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Abstract: Surgery with the assistance of conventional radiotherapy, chemotherapy and immunother-
apy is the basis for head and neck squamous cell carcinoma (HNSCC) treatment. However, with these
treatment modalities, the recurrence and metastasis of tumors remain at a high level. Increasingly,
the evidence indicates an excellent anti-tumor effect of chimeric antigen receptor T (CAR-T) cells in
hematological malignancy treatment, and this novel immunotherapy has attracted researchers’ atten-
tion in HNSCC treatment. Although several clinical trials have been conducted, the weak anti-tumor
effect and the side effects of CAR-T cell therapy against HNSCC are barriers to clinical translation.
The limited choices of targeting proteins, the barriers of CAR-T cell infiltration into targeted tumors
and short survival time in vivo should be solved. In this review, we introduce barriers of CAR-T cell
therapy in HNSCC. The limitations and current promising strategies to overcome barriers in solid
tumors, as well as the applications for HNSCC treatment, are covered. The perspectives of CAR-T
cell therapy in future HNSCC treatment are also discussed.

Keywords: CAR-T cell; cancer therapy; immunotherapy; solid tumor; HNSCC

1. Background

Head and neck squamous cell carcinomas (HNSCCs) are malignant lesions of the mucosal
epithelium from the oral cavity, pharynx and larynx and are regarded as the most common
malignancies in head and neck cancer, accounting for 90%. As the sixth most common malig-
nancy worldwide, there were an estimated 880,000 new cases and 440,000 deaths from HNSCC
worldwide in 2020 [1,2]. The high-risk factors of HNSCC present a regional difference. In
European countries, increasing HPV infection contributes to the incidence of HNSCC, while
addiction to alcohol and tobacco and the consumption of areca are the common high-risk factors
in south Asian countries [3–5]. Nowadays, the treatment modalities of HNSCC are dependent
on the TNM staging system and the multidisciplinary team working on the case, comprising
surgery with the supplementation of radiotherapy and chemotherapy, which remains the basic
modality. Although the treatment modalities for HNSCC have been continuously improved, the
five-year survival rate of patients has remained at approximately 50–66% in the last 40 years [1,6].
Moreover, due to the special lesion site of HNSCC, surgery can destruct the maxillofacial region,
seriously affect facets of daily life such as chewing, speaking and sociality, reduce the quality of
life and increase the psychological burden of patients. It has been reported that the suicide rate
amongst HNSCC survivors in the USA (63.4 of 100,000 person-year) is the second highest among
all kinds of cancer following pancreatic cancer (86.4 of 100,000 person-year), and is three times
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higher than the suicide rate of the general population [7]. Therefore, improving the anti-tumor
efficacy of treatment and the life quality of patients has become the current research focus.

Immunotherapies—including tumor vaccines, adoptive immune cell therapy and immune-
checkpoint-blocking—have shown great potential in recent preclinical studies and clinical
trials [8–10]. Chimeric antigen receptor T (CAR-T) cell therapy, a novel immunotherapy, was first
put forward in the 1980s and shows excellent anti-tumor efficacy in hematological malignancies.
In CAR-T cell therapy, T cells derived from patients are genetically engineered to express
antibodies that can specifically recognize tumor antigens in a non-major histocompatibility
complex (MHC)-restricted manner (Figure 1) [11,12]. To date, five CAR-T cell products approved
by the FDA have been used for the treatment of hematological malignancies. The excellent
performance of CAR-T cell therapy in the treatment of hematological malignancies, and its
anti-tumor effect in solid tumors, including HNSCC, have attracted the focus of studies. This
review introduces the current development, barriers and solutions of CAR-T cell therapy. We
also summarize the advances in CAR-T cell therapy for the treatment of HNSCC and discuss
the opportunities and challenges of CAR-T cell therapy in HNSCC.
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reported the chimeric antigen receptor T cell which can specifically recognize tumor surface antigens
in a non-MHC-restricted manner. In the following years, a total of 4 generations of CAR-T cells were
developed and reported. In 2012, Carl June and co-workers successfully cured a patient with acute
B-cell lymphoblastic leukemia using CAR-T cell therapy. Now, the patient has survived tumor-free
for 9 years. CAR-T cell therapy for solid tumors including HNSCC has also been reported in recent
years. Maher J and co-workers demonstrated EGFR as being one of the targets of HNSCC therapy. In
2017, two CAR-T cell productions targeting CD19, Kymriah and Yescarta, were approved by the FDA
for the treatment of hematological malignancies. Subsequently, three more CAR-T cell productions
were approved by the FDA.

