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Abstract: Recent studies indicate that food demand will increase by 35-56% over the period 2010-2050
due to population increase, economic development, and urbanization. Greenhouse systems allow
for the sustainable intensification of food production with demonstrated high crop production per
cultivation area. Breakthroughs in resource-efficient fresh food production merging horticultural and
Al expertise take place with the international competition “Autonomous Greenhouse Challenge”. This
paper describes and analyzes the results of the third edition of this competition. The competition’s
goal is the realization of the highest net profit in fully autonomous lettuce production. Two cultivation
cycles were conducted in six high-tech greenhouse compartments with operational greenhouse
decision-making realized at a distance and individually by algorithms of international participating
teams. Algorithms were developed based on time series sensor data of the greenhouse climate and
crop images. High crop yield and quality, short growing cycles, and low use of resources such as
energy for heating, electricity for artificial light, and CO, were decisive in realizing the competition’s
goal. The results highlight the importance of plant spacing and the moment of harvest decisions in
promoting high crop growth rates while optimizing greenhouse occupation and resource use. In this
paper, images taken with depth cameras (RealSense) for each greenhouse were used by computer
vision algorithms (Deepabv3+ implemented in detectron2 v0.6) in deciding optimum plant spacing
and the moment of harvest. The resulting plant height and coverage could be accurately estimated
with an R? of 0.976, and a mIoU of 98.2, respectively. These two traits were used to develop a light
loss and harvest indicator to support remote decision-making. The light loss indicator could be
used as a decision tool for timely spacing. Several traits were combined for the harvest indicator,
ultimately resulting in a fresh weight estimation with a mean absolute error of 22 g. The proposed non-
invasively estimated indicators presented in this article are promising traits to be used towards full
autonomation of a dynamic commercial lettuce growing environment. Computer vision algorithms
act as a catalyst in remote and non-invasive sensing of crop parameters, decisive for automated,
objective, standardized, and data-driven decision making. However, spectral indexes describing
lettuces growth and larger datasets than the currently accessible are crucial to address existing
shortcomings between academic and industrial production systems that have been encountered in
this work.

Keywords: artificial intelligence; computer vision; sensors; lettuce; indoor farming; autonomous

greenhouses; climate control; plant spacing; remote control; data driven growing

1. Introduction

Recent studies strongly indicate that food demand will increase by 35-56% over
the period of 2010-2050 as a result of population increase, economic development, and
urbanization, among other drivers [1]. The expected increase in food demand places
pressure on natural resources and may lead to negative environmental impacts as well
as biodiversity losses [2]. Among the possible solutions are the transformation of food
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production into a green industrial process and the promotion of policies for plant-based
and high-nutrient diets [3].

Greenhouse systems allow sustainable intensification of food production with demon-
strated high crop production per cultivation area [4]. While vegetable production is increas-
ing in area and volume, the number of farms declines, resulting in more vegetable area
and volume per farm and per grower [5]. At the same time, the availability of labor is an
industry-wide challenge as well as the lack of experienced managers and growers in crop
production. Greenhouses are highly dynamic production systems operating through an
integrated set of activities performed by growers [6]. Growers need to consider various
performance indicators such as yield, quality, timing, and sustainability standards and meet
the volatile market demands, and prices in uncertain environmental conditions subject to
weather conditions, for example [7].

Modern horticultural production is highly dependent on up-to-date information on
farm operations. Production processes are already highly automated and controlled [8].
Information systems driven by the rapid developments in cloud computing, the Internet
of Things, Big Data, machine learning, augmented reality, and robotics are changing the
horticulture horizon toward precision horticulture [9-12]. Digital technologies, computa-
tional power, and high-fidelity sensors act as catalysts in the transition toward advanced
and autonomous production systems. Non-invasive, near real-time data and information
with high spatial and temporal resolution create opportunities for advisory or automated
decision software and the design of advanced models, known as digital twins [13]. Moni-
toring and interpretation of the system’s dynamics at coarser and granular levels allow for
location-specific operations to ascertain desired conditions that meet crop demands.

Digital twins are equivalent to real-life objects mimicking the behavior and states
over their lifetime in virtual space [13]. Greenhouse digital twins can be seen as coupled
dynamic climate and crop models representing the actual physical, biological, and inte-
grated technical systems as virtual representations of reality [14]. Digital twins can be used
to simulate the effects of different growing conditions and crop management strategies,
give insights into their effect on performance indicators, and support decision-making [15].
There have been several achievements in the implementation of mechanistic crop and
climate models in horticultural research to facilitate decision making in greenhouse op-
erations [16-18]. Broadly validated dynamic models of the greenhouse climate and crop
include, e.g., KASPRO [19] and INTKAM [20], which have been used for several research
activities. A benchmark experiment in optimizing net profit using Al for the remote con-
trol of cucumber cultivation in 2018 [21] and a follow-up on optimizing the net profit of
tomatoes as a function of yield and quality a year later [22], showed the potential of Al
in controlling and outperforming human decisions by experienced growers. Automated
greenhouse control wasthus demonstrated to be possible; therefore, our next focus was
on the autonomy, robustness, and scalability of such control systems [23]. The goal of the
third edition of the Autonomous Greenhouse Challenge was the full autonomous control
of lettuce cultivation.

Commercial greenhouse production of lettuce (Lactuca sativa L.) is already highly
automated. Lettuce is grown in controlled greenhouse environments including hydroponic,
aquaponic, and vertical growing systems. The systems minimize labor requirements
by using conveyor belts and lifts throughout the growing processes from seedling to
harvesting [24]. Lettuce hydroponic systems include Nutrient Film Techniques (NFT), Deep
Flow Techniques (DFT), as well as Ebb and Flow systems. NFTs are the most widespread
method of recirculating nutrient solution systems [25] and employ a shallow stream of
water with dissolved nutrients flowing over the roots of plants in water-tight gullies, here
referred to as gutters. The nutrient solution is initially stored in a reservoir, pumped out
into the gutters at an angle, and drained to a tank for filtering before re-cycling to the
reservoir for re-use. Gutters are automatically filled with the growing media and lettuce
heads and transported on conveyor belts to the main greenhouse area. When lettuce heads
are fully grown, they are moved toward the harvesting area. At the harvesting area, cutting
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machines remove the plants from the gutters and transfer the lettuce heads for packaging
while the gutters are washed, and the process starts again. During the growing period in the
greenhouse, the distance between the gutters and crops on the gutters largely determines
the required amount of greenhouse space and, therefore, resource use. From the perspective
of greenhouse automation, it is important to note that the automated optimization of lettuce
plant spacing is not yet implemented in practice.

