, including enzyme-linked im-
munosorbent assay [34], latex agglutination [109] and polymerase chain reaction [110] are
costly and time-consuming and are not routinely used at most diagnostic laboratories. Thus,
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it is promising to develop a rapid and affordable method for PVL detection, for instance,
a novel lateral flow assay [111,112] and matrix-assisted laser desorption/ionization time-
of-flight mass spectrometry detecting PVL within minutes [113]. And metabolomics may
be a good way to predict illness severity prior to clinical diagnosis. For example, a study
found the concentrations of acetone, acetoacetate, fumarate and glucose have been shown
to be more than 25-fold higher in the patient with methicillin-resistant Staphylococcus aureus
pneumonia than those of patients with influenza pneumonia and healthy controls [114]. But
the overall concentration of the urine samples can be influenced greatly by the hydration
state of the patient, so further investigations are needed.

D-dimer is a biomarker of fibrin formation and degradation and has been extensively
used to diagnose venous thromboembolism [115]. Recently D-dimer levels have also been
used to assess the severity of MPP [116], and D-dimer > 1367.5 ng/mL has been recognized
as the risk factor for NP caused by Mycoplasma pneumoniae in children. And the use of low
molecular-weight heparin has been shown to reduce the risk of pulmonary necrosis [117].
Children with Mycoplasma pneumoniae pneumonia (MPP) infection are related to higher
risks of blood coagulation and thrombosis. Several studies have shown that pulmonary
embolism, stroke, splenic infarction, myocardial infarction and even extensive thrombotic
events are associated with Mycoplasma pneumoniae infection in children [118–122]. Further-
more, a recent study demonstrates that elevated D-dimer, specifically >11.1 mg/L (even
>5.0 mg/L), would assist in the early diagnosis of thrombosis in MPP [123]. However, an-
other recent study has shown that there is no statistically significant difference in D-dimer
between Mycoplasma pneumoniae NP and non-Mycoplasma pneumoniae NP and even no case
of pulmonary embolism was observed in NP [57]. On the other hand, higher levels of IL-6
and IgE were also observed in NP caused by MPP compared with non-NP [95,124]. And
CT value of large pulmonary lesions ≤ 36.43 and IFN-γ ≤ 7.25 pg/mL might help us to
early predict NP from MPP with large pulmonary lesions in children [95].

Clinically, it is necessary to be vigilant about the possibility of NP in previously healthy
and immunocompetent children with lobar pneumonia, especially when clinical manifes-
tations, radiographic features and laboratory data like reduced serum albumin, elevated
inflammatory markers and increased D-dimer do not improve or even worsen in spite
of antibiotics with supportive care. If radiographic features reveal pulmonary consolida-
tions and/or the CT value of large pulmonary lesions is ≤36.43 and/or laboratory data
exceeds a certain range (WBC ≥ 15.1 × 109/L, CRP ≥ 121.5 mg/L, D-dimer > 11.1 mg/L,
IFN-γ ≤ 7.25 pg/mL, serum LDH ≥ 353.5 U/L and/or pleural fluid LDH > 1000 U/L), NP
would be more suspicious. Although culture is time-consuming, analyzing drug sensitivity
is still the most important thing in treating bacterial infections. In the meantime, current
molecular biology methods make it possible to identify the responsible pathogen rapidly.
The combination of laboratory data and certain pathogens identification like MASA and
refractory Mycoplasma pneumoniae would help diagnose NP.