2. Brief Introduction to CAR-T Cell in Cancer Treatment

The synthesis of CAR-T cells modifies the patient’s autologous T cells through genetic
engineering technology in vitro. The process includes three main steps: (1) the T cells of
patients are separated and collected via leukapheresis, monocyte elutriation and T cell
selection; (2) the isolated T cells are activated and transduced by viral vectors encoding
specific CAR genes and (3) after transgene delivery, the CAR-T cells are expended in vitro
and transported into the patient’s body to achieve the targeting and killing of tumor
cells (Figure 2a) [18]. Due to the low expression of MHC molecules, tumor cells have
the characteristic of low immunogenicity. To enhance the effect of tumor cell recognition,
compared to traditional immunotherapy, CAR-T cells are designed to recognize tumor cells
in an MHC-independent manner. In this way, CAR-T cell therapy can reduce the impact of
immune escape caused by the low immunogenicity of tumor cells. Moreover, CARs have
the advantage of strong controllability and can increase T cell activation [19].

The structure of CAR-T cells contains T cells and CARs that can specifically recognize
tumor cells. The extracellular domain of CARs is an antigen-binding single-chain variable
fragment (scFv) composed of a variable light chain (VL) and variable heavy chain (VH).
Connected to a transmembrane structure, the scFv is derived from antibody proteins
that can specifically recognize tumor-associated antigens. The intercellular domain of
CARs in T cells is a signal domain composed of a CD3ζ signal chain and co-stimulation
domains, which can mediate T cell activation in a T-cell-receptor-independent manner [12].
According to different intracellular domains, CAR-T cells are divided into four generations.
Recently, researchers have reported on fourth-generation CAR-T cells (T cells redirected
for universal cytokine killing, TRUCK), which are engineered to release pro-inflammatory
cytokines, including interleukin (IL)-12, IL-8, and IL-9, to increase the activation of CAR-T
cells and other innate immune cells [18,20,21]. Furthermore, due to the high cost of CAR-T
cell therapy and the complicated synthesis process of CAR-T cells (the prices of Kymriah
and Yescarta are about USD 473,000 and USD 373,000, respectively) [22], the existence of
“fifth-generation” CAR-T cells has been reported (universal CAR-T, UniCAR-T). This CAR
system is split into two parts (the intracellular signal domain and the extracellular domain
scFv) to identify more target proteins and improve the flexibility of CAR-T cells in treating
different cancers (Figure 2b) [23].

In addition to efficacy, safety is an aspect that cannot be ignored when evaluating a
new treatment modality. Due to its “on-target, off-tumor” toxicity, CAR-T cell therapy can
cause a series of immunopathological reactions, including fever, hypotension, hypoxia,
neurotoxicity, skin toxicity, gastrointestinal toxicity and multiple organ damage. It can even
lead to death in severe cases, caused by cytokine release syndrome (CRS; an acute systemic
inflammatory syndrome) or tumor lysis syndrome [24–26]. Because of these adverse events,
the clinical application of CAR-T is limited. Therefore, in addition to enhancing the anti-
tumor efficacy, the method of eliminating the complications of CAR-T cell therapy is also a
big challenge in the clinical translation of CAR-T cell therapy.
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Figure 2. Schematic of CAR-T cell synthesis and five generations of the CAR-T cell. (a) Cells are
separated and collected via leukapheresis, monocyte elutriation and T-cell selection. The isolated T
cells are transduced to express CAR proteins through genetic engineering. After transgene delivery,
CAR-T cells are expended in vitro and transported into the patients. (b,c) CAR is composed of a
single-chain variable fragment, transmembrane domain and signal domain. The signal domain
of the first-generation CAR-T cell is typically composed of the CD3ζ signal chain. In second- or
third-generation CAR-T cells, the structure of the signal domain contains co-stimulatory domains
such as cluster of differentiation 28 and/or 4-1BB. The fourth-generation CAR-T cell is engineered
to be equipped with the nuclear factor and express cytokines. The structure of CAR-T cells is still
improving, and the development of a fifth-generation CAR-T cell is inevitable.

An appropriately selected CAR target protein is of great significance in enhancing
anti-tumor efficacy and reducing the complications of CAR-T cell therapy. A variety of
proteins overexpressed in tumor cells are selected as the protein targets. The epidermal
growth factor receptor (EGFR) is overexpressed in lung cancer, and EGFR inhibitors have
been reported as the first targeted drugs for lung cancer treatment. Its variant III (EGFRvIII)
is expressed in 30%–40% of glioblastomas (GBMs) [27,28]. Clinical trials of EGFR and
EGFRvIII-targeted CAR-T cells in treating metastatic colorectal cancer, metastatic pancreatic
cancer, recurrent GBM, brain cancer and glioblastomas have been conducted [29–31].
Human epidermal growth factor receptor 2 (HER2, ErbB2) has been demonstrated to
overexpress in solid tumors, including GBM, breast cancer, ovarian cancer and digestive
system malignancies [32–35]. There are various clinical trials using HER2-targeted CAR-T
cells for the treatment of HER2-positive sarcoma, progressive GBM, advanced biliary tract
cancers and pancreatic cancers [36–38]. The IL-13 receptor α2 (IL13Rα2) has been confirmed
to be overexpressed in almost 75% of GBMs, which are associated with tumor invasion and



J. Clin. Med. 2023, 12, 2173 5 of 18

poor survival rates [39]. Clinical trials of IL13Rα2-targeted CAR-T cells for the treatment of
recurrent GBM have been reported [40,41].