Optimal cultivation temperatures for lettuce are relatively low and range from 15.5 °C
to 28 °C during the daytime to 3 °C to 12 °C at night time [26]. The optimal pH ranges
for the nutrient solution from 5.8 to 6.5 and its optimal electrical conductivity (EC) should
be 1.5 mS/cm [27]. A wide variety of crop types can be distinguished among the existing
lettuce cultivars, with crisp head and butterhead commonly grown in the United States and
Western Europe, respectively, whereas Romaine and loose-leaf types are mainly cultivated
in Mediterranean areas [28]. The crop is susceptible to physiological problems including
outer leaf tip burn, inner tip burn, and discoloration of ribs [29]. Growth of lettuces, as with
any crop, is related to incident radiation and CO, concentration, and due to the relatively
high surface area to volume ratio, has high transpiration rates [29]. A fully autonomous
decision of optimum climate setpoints can contribute to better crop growth and lower
resource use.

Since plant spacing is an important criterion for good vegetative growth on an m
basis, it is a major aspect of yield maximization. Densely planted lettuces can obstruct
morphological characteristics such as head size, leaf expansion and color, and compact-
ness [30-32]. Wider spacing ensures higher light availability per head and that nutritional
requirements are satisfied; however, this comes at the expense of less efficient utilization of
the growing area and resources used. Optimum plant spacing is a management decision in
hydroponic lettuce cultivation that can potentially be determined using 3D camera images
and other sensor data, together with artificial intelligence algorithms to fully automate the
operational process.

Modern camera systems and innovative artificial intelligence (Al) technologies such
as computer vision allow objective, non-invasive, and continuous data for precision horti-
culture applications [33]. Advances in machine learning for image processing have resulted
in a wide range of research and applications for crop monitoring [34]. Applications of
computer vision can be found in the fields of pests, disease or weed detection [35-37],
fruit and flower detection, counting and fruit ripeness [38,39], crop stress detection [40],
yield estimation, or moment of harvesting [41,42]. Moving cameras or flying drones with
mounted cameras scan plants from various viewpoints, addressing matters of occlusion
and creating 3D representations of the crop [43]. High-resolution imaging in combination
with deep learning techniques is expected to have great potential for precision farming and
remote control operations for purposes of autonomous greenhouses [44].

Traditional computer vision techniques struggle with the challenging greenhouses en-
vironment because of varying environmental conditions. Light conditions are continuously
changing, and occlusion makes it difficult to identify individual plants or plant organs [45].
The development of hand-crafted algorithms was often time-consuming and not reliable
enough. However, recent development in the field of deep learning made it easier to
use vision systems in greenhouses. High classification accuracies of up to 99.7% [46] on
large plant datasets such as the “Oxford-Flowers102” [47] dataset show the power of deep
learning for plant phenotyping. Already in 2017, the first paper appeared on the quality
assessment of lettuce using artificial neural networks [48]. Lettuce was binarily classified
as good” or “reject”. Although the algorithm was not complex as it had only two layers,
it was one of the first publications that showed the possibility of using neural networks
for lettuce classification. The ability of networks to learn plant features from single lettuce
images can be determined by the recently published lettuce dataset [49]. At the moment,
three papers have been published, obtaining high accuracy to estimate fresh weight from
the images with a Root Mean Squared Error (RMSE) up to 25.3 g [50-52].
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The above-mentioned examples are only focusing single lettuce images. With the
development of instance segmentation algorithms it is possible to determine the growth
rate of lettuce over time by extracting the leaf area of single lettuce plants, as seen in [53],
their experiments were in a semi-commercial setting without overlapping lettuces. A
more commercial example can be found in [54], in which aerial images were collected and
the number of lettuces was determined including a size estimation into three different
categories. One of the conclusions was that despite the fact that many individual lettuces
can be detected, there is still a gap between object detection and trait measurements [54].
In greenhouses, the environmental conditions are much better for high-quality imaging, re-
ducing the Al and trait measurement gap. Other researchers developed a high-throughput
system for individual plant phenotyping of lettuce [55]. Each lettuce head was placed in
an individual pot; by detecting the pot and by applying semantic segmentation, many
plant traits were calculated including projected area and perimeter. The area and size are
two of the most interesting growth indicators. However, when the leaves became larger
than the pot size, prediction accuracy decreased; as a result, the growth curves were only
accurate for the first weeks. It can be noticed that most experiments were carried out in
semi-commercial conditions. When the leaves were overlapping, either the experiment
stopped, or the extraction of the parameters was removed. Next to that, in each experiment,
the interpretability of the results was difficult. There is still a mismatch between object
detection, determining plant traits, and more importantly, what a grower should do with
the provided information. If Al can extract growth rate, how should a grower use this
information to improve the cultivation? Therefore, more advanced methods are needed
that can extract information in greenhouses and conform to commercial practice while
maintaining interpretability.

This paper describes the results of the third Autonomous Greenhouse Challenge, an
experiment in which the autonomous control of lettuce production has been realized in
six different greenhouse compartments, each controlled by Al algorithms developed by
participating teams. During the experiment, the goal was to decide upon climate and
crop management strategies to optimize the net profit of lettuce production, considering
yield and product prices, resource use, and costs including greenhouse occupation. The
experiment provided valuable public datasets which can be used for future Al training
purposes, and which can be found under the Data Availability Statement. In this paper,
we give an overall analysis of the results obtained by the teams. Next to that, we focus on
the research question, of how computer vision and deep learning algorithms can be used
for automated operational decisions of lettuce greenhouse production, as currently plant
spacing and harvesting are determined on fixed schedules since transplanting. Furthermore,
we examine how better utilization of the occupied growing area, efficient resource use that
meets crop growing demands, and timely planning of harvest events can be supported by
non-invasively estimated indicators such as the proposed light loss and harvest indicator.
Results of other studies focus on answering similar questions on crop trait detection with
computer vision in highly controlled and steady environmental conditions. This research
realizes steps closer to commercial practice by processing smaller datasets of canopy images
under varying environmental conditions.