5. Management
5.1. Antibiotics and Adjunctive Therapy

To date, recommendations for the optimal management of NP rely mainly on ex-
pert opinion for the lack of high-quality randomized controlled trials. In general, the
initial treatment is conservative in immunocompetent children. Intravenous (IV) an-
tibiotics with supportive care are the mainstay of therapy. The regimen for NP needs
to contain both anti-pneumococcal and anti-staphylococcal antibiotics, such as high-
dose penicillin or ampicillin, amoxicillin-clavulanic acid, or second-generation or third-
generation cephalosporin [1]. When coinfection with Mycoplasma pneumoniae is docu-
mented, a macrolide like IV azithromycin should be included in the treatment [63]. Local
epidemiologic and patterns of antibiotic resistance should be taken into consideration.
In areas where multidrug-resistant pneumococcus or MRSA is prevalent, vancomycin is
usually added as the first-line agent before the availability of culture results [125,126]. How-
ever, a recent study showed empiric vancomycin for children predicted mortality and poor
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outcomes [126]. An increased risk of nephrotoxicity has been reported in several pediatric
studies [126,127]. It is difficult to reach therapeutic levels of vancomycin in children with
good renal clearance, and vancomycin can penetrate poorly into lung tissues [88]. Protein
synthesis inhibitors such as linezolid, clindamycin, or rifampicin may be a better alternative
to vancomycin for the treatment of NP caused by PVL-positive Staphylococcus aureus, but
their clinical evaluation is not available [128]. Antimicrobial peptides have been a hotspot
of multidrug-resistant bacteria. It has been reported that α-defensins can neutralize PVL
and inhibit its cytotoxicity [129]. Antimicrobial peptides may be a new kind of antibiotic
for NP in the future. If patients do not respond well, treatment can be tailed according to
the results of antibiotic susceptibility testing [125].

For NP caused by SMPP or RMPP, the combination of macrolide and systemic cor-
ticosteroids may be an effective treatment [130]. However, there is a lack of studies to
determine its effectiveness and safety. IV immunoglobulin containing pooled human poly-
clonal antibodies can not only modulate the immune system but also neutralize specific
lung-damaging toxins. It could be considered an adjunctive therapy, but clinical studies
are still rare [128,131]. To eliminate intracellular MASA, an antibody-antibiotic conjugate
consisting of an anti-Staphylococcus aureus antibody and the rifamycin derivative rifalogue
may be a novel way [132]. When Mycobacterium tuberculosis, viruses, or fungi are suspected,
anti-tuberculosis, anti-viral, or anti-fungal therapy should be added, respectively.

5.2. Flexible Bronchoscopy and Surgery

Flexible fiberoptic bronchoscopy with bronchoalveolar lavage is an important modality
of diagnosis and therapy in pediatric patients [133]. It can detect endobronchial abnormali-
ties, obtain more efficient samples for bacteriologic, cytologic and histologic detection and
offer therapeutic interventions [134]. Taking the opportunity to apply bronchoscopy has
been shown to promote rapid recovery in refractory pneumonia, while bronchoscopy for
NP has been rarely reported [76,133,135]. Chest drains, a kind of interventional procedure,
are used to remove large empyema or parapneumonic effusion or pyopneumothorax in
children with NP. It has been reported to have similar outcomes treating NP with surgical
treatments [4]. Surgical treatments of pediatric NP are recommended in cases where there
is the presence of complications or no complete response to the conservative treatment.
A study found that a delay in surgery is associated with more complications and recom-
mended an early intervention [136]. Early thoracoscopy may hasten recovery and avoid
late lung resections [137]. However, postoperative complications such as BPF or small
pneumatoceles are common, and surgical treatments are associated with wound infections,
bleeding, prolonged pain and recovery times [136,138]. In fact, lung resection involv-
ing wedge resection or pneumonectomy in children is rare because it may impair future
pulmonary function in spite of having little effect on postoperative FVC or FEV1 [139].
Most pneumatoceles can resolve spontaneously within weeks or months, while 80% of
BPF in children need surgical treatments [30,140]. When fever and complications like
acute respiratory failure, BPF, empyema and sepsis persist, video-assisted thoracoscopic
surgery or mini-thoracotomy may be required [141]. Thoracotomy can debride fibrinous
material, excise necrotic tissue, close air leaks and drain pus from the pleural cavity [137].
Endobronchial embolization, which is mainly used in adults, may be a less invasive al-
ternative treatment for large pneumatoceles and BPF in children than the classic surgical
approach [140].

6. Conclusions

Streptococcus pneumoniae, Staphylococcus aureus and Mycoplasma pneumoniae are the main
infectious agents causing NP. Although detailed mechanisms are still not clear, we expect
to recognize them earlier, take timely treatment measures and develop novel therapeutic
strategies. Current studies focus on radiological outcomes, clinical features, laboratory
characteristics and the development of testing technology. In the future, predictors from
these aspects may be used in clinical.
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