3. Application of CAR-T Cell Therapy in Head and Neck Squamous Cell Carcinomas

CAR-T cell therapy in solid tumors has been demonstrated to be a promising ther-
apeutic strategy. As HNSCC is a malignant tumor that seriously affects patients’ health
and quality of life, CAR-T cell therapy of HNSCC is also the focus of current research.
Nowadays, studies on CAR-T cells for treating HNSCC (Table 1) are still focused on pre-
clinical research, while the transformation of preclinical studies into clinical trials is still
not optimistic.

Table 1. Research progress of CAR-T cell therapy in head and neck squamous cell carcinomas
(HNSCCs).

Target Introduction Reference

Preclinical study

HER2 CD28. CD3-ζ/CAd [42]

EGFR - [43]

CD70 4-1BB.CD3-ζ [44]

MUCI 4-1BB.CD3-ζ/IL-12 [45]

CD44v6 CD28. CD3-ζ [46]

B7-H3 - [47]

CD98 + EGFR UniCAR-T [48]

Clinical trial

ERBb2/HER2 NCT01818323
NCT03740256 [49,50]

EpCAM NCT02915445

NKG2DL NCT04107142

LMP1 NCT02980315

Potential target

FAP

Overexpression of HNSCC cells
compared to adjacent tissue

controls (p < 0.0005);
FAP-targeting CAR-T cells have

been used in treating other
solid tumors

[44,51–53]

HER3

Overexpression of HPV-positive
HNSCC cells compared to

HPV-negative HNSCC cells
(p = 0.0007);

HER3-targeting CAR-T cells have
been used in treating mice
bearing breast tumor cells

[54,55]

NKGD2

Overexpression of MICA and
MICB in HNSCC cells compared

to adjacent tissue controls
(p < 0.0005);

NKGD2-targeting CAR-T cells for
treatment of acute myeloid

leukemia and multiple myeloma
have been used in clinical trial

[44,56]



J. Clin. Med. 2023, 12, 2173 6 of 18

3.1. Preclinical Research of CAR-T Cell Therapy against HNSCC

HER2-targeted CAR-T cells have been present in preclinical research for a long time for
the treatment of solid tumors. It has been demonstrated that HER2 can be detected in 0–47%
of HNSCC tissues, and the overexpression of HER2 is associated with a worse prognosis of
patients with HNSCC [57]. Due to the relationship between the HER2 expression level and
HNSCC progression, Warren et al. developed HER2-specific CAR-T cells for the treatment
of HNSCC. The results showed that anti-HER CAR-T cells achieved a 56% decrease in
tumor size, suggesting HER2 could be a potential target in CAR-T cell therapy against
HER-positive HNSCC [58].

EGFR is overexpressed in hypopharyngeal carcinoma, which constitutes approxi-
mately 5% of HNSCC. Dong et al. developed EGFR-targeted CAR-T cells to limit the
growth of an EGFR-positive hypopharyngeal carcinoma cell line. The results showed that
the cytokine secretion and lysis rates of target cells were significantly enhanced after the
co-culture of target cells and CAR-T cells [43].

CD70, serving as a tumor necrosis factor ligand, is highly expressed in solid tumors,
including HNSCC. The overexpression of CD70 is related to a reduction in CD8+ T cells,
which can induce immunosuppressive TME [59]. Park et al. analyzed nine proteins
that were highly expressed in HNSCC cells as being potential CAR-T cell targets and
demonstrated that anti-CD70 CAR-T cells can effectively eliminate HNSCC cells compared
to the no-treatment group [44].

The expression of mucin 1 (MUC1) and its associated epitopes have been detected in
HNSCC and are regarded as possible prognostic markers. Their overexpression has been
reported to be associated with an adverse tumor stage and radioresistance, so targeting
MUC1 has become a promising strategy for HNSCC treatment [60]. Mei et al. selected
MUC1 as the target of CAR-T cells and engineered a fourth generation of CAR-T cells
secreting IL-22 for the treatment of MUC1-positive HNSCC tumors in a xenograft mice
model. It has been confirmed that MUC1-targeting IL22-CAR-T cells have great efficacy in
inhibiting HNSCC growth in vivo [45].

Haist et al. reported that CD44v6-targeting CAR-T cells play an important role in
killing CD44v6-positive HNSCC cell lines, including UM-14C, and their cytotoxicity de-
pends on the tumor-associated CD44v6 expression levels. Almost 100% of tumor cells were
killed after CAR-T cell therapy [46].