2. Materials and Methods

This paper describes different steps of the realized research methodology, and an
overview is given in Figure 1. In the preparation phase teams developed their own Al
algorithms based on provided annotated single lettuce images and climate data time
series from a climate and crop simulator [49]. After this preparation phase, two lettuce-
growing experiments were conducted in greenhouses at Wageningen University & Research
(Section 2.1. Greenhouse compartments and equipment Section 2.2. Crop and Section 2.3
Greenhouse climate and crop control). During the first greenhouse experiment, teams
could gain experience in controlling the lettuce growth based on real-time data from
the greenhouse (Section 2.4 Data communication, Section 2.5 Remote sensing, and data
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Preparation

A

collection). New annotated images, of the full crop under the camera’s field of view
and climate time series data were collected [56]. Teams could refine their algorithms
before the second greenhouse experiment. Another set of annotated images, full crop
canopy images, and climate times series were collected [56]. After the experiments, an
analysis of climate, crop, and resource use was made and given in this paper (Section 3.
Results Sections 3.1-3.3). An additional analysis of plant spacing decisions was made
(Section 3. Results Section 3.4) based on different image processing methods (Section 2.6
Image processing for plant spacing decisions). The results are discussed and concluded in
Sections 4 and 5.
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Figure 1. Research methodology of the growing experiments and analysis of results. Data from the
annotated single lettuce images is found in [49], whereas the annotated full crop data are found
in [56].

2.1. Greenhouse Compartments and Equipment

Each greenhouse compartment at the research facility of Wageningen University &
Research in Bleiswijk, The Netherlands, had a size of 96 m2. The compartments were
equipped with standard actuators also available in commercial high-tech greenhouses as
shown in Figure 1. A pipe-rail heating on the floor with a peak capacity of 120 W/m?
controlled by the heating temperature setpoints, continuous roof ventilation (ventilation
area of 0.3 m? opening per m? greenhouse area, equipped with anti-thrips netting), two
types of inside moveable screens (LUXOUS 1547 D FR energy screen and OBSCURA 9950
FR W light blocking screen, Ludvig Svensson), white LED artificial lights of dimmable
intensity controlled in a continuous range between 27 and 270 pmol/m?/s and efficiency
of 2.4 umol/J, (VYPR 2p, Fluence by Osram), a fogging system (maximum capacity of
330 g/m?/h), and CO, supply (maximum capacity 15 g/m?/h) were available. Plants
were grown in soil-pressed pots on NFT hydroponic gutters (Hortiplan, Belgium) placed
on an inclination. A recirculating water system was supplying water and nutrients via
pressure-compensated narrow tubes injecting water into the gutters.

The experiment of the third Autonomous Greenhouse Challenge was conducted in
the first half of 2022 in six different high-tech Venlo-type greenhouses compartments of
Wageningen University & Research, in Bleiswijk, The Netherlands. The basic greenhouse
construction and equipment with actuators as well as the standard sensors and control
of the greenhouse compartments were identical to the elements which can be found in
commercial greenhouses (see Section 2.2 Crop and Section 2.3 Greenhouse climate and crop
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control). However, the greenhouse compartment size was much smaller than in commercial
practice. Different teams (CVA, DigitalCucumbers, Koala, MondayLettuce, VeggieMight)
and a reference were controlling the six compartments.

2.2. Crop

Two cultivation cycles of lettuce cv. “Lugano” (Rijk Zwaan, The Netherlands) were
conducted in 6 equal greenhouse growing compartments. Lettuces were grown in a hydro-
ponic NFT system. Seeds were propagated to seedlings 8 weeks before the transplanting
date. The young plants were grown in cubes of compacted peat. On the days of transplant-
ing (2 February and 3 May 2022, respectively), the seedlings were placed in the greenhouse
compartments in small holes of slightly tilted gutters to which water with nutrients was
supplied at a certain frequency.

The lettuces were grown in 3.2 m plastic gutters, all having 30 plant holes, with
an 11 cm heart-to-heart distance. The gutters were 10 cm wide, so the maximum plant
density was 92 (rounded) plants per m? in the initial stage. Lettuces were grown in two
rows of such gutters as depicted in Figure 1. Plant appearance, pests, and diseases were
monitored weekly by experts without interfering with any operational control decisions
in the compartments. Irrigation and nutrient recipes were determined by the experienced
greenhouse staff of the Bleiswijk Research Center.

Leafy vegetables are sellable to retail at a particular weight and shape. The lettuce
heads in the area of evaluation (Figure 2) were classified at the moment of harvest into
three categories. Class A were sellable lettuces with a minimum average weight of 250 g,
Class B were lettuces with a weight between 220 and 250 g, and Class C were non-sellable
lettuce heads that were underweighted and or showed visible deformations. Malformations
referred to quality aspects related to the shape of the plant and defects of the leaves (e.g., leaf
discoloration, leaf rotting, and diseases).

A A

AV AVAVAVAVAVAVAVAVAVAVAN

9.6m

@) (b)

Figure 2. (a) Cross- and (b) top-view sections of one greenhouse experimental compartment with
96 m? ground floor. (a) Compartment with crop and actuators: rail pipe, irrigation system, NFT
gutters, CO, supply, LED artificial light, and two screens. (b) Arrangement of lettuce gutters. Green
boxes represent the harvest area for data analysis.

2.3. Greenhouse Climate and Crop Control

Strategic and operational climate control was carried out by participating teams of
the third Autonomous Greenhouse Challenge. Strategic decisions include, e.g., the use



Sensors 2023, 23,2929

7 of 30

(installation) of screens or artificial lighting or the starting density of the crops, operational
decisions included, e.g., the timing and amount of screen or lighting hours or crop spacing
decisions. The Al algorithms of the teams were determining control setpoints of the heating
temperature, CO, concentration, humidity deficit, lighting intensity, operation of the black-
out, and energy screens, as well as leeward and windward ventilation. The mechanistic
climate and lettuce crop models of WUR (KASPRO and INTKAM, respectively) could be
used by the teams as a training environment for the algorithms before the start of each
cultivation cycle.

Resource use was calculated based on measured data: heating energy (MJ/m?) with
a price of 0.0375 EUR/kWh, electricity (kWh/m?) with a price of 0.125 EUR/kWh for
the on-peak hours (07:00-23:00), and 0.075 EUR/kWh for the off-peak hours, CO; use
(kg CO, /m?) with a price of 0.12 EUR/kg.

As in commercial practice, the spacing system allows for several plant densities;
densities could be reduced from the starting density of 92 heads per m? via a density of 60,
45,30, 23, and 18, to the lowest density of 15 lettuce heads per m?. The teams’ algorithms
had to automatically make the spacing decisions.

The following prices per lettuce head were given Class A = 0.50 EUR/head, Class
B =0.40 EUR/head, and Class C = 0.00 EUR/head. In commercial practice, harvested
lettuce heads are sold per head, but as in reality, the economics of the greenhouse is
eventually expressed in resource usage and production per average m? of the growing area.
Therefore, the price of the lettuce was multiplied by the average number of heads per m?
of the growing area. The formula to calculate the average lettuce crop density (heads/m?)
is the following:

D
AverageCropDensity = —5——— 1)
d=1 density,
where D is the total number of days since transplanting until harvest and density, is the
plant density at day d.

Teams had to maximize net profit. Net profit was calculated from income minus
costs. Income was determined by multiplying the yield with the price per class. The
total costs consisted of fixed and variable components associated with the greenhouse
operation. On top of that teams were ‘charged’ for every manual intervention on their
autonomous algorithm (EUR 1 per intervention). This penalty was meant to strongly
discourage such interventions ensuring that the algorithms would work as autonomously
as possible. Fixed costs accounted for the plant material, maintenance, and depreciation
costs of the greenhouse equipment. The variable costs accounted for the resource use
(electricity for artificial lighting, energy for heating, and CO; injection).

2.4. Data Communication

Data communication between the underlying systems was vital to ensure a stable,
uninterrupted integration and operation. In this experiment, an Azure file share was
made available to ensure enough storage capacity for collected datasets. Azure Virtual
Machines—NCasT4_v3-series (VMs) were used for high-performance computing and
deploying AI workloads, such as real-time inferencing of user requests. The infrastructure
supported the communication between the greenhouse climate computer, control systems,
sensing devices, and the state of actuators, measured indoor and outdoor climate (Figure 3)
(Appendix A Table Al). Numerical time-series data of the realized controls, climate, and
additional sensor sensors can be found under the Data Availability Statement.
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Figure 3. Data communication structure Data flows from indoor and outdoor climate and additional
sensors to the virtual machines and the online database. Decisions of algorithms of teams are written
from the Virtual Machines to the online database from where another communication protocol writes
the controls to the greenhouse climate computer before their implementation in the actual greenhouse
compartments. Greenhouse staff receives decisions from online database for spacing and moment
of harvest.

2.5. Remote Sensing and Data Collection

In each greenhouse compartment, standard sensors were made available, comparable
to earlier experiments described in [21,22]. These consist of an outside weather station, ob-
tained weather forecast, and indoor climate parameters (temperature, relative air humidity,
PAR light, CO,) along with the status of all actuators (heating, fogging, lighting, screening,
CO,) in 5 min intervals. The output of the standard sensors was continuously available as
input for the teams’ algorithms.

In commercial production, lettuce traits are seldom collected during the growing
cycle and crop performance is evaluated by growers’ visual inspections only. In this
experiment, RealSense D415 [57] cameras were hung 1 m above the growing crop in the
area of evaluation. The camera uses stereo vision and stores depth, RGB, and IR images. All
camera parameters, both intrinsic and extrinsic, are provided with the published dataset
under the Data Availability Statement. These parameters could be used to convert the
images to point clouds. Images were taken every 15 min in each compartment during the
cultivation cycles.

Periodic destructive harvests of six plants per compartment were taken on the day of
planting and subsequently on a weekly basis Destructive measurements of plant height,
diameter, fresh weight, and dry weight, and scores for leaf deformation due to outer leaf
tip burn were carried out. The individual lettuce plants were taken from the right and left
side of each compartment as shown in Figure 2b. Next to that, images of the individual
plants were made each 15 min; an example can be found in (Figure 4).
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Figure 4. Two example images of RealSense D415 from the day of planting (left) and the day of
harvest (right). On the day of harvest, plants were sampled from the field of view of the camera and
were destructively measured for height, diameter, fresh weight, dry weight, and quality.

2.6. Image Processing for Plant Spacing Decisions

One of the main research questions is how images taken in a greenhouse conform to
commercial practice and computer vision can be used to determine the optimal spacing
strategy. To do this, the images of the lettuce crop in the greenhouse need to be related to
a relevant crop variable, such as crop growth rate. From the time series of images taken
inside the greenhouses (Figure 4), the coverage can be calculated over time. The coverage
can be defined as the area covered with green leaves relative to the total ground surface
area. However, coverage might not be a good indicator to determine plant growth rate, as
plant growth rate may decline once the leaves touch neighboring plants. It can be assumed
that for very high coverage growth is hampered. So, coverage might not be a suitable
parameter to be used for spacing decisions. Crop volume on the contrary might describe
plant growth rate even if the coverage is close to 100%. Crop volume can be estimated by
coverage and height and can be used to determine crop growth rates in time. The volume
over time is a relevant crop parameter, however, it might not directly assess if spacing was
carried out correctly. Another option might be to calculate light interception (or light loss).
The different methods of “coverage” (Section 2.6.2), “volume over time” (Section 2.6.3), and
“light loss over time” (Section 2.6.4) are explained in the following sections after describing
how crop segmentation (Section 2.6.1) from greenhouse images is implemented.

For optimizing spacing decisions, the challenge lies in realizing a fast plant growth
rate on one hand and limited use of space on the other hand. Early spacing facilitates fast
growth rates thus increasing yield over time, late spacing facilitates less occupation of space
thus decreasing resource use. An optimum spacing decision is therefore necessary.

2.6.1. Crop Segmentation

First, the lettuce crop needs to be segmented from the background. The growth of
each lettuce head over time was identified using instance segmentation. However, this is
only possible in the first 2 weeks. After that, the lettuce heads start to touch each other,
and leaves overlapped. As visible in Figure 5 it is almost impossible to identify which
leaves belong to which lettuce head. Therefore, semantic segmentation is used in this study.
Specifically, DeepLabv3+, which is implemented in detectron2 (v0.6) [58]. For training
purposes 23 images have been annotated, in which each pixel was either annotated as
background or lettuce, an example is shown in Figure 5. All settings for training were kept
the same as in the original implementation detectron2. Only the number of iterations was
set to 2500 and the image size was set to 1024 x 1024. For validation purposes, 12 additional
images have been annotated. The evaluation was carried out on the validation dataset
using the mean Intersection over Union (mloU) metric Equation (2). In which M denotes
the mask of the class, respectively.

MGTbuckground n Mbackgrnund
MGTbuckgraund U Mbackground

2

MG tiettuce N Miettuce
MgrTiettuce Y MLettuce

mlol = (’ 2)
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Figure 5. Example of original (left) and annotated image (right). The annotated image has two
classes in blue the lettuce class and pink the background class.

2.6.2. Coverage

The coverage was calculated by segmenting the images with the trained DeepLabv3+
model. In these segmented images the number of pixels classified as lettuce was divided
by the total number of pixels, see Equation (3).