B7-H3, an immune checkpoint protein in the B7 family of cell surface molecules, is
reported to play a role in impairing the T cell response, promoting the proliferation of
immunosuppressive cells and enhancing the progression of tumors [61]. A preclinical
study conducted by Scribner et al. showed that the single administration of MGC018,
an antibody of B7-H3, achieved a 98% reduction in head and neck xenografts, indicating
that the targeting of B7-H3 in CAR-T cell therapy exerts an anti-tumor effect in HNSCC
treatment [47].

3.2. Clinical Trials of CAR-T Cell Therapy against HNSCC

The results of clinical trials on CAR-T cells for the treatment of HNSCC on the profes-
sional clinical trial registration website are not abundant. The safety and cytotoxic efficacy
of an injection of CAR-T cells targeting ERBb (T1E28z) for HNSCC patients have been
verified. The results showed that among the 12 evaluated patients, the overall disease
control rate was 69% after intratumoral application [50]. Daniel Wang et al. published
a recruitment notice for a phase I clinical trial of HNSCC treatment on the website in
2018 to explore the safety and cytotoxicity of HER2-targeting CAR-T cells combined with
an intra-tumor injection of binary oncolytic adenovirus CAdVEC against HER2-positive
tumors, including HNSCC. They also studied whether these CAR-T cells could survive
in the blood. However, CAR-T cells targeting the epithelial cell adhesion molecule (Ep-
CAM), natural killer group 2 member D ligand (NKG2DL) and latent membrane protein
(LMP1) remain in clinical trials to verify their safety and efficacy for the treatment of
nasopharyngeal carcinoma.
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3.3. Potential Targets for CAR-T Cell Therapy against HNSCC

Looking for new targets of HNSCC to increase the specificity and reduce the side
effects of CAR-T cells can promote the transformation of CAR-T cell therapy into clinical
applications. The selection of CAR-T cell targets for the treatment of HNSCC is usually
based on the following two prerequisites: (1) CAR-T cell target proteins that have been
reported in the treatment of solid tumors, such as FAP and GD2; (2) proteins that are highly
expressed on the surface of HNSCC cells and are rarely expressed in normal tissues. In
addition to CD70, introduced by Park et al., MICA, MICB, MAGEA-4, FAP and β4GALNT1
are regarded as potential target proteins, considering the significant overexpression of
these proteins on the surface of HNSCC cells compared to normal tissues [44]. This study
paved the way for new targets for CAR-T cell selection in HNSCC. In addition to selecting
tumor-specific surface antigens of HNSCC cells, researchers are also paying attention to
the antigens of other solid tumors to find safe and feasible CAR-T cell targets.

4. Barriers of CAR-T Cell Therapy in HNSCC and Potential Solutions

Even though the earliest clinical trial of CAR-T cell therapy was conducted in solid
tumors, thus far, the five FDA-approved CAR-T cell products are all in blood diseases.
The reasons for the slow advancement in CAR-T cells for the treatment of HNSCC are
associated with the barriers formed by the unique tumor microenvironment (TME) of
solid tumors, and are as follows: (1) physical barriers, including compact tumor structures,
tumor stromal cells, etc., (2) physiochemical barriers, including the downregulation of
cytokines and acidic, hypoxia and low-nutrient environments and (3) pathological barriers,
including immunosuppressive mechanisms, immune checkpoints, tumor antigen loss
and heterogeneity, etc. These barriers restrict the infiltration of CAR-T cells into HNSCC,
influence the specificity of HNSCC cell targeting and decrease the proliferation and anti-
tumor effect of CAR-T cells [62–64]. Strategies to overcome these three barriers in solid
tumors are regarded as the key point of accelerating the clinical translation of CAR-T cell
therapy. Therefore, here, we introduce the barriers of tumor-site infiltration, anti-tumor
cytotoxicity and the safety issues of CAR-T cells for HNSCC treatment.

4.1. Infiltration Barriers of CAR-T Cells in HNSCC

The prerequisite for CAR-T cells to exhibit cytotoxicity is transportation to and accu-
mulation in the tumor site. However, compared to hematological tumors, there are many
barriers blocking CAR-T cell infiltration into HNSCC, including angiogenesis, dense fi-
brous structure in the tumor extracellular matrix, downregulation of chemokine expression
and mismatch between the chemokine receptors of T cells and the chemokines of tumor
cells [62,65–67]. To deal with these transportation barriers, researchers have proposed the
following several strategies.