# lettuce pixels

Coverage[%] = ¥ total pixels

100 @)

2.6.3. Volume over Time

To determine the lettuce head volume over time from images taken in the greenhouse
with conditions that conform to practice a “ground plane” is needed. This ground plane
was determined by fitting a plane using RANSAC [59] through the non-lettuce pixels on
the day of planting. RANSAC can compensate for slight skewness in camera mounting.
This method assumes that the camera position does not change after planting. The height is
subsequently calculated by determining the point-to-plane distance for each pixel classified
as lettuce (Figure 6). The volume was then calculated by multiplying the height by the
pixel size in mm and dividing by the density at each moment in time. By dividing by the
density, the volume per plant was calculated which was needed to correct for different
plant densities. The growth was then determined based on the volume increase.

Height;[em| = dist_plane; — dist; 4)

YN o (Height; - pixelsize?)
density

Volume over time {cmﬂ = - 1000 5)

Figure 6. Side view of point cloud within green the fitted ground plane using RANSAC [58] to

determine the height. At the bottom the plants at the start date and above the plants at the day
of harvest.

2.6.4. Light Loss over Time

For optimal use of the greenhouse area, it is important to evaluate the spacing decision.
In this research, the light loss was calculated over time. Simplified we determined if the light
loss after spacing was larger than the light loss before spacing due to overlapping leaves.
The light loss after spacing was calculated by subtracting 100 minus the current coverage
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(Section 2.6.2) (Equation (6)). The light loss before spacing was calculated by determining
the difference between the current coverage and the theoretical coverage. This theoretical
coverage was the projection of previous coverage divided by the previous density and
multiplied by the new density (Equation (7)). This difference indicated how much light
was lost due to overlapping leaves. Now the light loss was calculated (Equation (8)). If for
example, the light loss was negative, it indicated that too many leaves were overlapping,
resulting in a light loss that was larger than the light loss after spacing. On the other hand,
if the light loss was positive, then the spacing decision was too early, because in the new
spacing density, there was more light lost than before.

LightLosScyrrent = 100 — coverage; (6)

coverage;_q

LightLosSpe fore spacing = coverager — density; 1

density; (7)

LightLoss = LightLosScurrent — LightLoSSpe fore spacing (8)

where ¢ denotes the time when spacing occurred and t — 1 time before spacing.

3. Results

Two experiments were carried out consecutively. The first experiment offered the
teams the possibility to test their algorithms in growing a real crop in a real greenhouse to
bridge the gap between simulation and reality. The second experiment was the eventual
challenge that determined the winner of this third Autonomous Greenhouse Challenge.
In both experiments, the algorithms were optimizing income against costs to achieve
a maximum net profit. The challenge was the outside conditions during the second
experiment (early summer) were very different from those in the first experiment (late
winter). Both data sets are made publicly available and can be used for further development
of intelligent control of lettuce production systems. We show both but focus more on the
second data set which was determining the winner of the competition.

The results of realized climate, resource use, crop yield, and applied plant spacing are
given for the two cultivation cycles in the six greenhouse compartments.

3.1. Climate and Resource Use Analysis

The climate control strategy in the greenhouse largely determines the use of resources.
Figure 7 illustrates the average daily greenhouse air temperature in the different compart-
ments during the late winter and early summer experiments. The realized daily average
temperature ranged between 18 °C and 22.5 °C for the first experiment (winter), whereas
for the second experiment (early summer) the minimum and maximum diurnal tempera-
tures were on average 1 °C higher. Teams decreased their energy consumption for heating
by more than 80%, up to 97%, except for two teams DigitalCucumbers and VeggieMight
(Appendix A Figure Al). For DigitalCucumbers the operation of the heating pipes is
reflected in the high diurnal temperature realized in their compartment augmented by their
low ventilation rates that maintained the highest CO, concentration (Figure 8), despite
the low CO; dosage rates. VeggieMight realized lower temperatures, due to the higher
ventilation rates, despite the higher energy used for heating. Appendix A Figure A1 shows
the energy consumption for heating over time in both experiments, an important part of
the resource use.
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Figure 7. Average daily temperature (°C) of all compartments during the first and second cultivation.
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Figure 8. CO, concentration (ppm) for the different compartments during the first and second
cultivation.

The daily light integral (DLI), mol m~2 plant~! in the greenhouse compartments is
the sum of outside sunlight, influenced by the team’s screen usage (Appendix A Figure A2)
and topped up with the artificial light for each team (Appendix A Figure A4). Especially the
longer day length and higher intensities of solar radiation resulted in a higher cumulative
DLI during the second experiment. The realized indoor daily PAR for each team as the sum
of solar radiation and artificial lightduring the two cultivation experiments is illustrated in
Figure 9. In the second experiment, team VeggieMight realized the highest cumulative DLI
(Figure 10) despite the zero hours of their artificial illumination (Appendix A Figure A4)
and the highest total light interception per head of lettuce, as a result of the intelligent
operation of their blackout screen (Appendix A Figure A3), and their low plant density
(Table 1). Comparable cumulative DLIs for all teams were observed in the first experiment.
However, in the first experiment, the light demand of lettuce was mainly covered with
artificial light, as 50% to 88% of the measured light originated from LEDs (Appendix A
Figure A4). During the second experiment, comparable light levels were again required
to reach the target weight, illustrated by the colored circles in both figures. Due to the
higher solar radiation, less artificial light was needed in this experiment. Appendix A
Figure A5 shows the electricity consumption over time in both experiments of each team,
an important part of the resource use.
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Figure 9. Indoor photosynthetic active radiation (PAR) for the different compartments during the
first and second cultivation.
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Figure 10. Cumulative light intercepted by each lettuce head per compartment in the first and second
cultivation. Light interception per lettuce head was calculated by a multiplication of the daily light
integral (DLI) with the green coverage per m? growing area, divided by the head density on each
particular day. The circles (o), mark the days at which the lettuce heads reached the target fresh weight
of 250 g by linearly interpolating the data of the weekly destructive measurements on randomly
selected lettuce heads.

Table 1. The average density of lettuce heads for the two cultivations as calculated using Equation (1).

Experiment Monday Digital Veggie
Planting Date Reference  Koala  CVA Lettuce Cucumbers Might
3 February 32.7 34.5 31.9 41.4 37.7 32.9
3 May 29.0 30.4 29.9 36.7 31.7 28.7

All climate strategies applied by the teams resulted in differences in resource use
which are summarized in Table 2.
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Table 2. Net profit of different teams in the second experiment consisting of crop income minus costs
(fixed costs, heating costs, electricity costs, CO, costs, and intervention costs).

Veggie Digital Monday

CVA Might Cucumbers Koala Lettuce Reference
Total income [€/m2] 1216  10.38 15.84 14.16 11.83 12.12
Fixed costs [€/m?] 7.85 6.41 8.50 7.06 9.64 6.59
Heating Costs 0.01 0.29 0.16 0.04 0.03 0.02
[€/m~]
Electricity costs 023 000 0.46 0.00 0.45 0.34
[€/m~]
CO,-costs [€/m?] 0.60 0.53 0.34 0.11 0.18 0.53
Total operational 8.69 7.24 9.45 7.24 10.30 7.48
costs [€/m~]
Intervention Costs
€ /] 2.00 1.00 3.00 1.00 2.00 -
Net profit [€/m?] 147 2.14 3.39 5.93 —047 464

3.2. Crop Yield Analysis

Figure 11 shows the initial plant densities of 92 heads/m? chosen by all teams and the
different densities realized over time. Throughout the cultivation periods, lettuce heads
were spaced according to the decisions of each team'’s algorithm. The reason for the spacing
was to balance fast crop growth and minimize greenhouse space utilization thus resource
use and costs for spacing. As the average plant density impacted costs due to resource use
and labor for spacing events, teams MondayLettuce and DigitalCucumbers attempted to
exploit the advantage of higher densities and fewer spacing interventions, respectively. The
average plant densities of the two cultivation cycles for the six compartments are shown in
Table 1.

80
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B [o2]
o o
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0 L L L L L L L
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Reference Koala
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VeggieMight

Figure 11. Lettuce density (heads m?) and harvest dates (0) in the different compartments during the
first and second cultivation period.

During the first experiment, the team’s algorithms seemed to have computed the
harvest time quite accurately at the target weight of 250 g, as can be seen in Figure 12.
The crops of DigitalCucumbers and VeggieMight grew poorly, they were still far off from
the targeted weight the moment that the first cultivation was terminated. For the second
experiment, the algorithms of all participants were too late in harvesting, the harvest
weight was higher than the target weight. Only the reference compartment, was harvested
timely. Appendix A Table A3 summarizes the lettuce weight at harvest and the number of
cultivation days per compartment. It also shows the dates at which the ideal target weight



Sensors 2023, 23,2929

15 of 30

Daily FW [gr/day]

400 F

350 |

300 |

250 |

200 |

150 |

100 |

50 F

0
06-Feb  13-Feb  20-Feb

would have been achieved for the different compartments by linearly interpolating the
weekly fresh weight measurement.
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Figure 12. Development of fresh weight [g/plant] in the different compartments for the first and
second cultivation. The curves were obtained by linear interpolation of the weekly randomly sampled
plants and (destructively) weighed heads of lettuce. The end of the lines represents the chosen date
of harvest and the fresh weight at harvest. The circles (0), represent the days on which the lettuce
heads reached the target fresh weight of 250 g.

Total lettuce crop yields (Figure 12 and Appendix A Table A3 and the quality assess-
ment (Appendix A Figure A6) resulted in a computed income from this cultivation cycle.
In Section 3.3 this income is compared with the costs associated with the second cultivation
cycle to obtain the computed net profit (Table 2).

3.3. Net Profit

The combination of climate strategies, resource use, crop yield, and quality realized by
the teams resulted in different net profits. Details are shown in Table 2.

3.4. Plant Spacing Analysis

The net profit is relying on crop yield, quality, resource use, and greenhouse occupation.
The realized plant growth rates, plant densities, and realized final harvest due to timely
estimation of plant weights were shown to be crucial for the net profit. Therefore, the
options of different detailed computer vision analyses to make timely decisions on spacing
decisions are shown in this paper.

3.4.1. Coverage

The computer-vision-based data analysis of plant growth mainly relies on the segmen-
tation of the images of lettuces taken at a defined area over time. An example of such an
image is shown in Figure 12 (left). There results of being segmented with the DeepLabv3+
algorithm as described in the Materials and Methods sectionare shown in Figure 13 (right).
The algorithm had a mIoU of 98.2% on the validation dataset, with 100% indicating that the
segmentation is perfect. Even though the validation dataset was relatively small, the seg-
mentation procedure can be considered to be sufficiently robust, since only a small fraction
of processed images from the datasets segmentation occurred to be incorrect. An example
is given in Figure 13. Although there are white edges visible (right), showing where pixels
were falsely assigned as ‘lettuce’, these edges are relatively small. The algorithm appeared
also to be robust in dealing with different light conditions in the greenhouses as shown in
the correctly processed bottom row of Figure 13.
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Figure 13. Example of a real (left) and segmented (right) image using DeepLabv3+. From the
segmentation, the coverage [%] was calculated.

Figure 14 shows the percentage of cultivation area covered by lettuce for each image
over time for each compartment. In the first experiment, less efficient space occupation and
coverage were observed, due to the explorative decision-making of the teams. Considering
the more strategic decisions during the second experiment, teams targeted more efficient
space occupation. A high coverage percentage was realized in a shorter time. Most teams
maintained a coverage above 90%, only teams VeggieMight and Reference seemed to have
spaced too early if only coverage is considered for the decision making. However, as
explained in the materials and methods section, coverage might not be a good parameter
to decide on spacing, since growth might be hampered already by too late spacing.
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Figure 14. Coverage [%] of the greenhouse with lettuce heads, as calculated with the segmentation
algorithm The frequently shown stepwise fall of coverage is a result of spacing actions.

3.4.2. Crop Volume over Time

Next to coverage, crop width, height, and volume are suitable crop traits associated
with growth. To explore the potential of these traits, in this research height and volume
were determined over time. Since volume is strongly correlated with height, a comparison
between calculated and manual crop height is shown in Figure 15. Figure 15 shows a
strong correlation between the calculated height as it follows from the RealSense camera
images and the manually measured height (ground truth), with a high R? and slope close
to 1. Therefore, daily height measurements from the RealSense camera were assumed to be
correct and were used to calculate the volume.

In Figure 16, the calculated height from images taken by the RealSense camera over
time is shown for all compartments. Reference and VeggieMight have a lower predicted
plant height due to the early spacing decision. DigitalCucumbers has the highest plant
height, elongation occurred when plants were touching each other due to high density. An
interesting phenomenon is that after the last spacing decision (ca. after 5 June) not only
height (Figure 16) but also volume (Figure 17) is reaching a plateau. This means that the
daily fresh weight increase (Figure 12) of the last weeks is not visible in this method of
image analysis.
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Figure 15. Correlation of manually measured ground truth height (ground truth height) of lettuces
during destructive measurements compared with predicted height (predicted height) from RealSense
camera images of lettuces.
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Figure 16. Daily calculated lettuce height from RealSense camera images in all compartments during
the cultivation start.
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Figure 17. Daily estimated lettuce volume in all compartments during the cultivation period.