4.1.1. Delivery Techniques

Delivery techniques are reformed for the delivery of CAR-T cells into HNSCC. In
addition to delivering CAR-T cells through intravenous injection, many studies have
reported a direct intratumoral injection of CAR-T cells to treat a variety of solid tumors,
including HNSCC, liver cancer, glioblastoma and breast cancer, effectively increasing the
accumulation of CAR-T cells at the tumor site while reducing their cytotoxicity to normal
tissue cells (Figure 3a) [68–71]. The administration of T1E28z CAR-T cells against ErbB+

HNSCC in a mouse model via the intratumoral route presented a more significant anti-
tumor effect compared to the administration of CAR-T cells via the intravenous route.
Moreover, no remarkable CRS or weight loss were observed among the mice treated via
intratumoral CAR-T cell injection compared to those treated via intraperitoneal injection,
indicating the safety of the administration of CAR-T cells using the intratumoral route [71].
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Figure 3. Methods to overcome the barriers of CAR-T cells in the treatment of HNSCC. There are
three aspects in overcoming the barriers including promoting CAR-T cell infiltration to the solid
tumor (a–c), activation (d–f) and reducing cytotoxicity in normal cells (g,h). (a) Intratumoral injection
of CAR-T cell. (b) Photothermal pre-treatment followed by CAR-T cell therapy. (c) Expression of
chemokine receptor through genetic engineering. (d) Tandem CAR-T cell targeting multiply proteins.
(f) Secretion of immune-checkpoint-blocking proteins through genetic engineering. (g) iCAR-T
cell. (h) Expression of suicide genes. (NIR: near infrared; TanCAR-T: tandem CAR-T cells; iCAR:
inhibitory CAR.

Moreover, novel drug delivery systems can also play a significant role in improving
CAR-T cell migration. It has been demonstrated that metal-based scaffolds and biopoly-
mer scaffolds implanted into the tumor site can play an important role in promoting the
infiltration, survival and efficacy of CAR-T cells. Stephan et al. harbored ovarian-cancer-
specific T cells (NKG2D-targeted CAR-T cells) and T cell stimulants into bioengineered
polymer matrices and used them for tumor treatment by situating implants near the tumor.
On the 40th day after treatment with bioactive polymer scaffolds delivering CAR-T cells,
the survival rate of the mice was 100%, while no mouse survived in the control group
(p < 0.0001, n = 10) [72]. Gu et al. developed a new post-surgery local drug delivery
system constituted by a biodegradable hydrogel reservoir for the treatment of a melanoma
xenograft mouse model. CAR-T cells, human platelets conjugated with anti-programmed
death-ligand-1-blocking antibody (aPDL1) and IL-15 were encapsulated into the hydrogel
reservoir (CAR-T-P–aPDL1@gel) and released into the inflammatory TME of the surgical
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bed to inhibit the tumor growth and prolong the survival time of the treated mice [73]. Coon
et al. developed a nitinol thin film to deliver CAR-T cells for the treatment of non-resectable
ovarian cancer. The study showed that the survival rate of the mice was 70% on the 120th
day after T cell transfer, compared to a 55-day median survival time in the local injection
group (p < 0.0001, n = 10) [74].

4.1.2. Combination Therapy

The combination of CAR-T cell therapy with other treatments was developed to break
the physical barriers derived from vascular endothelial cells and induce the infiltration of
CAR-T cells (Figure 3b). Chen et al. designed a novel way to overcome the barriers and
enhance the efficacy of CAR-T cells in combination with photothermal therapy (PTT). After
two-minute near infrared laser irradiation, the temperature of the tumor site was raised to
44 ◦C, which can kill tumor cells directly, reduce the physical barrier of tumor vasculature,
promote the infiltration of CAR-T cells and increase the release of cytokines, including
IL-12 and IFN-γ. In the melanoma xenograft model, after 20-day CAR-T cell treatment
combined with PTT, the tumor volume was less than 100 mm3, demonstrating a significant
inhibition of tumor growth [75].

4.1.3. Genetically Engineered Multi-Functional CAR-T Cells

CAR-T cells are reported to express certain enzymes or chemokines through genetic
engineering to enhance the infiltration into HNSCC. The expression of chemokine receptors
that can identify the chemokines expressed by tumor cells on CAR-T cells via genetic
engineering is regarded as one of the ways to increase the targeted infiltration of CAR-T
cells. Research conducted by Jin et al. showed that in a glioblastoma xenograft model, the
expression of the C-X-C motif chemokine receptor (CXCR) 1 and CXCR2 could significantly
enhance the infiltration of CAR-T cells, and a large quantity of CAR-T cells could migrate to
the tumor site two days after injection. Moreover, the survival rate of the mice after 80 days
of injection was 100%, compared to 50% in the control group (p < 0.05) (Figure 3c) [20].

In addition to chemokines, some enzymes have been demonstrated to be effective
in improving CAR-T cell migration. Heparanase (HPSE) is an endoglycosidase and has
the ability to degrade heparan–sulphate proteoglycans, the main component of the tumor
extracellular matrix, to remodel the extracellular matrix and promote the aggressiveness
and chemoresistance of tumors [76]. Caruana et al. designed a novel CAR-T cell expressing
HPSE through genetic engineering to improve its capability to degrade the extracellular
matrix, increasing the infiltration and anti-tumor activity of CAR-T cells [77].

4.2. Efficacy Barriers of CAR-T Cells in HNSCC
4.2.1. Genetic Heterogeneity in HNSCC

In addition to infiltration barriers, the genetic heterogeneity in HNSCC and the limita-
tion of specific target selection can also cause tumor immune escape in traditional CAR-T
cell therapy. In cancer treatment, researchers always screen specific molecular alterations
from patients to achieve targeted therapy. However, patients with HNSCC do not greatly
benefit from targeted therapy in clinical applications due to the lack of reliable specific
biomarkers in HNSCC therapeutic options [78]. Therefore, strategies to enhance the target-
ing ability and achieve a controllable anti-tumor efficacy of CAR-T cells to HNSCC cells are
regarded as novel ways to overcome the barriers of genetic heterogeneity in CAR-T cell
therapy in HNSCC treatment.

To increase the T cell response and the lysis rate of tumor cells, researchers have
designed multi-antigen-targeting CAR-T cells for the treatment of solid tumors. Li et al.
used tandem CAR-T cells (TanCAR-T) targeting the HER2 and IL13Rα2 proteins for the
treatment of glioblastomas and proved that they could address the problem of tumor
antigen escape and increase the anti-tumor effect (Figure 3d) [79]. Cho et al. introduced a
“split, universal, and programmable” (SUPRA) CAR system, which can change the targets
of CAR-T cells without genetically reprogramming the CAR-T cells to achieve a controllable
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anti-tumor efficacy. In addition to the considerable anti-tumor cytotoxic efficacy, the SUPRA
CAR system can achieve controllable CAR-T cell activation through the “switch” of T cells,
the selection of target cells, the control of different subtypes of T cells and the control of
different signaling domains to reduce the occurrence of CRS and enhance its safety and
anti-tumor efficacy [80].

Some combination therapies and multi-function CAR-T cells have also been put
forward. Park et al. improved the efficacy of CD19-targeting CAR-T cell therapy in
solid tumors by combining CAR-T cells with oncolytic vaccinia viruses (OVs). OVs can
preferentially replicate in tumor cells and potentiate the immune response of T cells and
innate immune cells. Moreover, through genetic engineering, OVs can express a specific
antigen on the tumor cell surface that can be recognized by CAR-T cells to enhance the
anti-tumor effect of CAR-T cells [81]. In their study, the oncolytic vaccinia virus coded
for the truncated nonsignaling variant of CD19 (OV19t) worked as a vehicle to selectively
infect tumor cells and express CD19 on the surface of tumor cells, and then these infected
tumor cells could be targeted by CAR-T cells [82]. Kagoya et al. designed a CAR-T cell
encoding the intracellular domain from IL-2Rβ and STAT3-binding YXXQ motif. In an
NALM6 cell xenograft mouse model, the activation of the JAK-STAT3/5 pathway was
promoted, which enhanced the proliferation of CAR-T cells and significantly prolonged
the survival of mice [83].

4.2.2. Immunosuppressive Tumor Microenvironment in HNSCC

The acidic, hypoxia, low-nutrient TME and the overexpression of immune checkpoints
associated with immune escape in HNSCC also have an adverse effect on CAR-T cells
by inhibiting the ability of immune cells to target tumor cells [84–86]. The therapeutic
efficacy of CAR-T cells alone has been confirmed to be insufficient in treating HNSCC,
so a new way of improving CAR-T cells has been reported. Rosewell et al. pre-treated
HNSCC with engineered binary oncolytic adenovirus (CAd) that can express programmed
cell death-ligand 1 (PD-L1) blockade antibodies and cytokines, thereby improving the
anti-tumor effect of HER2-targeting CAR-T cells [42].

Moreover, genetically engineered CAR-T cells that can release cytokines to alter the
immunosuppressive TME have become a new option to increase the activity of CAR-T cells
in some solid tumors (Figure 3e). Yeku et al. designed an armored CAR-T cell that can
secrete IL-12. They demonstrated that IL-12 secretion can overcome immunosuppression,
promote the proliferation and cytotoxicity of CAR-T cells and inhibit their apoptosis in
ovarian cancer [87]. CAR-T cells releasing IL-23, IL-18 and IL-7 through the genetic engi-
neering or preconditioning of CAR-T cells with IL-15 and IL-7 have also been demonstrated
to achieve a remarkable cytotoxic effect against solid tumors [88–91].

In addition to CAR-T cells engineered to release cytokines, developing CAR-T cells that
can express immune-checkpoint-blocking proteins is another way to increase the inhibitory
effect of CAR-T cell therapy on tumors. Huang et al. engineered B7-H3-targeting CAR-T
cells to co-express PD-1 decoy receptors. PD-1 decoy receptors, fused to the intracellular
stimulatory domain, were demonstrated to convert or compete with the immunosuppres-
sive signal and enhance the anti-tumor activity of CAR-T cells in giant cell carcinoma [92].
Zou et al. engineered CAR-T cells to express three immune checkpoint inhibitory receptors,
namely, PD-1, Tim-3 and Lag-3, to downregulate their immune checkpoint receptors on
CAR-T cells and to form a novel type of CAR-T cell (PTL-CAR-T cells). It was demonstrated
that blocking these immune checkpoints can promote infiltration, prolong survival and
enhance the anti-tumor activity of CAR-T cells (Figure 3f) [93].