In Figure 17 the daily estimated plant volume is given using imaging. The circles
indicate on which day the target harvest weight of 250 g was reached. Large differences
between the compartments were observed. In the second experiment, the difference in
volume between CVA and MondayLettuce is remarkable. At the optimal harvest day, CVA
has a volume of 6705 cm?3/head and MondayLettuce 4844 cm?/head. A part of this large
difference is caused by the plant density, which is at the end 15 and 22.5 plants/m? for CVA
and MondayLettuce, respectively. Because of the high plant density of MondayLettuce,
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more leaves were overlapping (coverage was 98.5%, compared to 87.2% of CVA). Since
overlapping leaves do not contribute to volume in the image analysis it explains the lower
volume of MondayLettuce with respect to CVA (Figure 17). This phenomenon is also
summarized in Table 3. In this table, the volume is sorted from high to low. Although
the weight of the lettuce at optimal harvest day in each compartment is approximately
250 g, there are differences in volume per head for similar crop densities. The Reference
for example had a much higher volume than Koala. Both Figures 16 and 17, and Table 3
show differences from the similar weight. From this, it can be concluded that the volume
calculation alone will not be a conclusive trait for the estimation of the weight of the head
of lettuce.

Table 3. Overview of plant traits at optimal harvest date (when target weight of 250 g per lettuce
head is reached). Teams are sorted from high to low volume.

Compartment Optimlgl Harvest Density2 Covoerage Max Height V(;lume
ate [Heads/m~] [%] [em] [cm®/Plant]

CVA 7 June 2022 15 87.2 15.7 6705
Reference 8 June 2022 18 96.8 15.3 6379
VeggieMight 4 June 2022 18 90.9 16.5 6090
Koala 9 June 2022 18 98.2 14.4 5581
DigitalCucumbers 7 June 2022 18 86.7 16.8 5356
MondayLettuce 9 June 2022 22.5 98.5 16.4 4844

3.4.3. Harvest Indicator over Time

As presented in the previous section teams could have harvested earlier given the
target harvest weight of 250 g per head. From Figure 17 and Table 3, there were differences
in volume for similar harvest moments, indicating that volume might not be an ideal
indicator for determining the ideal moment of harvest. The correlation coefficient of all
calculated traits from the image analysis can be found in Appendix A Table A3. From this
table the area per plant multiplied by the maximum height has the highest correlation
coefficient, higher than volume.

In Figure 18 (left), the fresh weight as a function of area per plant multiplied by
maximum height is visualized. From this figure, it can be concluded that there is still some
noise, the Mean Absolute Error (MAE) is 22.98 g/head and RMSE of 31.2. According to the
second-order equation, the harvest weight is reached at 7840 cm?.
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Figure 18. Relation of calculated area per plant multiplied by maximum height [em?] and measured
fresh weight [g/head] (left). Area per plant multiplied by maximum height [cm3/head] as a harvest
indicator in realizing the target weight of 250 g/head in all compartments (dots) (right).
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Figure 18 (right) illustrates the area per plant multiplied by the maximum height as
the most representative harvest indicator. The colored circles indicated the moments of
harvest that satisfy the fresh weight criterion 250 g whereas the grey horizontal line depicts
the moment that the harvest indicator of 7840 cm? is satisfied. In Table 4 the exact dates of
the fresh weight criterion and harvest indicator are given for the different teams.

Table 4. Overview of area per plant multiplied by max height criterion at optimal harvest date (when
harvest indicator is 7840 cm? per lettuce head is reached).

. Harvest Date Harvest Date Satisfying Satisfying the Area
Realized Harvest P
Satisfying the FW the Area per Plant x Max per Plant x Max
Compartment Date e . - . -

[dd/mm] Criterion Height Criterion Height Criterion
[dd/mm] [dd/mm] [em3]
Reference 9 June 8 June 5 June 79,144
Koala 17 June 9 June 3 June 78,819
CVA 13 June 7 June 3 June 80,717

MondayLettuce 14 June 9 June - -

DigitalCucumbers 15 June 7 June 7 June 83,610
VeggieMight 13 June 4 June 3 June 82,410

3.4.4. Light Loss over Time

In Figure 19, the result of the calculation of light loss over time of the second experi-
ment is shown. This light loss factor can be calculated by comparing the coverage factor
just before and just after a spacing instance. Therefore, the result yields a number of points
rather than a time series. The hypothesis is that spacing is optimal when the light loss
calculation gives a result close to zero at each spacing action. A light loss calculation close
to zero means that the lettuce heads just started touching each other by the time that the
spacing was performed. This allows for minimal greenhouse space occupation, which
saves on resources, whereas quality losses are prevented. Figure 19 shows that especially
VeggieMight and the Reference spaced too early, whereas Koala always spaced very late.
DigitalCucumbers had two good spacing moments at the end of the experiment but was
too late for two others. In the beginning, for both the first and second spacing decisions,
they were the latest team which resulted in large light losses and irreversible damage to the
crop (Appendix A Figure A6). CVA seemed to have the best spacing strategy since most of
their spacing decisions were made with light loss points close to zero. However, even this
team had once a large light loss smaller than —10. Keep in mind that the calculation of light
loss can only be carried out after spacing. It should therefore be treated as an observable
parameter to train decision-making algorithms that base the decision on (a combination of)
covered fraction and average head volume.

After combining Figure 19 with Figure 14, we learn that 98% seems to be a reasonable
coverage strategy for autonomous spacing decisions.



Sensors 2023, 23,2929

20 of 30

40
0F ® e o
S
“a 20 F ° :. °
S .
g 10 ° .
@ °
o 0 [J Y
B 10 0. !
o) - -
— ..
3 ...
- 20 B [}
—_ 30 1 1 1 1 1 1 ]
88 90 92 94 96 98 100 102
Coverage before spacing [%]
® Reference ® Koala ® CVA
® MondayLettuce Digitalcucumbers ® \eggieMight

Figure 19. Light loss calculation for all compartments for the spacing instances of the second experiment.
Negative values indicate a (too) late spacing and large positive values a too-early spacing.

4. Discussion

In the experiment of this study, the strategic and operational scheme of lettuce crop
cultivation was determined by Al algorithms developed by teams participating in the chal-
lenge. These Al algorithms were based on greenhouse climate and crop sensor information.
The final optimization target was net profit, thus on the one hand side a high crop growth
rate and high plant quality for a high income and on the other hand low resource use
for low costs. Since greenhouse occupation is essential, optimal plant spacing decisions
are important.

Commercial lettuce growing is a continuous process of daily planting young plantlets
and harvesting the full-grown lettuce heads. Target weight is realized over a reasonable
time window (6-8 weeks) dependent on the cultivation strategy. Economics were expressed
per m? of the production area, therefore the resource use and selling prices were multiplied
by the average number of lettuce heads per m? (Equation (2)).