4.2.3. Immunogenicity of CAR-T Cells

The extracellular domain of CARs, especially derived from mouse and other non-
human antibodies, has immunogenicity and can induce both humoral and cellular anti-
CAR immune responses in solid tumor therapy, which limit the efficacy and cause adverse
events and even treatment failure [94]. Several studies have demonstrated the negative
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effects of immunogenicity of CAR-T cells. Turtle et al. conducted a clinical trial to evaluate
CAR-T cells targeting CD19 in treating B cell acute lymphoblastic leukemia (NCT01865617).
Although the proliferation of CAR-T cells was observed after the first infusion of defined
CD4+ and CD8+ subsets of CAR-T cells, five patients suffered from persistent leukemia or
subsequently relapsed and received a second administration because of anti-CAR transgene
immune responses [95]. In a phase 1 trial for the treatment of metastatic colorectal cancer,
the immune response to the mouse-derived binding domains of CAR-T cells targeting
tumor-associated glycoprotein 72 was reported (11 out of 13 patients) [96]. Moreover,
the novel generations of CAR-T cells engineered to express cytokines, suicide genes and
immune checkpoint proteins have demonstrated the risks of immunological complica-
tions [94].

To eliminate anti-CAR-T cell immune responses, several compounds of CAR-T cells
have been designed. As early as 2012, Lanitis et al. designed anti-mesothelin CAR-T cells
with pure human scFv to overcome the potential issue of immunogenicity, and reported a
significant regression of the tumor size in an ovarian cancer xenograft mouse model after
CAR-T cell administration [97]. Lam et al. designed anti-BCMA CAR-T cells with a novel
scFv. Unlike the conventional murine scFv consisting of a heavy-chain variable domain
and a light-chain variable domain, this new scFv only comprises a humanized heavy-
chain variable domain (FHVH33) that can reduce the size of the CAR binding domain
and the immunogenicity of CAR-T cells. FHVH33-CAR-T cells presented almost the same
cytotoxicity and amounts of cytokines compared to conventional CAR-T cells four or five
days after treatment, which indicates that FHVH33 CAR-T cells can be used in clinical
applications to avoid the immunogenicity of CAR-T cells [98]. Wagner et al. determined
the efficacy of the human-derived CARs mentioned above in reducing the immunogenicity
of CAR-T cells. Meanwhile, they also summarized several other methods, including using
tumor-specific domains, universal CARs and mutating CAR spacers to reduce anti-CAR
immune responses [94].

4.3. The Safety of CAR-T Cells in HNSCC

Cytokine profiles in HNSCC are different from hematological malignancies. CD19
was overexpressed in acute lymphoblastic leukemia and chronic lymphocytic leukemia,
which was regarded as the promising immunotherapeutic target in hematological malig-
nancies [99]. However, cytokine in HNSCC cells was expressed frequently in other normal
tissues. Take HER2 as an example: HER2 is not only expressed in HNSCC but is also ex-
pressed in pulmonary tissue; this would cause multi-organ dysfunction in HER2-targeted
CAR-T cell therapy of HNSCC [100]. Because of these different cytokine profiles, although
the preclinical studies have presented promising results, various adverse events including
“on-target, off-tumor” toxicity and CRS have been reported in clinical trials. Furthermore,
researchers have proposed corresponding solutions against these adverse events.

4.3.1. On-Target, Off-Tumor” Toxicity in CAR-T Cell Therapy

The low-level expression of tumor-associated antigens in normal tissues is one of
the important reasons for the “on-target, off-tumor” toxicity that causes normal tissue
damage, which can be life-threatening. Selecting suitable antigens for CAR-T cell therapy
and enhancing the selective expression of CARs in the tumor site are of significance in
the current research [101]. Kosti et al. designed a stringent hypoxia-sensing CAR-T cell
system that expresses pan-ErbB-targeted CARs in the hypoxic site. The results showed
that the expression of CAR molecules could be detected on the surface of CAR-T cells only
in the hypoxic tumor site of HNSCC, while in normal tissues there were no detectable
CAR molecules [102]. Choe et al. designed synthetic notch (synNotch) CAR-T cells for
the treatment of glioblastomas. This synNotch receptor can detect tumor-specific antigens
such as EGFRvIII expressed on glioblastomas specifically and myelin oligodendrocyte
glycoprotein expressed in the central nervous system specifically, and can then induce the
expression of tandem CARs targeting ephrin type A receptor 2 (EphA2) and IL13Rα2 as
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killing targets to achieve the activation of CAR-T cells. In brain slices from a GBM6 tumor-
bearing mice model six days after the injection of α-EGFRvIII synNotch–α-EphA2/IL13Rα2
CAR-T cells, primed T cells and apoptosis cells can be detected only in tumor sites [103].

Another way to reduce the “on-target, off-tumor” toxicity of CAR-T cells is to inhibit
the function of CAR-T cells, so the concept of inhibitory CAR-T (iCAR-T) cells has been put
forward (Figure 3g) [104]. In iCAR-T cells, the intracellular signal domain of traditional
CAR-T cells is replaced with PD-1 or cytotoxic T lymphocyte-associated protein 4 (CTLA-4)
that can inhibit the proliferation and cytotoxicity of CAR-T cells when CARs recognize the
targeting antigens expressed in normal tissues [105].

4.3.2. Cytokine Release Syndrome in CAR-T Cell Therapy

The pathophysiology of CRS is associated with the overexpression of cytokines, in-
cluding IL-6, TNF-α, IFNγ and IL-1, in a patient’s serum; so, blocking these cytokines can
achieve the reversal of adverse events in CAR-T cell therapy against HNSCC [106]. The
administration of the STAT pathway inhibitors tocilizumab and itacitinib can play a role
in reducing the expression levels of cytokines such as IL-6 and IFNγ in patients or animal
models suffering with CRS after anti-CD19 CAR-T cell therapy [107,108]. Moreover, CAR-T
cells engineered with suicide genes as a safety switch can also eliminate T cells and inhibit
the cytotoxicity effect (Figure 3h). Inducible caspase-9 (iC9), as a suicide gene, can achieve
conditional dimerization using a chemical inducer of dimerization (CID) and can induce
the apoptosis of CAR-T cells [109]. Diaconu et al. designed a CAR-T cell incorporating iC9
to eliminate CD19-CAR-T cells in vivo. After receiving CID, the expression levels of IFN-γ,
IL-6 and TNF-α decreased significantly and no difference in the anti-tumor efficacy was
observed compared to receiving the inactive vehicle [110].

Combining CAR-T cell therapy with certain drugs can decrease the CAR-T cytokines’
release. Wei et al. demonstrated that THZ1, the inhibitor of cyclin-dependent kinase 7, has
protective effects concerning CRS in CAR-T cell therapy without influencing the anti-tumor
effect [111]. Zou et al. showed that the signal transducer and activator of transcription 3
(STAT3) can induce the expression of certain cytokines such as IL-6 and IL-10, and that
combining CAR-T cells with STAT3 inhibition can reduce the adverse events of CAR-T
cell therapy [112]. As early as 2017, the IL-6Rα/STAT3 pathway inhibitor tocilizumab was
approved by the FDA to reduce CRS in CAR-T cell therapy for cancer treatment [113].

5. Conclusions

CAR-T cell therapy specifically eliminates tumor cells in an MHC-independent manner
and becomes a novel modality for tumor immunotherapy. Remarkable achievements of
CAR-T cell therapy for the treatment of hematological malignancies provide researchers
with directions and inspirations for CAR-T cell therapy in HNSCC. According to previous
studies, CAR-T cells targeting EGFR, HER2, etc., demonstrate anti-tumor efficacy and show
promising clinical responses. However, the anti-tumor efficacy and safety of CAR-T cells in
treating solid tumors, including HNSCC, still need to be improved. There are still some
barriers to be overcome in the application of CAR-T cells for HNSCC treatment:

(1) A lack of suitable tumor-specific targets: Taking EGFR as an example, due to the
wide expression of EGFR in normal tissues, CAR-T cells with great affinity for EGFR can
cause “on-target, off-tumor” toxicity that can damage the gastrointestinal tract, respiratory
system and blood system [114]. Therefore, when selecting targets for HNSCC CAR-T cell
therapy, attention should be paid to the specificity of antigen expression to reduce the
toxicity to normal tissues.

(2) CRS as one of the common adverse events in CAR-T cell treatment: theoreti-
cally speaking, the conversion of CAR-T-cell-induced HNSCC tumor cell pyroptosis into
apoptosis can effectively inhibit the occurrence of CRS.

(3) The singleness of drug delivery: Post-surgery drug delivery systems have been
reported to reduce recurrence and metastasis and improve the quality of life of patients.
However, currently, the intravenous injection of CAR-T cells is still a common method of
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drug delivery. Therefore, research on CAR-T cells should also focus on the use of CAR-T
cell therapy at the surgical site to reduce residual HNSCC.

(4) The personalization of CAR-T cell production for the treatment of HNSCC patients:
Due to the efficacy barriers such as the genetic heterogeneity of HNSCC in CAR-T cell
therapy, the high cost of synthesis of CAR-T cell productions and long synthesis period
make it difficult for patients to receive treatment in time. Thus, research on UniCAR-T
cells plays an important role in promoting the applications of CAR-T cells for the clinical
treatment of HNSCC.

In summary, although facing many barriers, it is believed that with the development
of genetic engineering, drug delivery systems and immunotherapy, CAR-T cells will help
to improve the treatment efficacy of HNSCC.
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