Teams had two cultivation cycles. The first cycle was used by the teams to test and
explore their algorithms, the second cycle determined the winner. As this means that the
teams must have applied their latest skills and knowledge in this second growing cycle,
the discussion is focusing on the early summer results.

For an efficient greenhouse occupation, and to leverage the effect of the average density
of lettuce heads on the final profit, some teams maintained high densities (Table 1). At
high densities, neighboring plants competed for light (Figure 10). In both experimental
cycles, 11-15 mols PAR/head was needed to realize the target weight of 250 g per head.
However, MondayLettuce used only 9 mol/head in the second experiment. This team
maintained a low cumulative DLI and in combination with the highest density among all
teams in the second cultivation, it yielded the lowest amount of total light interception per
plant. Also, DigitalCucumbers realized a high density. The high plant density resulted in
intertwined root systems that made the first spacing difficult and seems to be linked to the
outer tip burn (Appendix A Figure A6) and the aversively malformed and elongated plants
(Figure 16).

Team VeggieMight realized the highest cumulative indoor PAR, even without applying
any supplemental lighting (Appendix A Figure A4). This was a result of zero deployment
hours of the blackout screen and a very limited deployment of the energy screenThe
choice not to use any lighting or any blackout screens saved fixed costs associated with the
equipment and the associated running costs for electricity. However, also this team suffered
from the occurrence of outer tip burn and malformations on the plants, even though they
had the lowest average plant density. The high fraction of class C products resulted in a
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low income. Similar to VeggieMight, team Koala, did not use supplemental lighting. This
team was also restrictive with CO; dosing in the first weeks of the cropping cycle. The
team maintained a high coverage bouncing from 93% to 98.9%. The fact that the algorithm
of this team managed to reduce costs, managed to have a high average head density and
had a high fraction of class A resulted in team Koala being the winner.

The final harvest was too late for all teams (Figure 12). Timely harvest would have
resulted in lower resource use and higher average plant density. The effect of earlier harvest
on net profit cannot be quantified, unfortunately, since the quality of the lettuce heads at
earlier moments in time cannot be predicted from the collected data.

Contrary to commercial greenhouse operations with continuous planting, spacing,
and harvesting, the two growing cycles of this study concerned single batches. The choice
for single batches was required to fit the format of the Autonomous Greenhouse Challenge
aimed at allowing teams to develop and show the potential of autonomous algorithms
growing a crop based on data analyses and vision. As a result, the computed profits,
although valid according to the rules of the Challenge, cannot completely be compared
with commercial practice. Dedicated trials would be needed to reflect deeper on the lettuce
growth responses in continuous commercial cycles. However, such trials were outside the
scope of this research. Nevertheless, results show that greenhouse occupation is essential
and that optimum plant spacing decisions are important.

In fully autonomous cultivation such decisions should be made based on continuous
sensor information. In this study camera images obtained by RealSense cameras in the
greenhouse were used to obtain information on crop growth. DeepLabv3+ was used to
separate the lettuce from the background. The model was only trained with a minimal
amount of data. However, considering the output images in 3.4 and the high mIoU (98.2)
it can be concluded that the segmentation proved suitable to be used as a base for crop
spacing decisions.

The RealSense cameras also provided data on the development of height and volume
over time. We expected that these two traits could be used to describe growth. The
development of volume over time has been related to biomass, as in [60,61]. As the height
and width information was proved to be very accurate (a mIoU of 98.2% for the covering
fraction and an R? of 0.976 for the height estimation) the lettuce head volume could be
reasonably estimated. However, the computed volume showed to be not suitable to predict
the crop weight. First, this can be explained by the fact that overlapping leaves do not
contribute to coverage or volume. Secondly, in Figure 16 the height over time flattens
during the last 2 weeks, and related to that, in Figure 18 also the volume flattens during the
last days. At the same time, destructive measurements show that the fresh weight grows
especially in these last days. As neither the coverage nor the height and volume indicated
this fresh weight growth, it can be concluded that in the final stage, growth takes place
from the central point of the head, resulting in more compact lettuce heads.

The product of the multiplied area per lettuce head with the maximum height resulted
in the highest correlation coefficient with fresh weight (Appendix A Table A3). Three
papers using the [50-52] dataset had a RMSE up to 25.3. As indicated, we obtained a lower
accuracy, however, we should take into account that the datasets are not fully comparable.
Our dataset is made within the greenhouse, with many plants and resultingly overlapping
leaves. The previous dataset and other research in lettuce growth contained data of single
plants only [53,55]. In our research, the predicted fresh weight was able to determine
non-destructively the moment of harvest for the majority of the teams. The suggested
harvest indicator dates can be closely related to the harvest dates that satisfy the target
weight criterion deducted from the intermediate destructive harvests. For MondayLettuce
no results were derived as the high final density of the team resulted in notably lower
volume for the team (Table 3) that was hampered by the high leaf occlusion.

The light loss indicator proved to be a good and automatically computable parameter
to judge spacing decisions just after the spacing was performed. This hindsight factor is
therefore welcome as an indicator to learn about the suitable covering factor to use as a
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threshold for making a spacing step. In Section 3.4.4, based on the light loss indicator, a
covering factor of 98% seemed to be a suitable moment for spacing. The results of teams that
spaced at even higher covering factors correlated with more severe issues with outer leaf
tip burn and malformations and are therefore not advisable. Spacing at lower thresholds
might have given a better quality but would for sure also lead to higher costs per m? due
to lower average plant densities. Further experience with spacing on a lower threshold
might show that possible higher quality outweighs the additional costs. The Reference and
VeggieMight for example had a light loss indicator that was mostly greater than 10. For
these teams, a later spacing strategy would likely not have had negative consequences.

In the future, other harvest indicators can be explored by deploying spectral indexes
to describe lettuce growth, to address existing shortcomings (overlapping leaves, increased
compactness). Spectral indexes can be successfully linked to the leaf area index in green-
houses [62]. Kizil et al. [63] estimated the yield of lettuce plants using spectral indexes.
Although their solution only worked for single plants it might be an opportunity to explore
further for the purpose of spacing decisions and fresh weight estimation. Also, it is good
to point out that in literature growth from non-destructive measurements is mostly deter-
mined under ‘ceteris paribus’ conditions, meaning that the environment does not change.
In commercial practice and the given dataset, the environment is continually changing due
to different climate, light, and spacing strategies. The latter necessitates the utilization of
larger datasets than those currently accessible. The acquisition of such datasets combined
with the given dataset has the potential to bridge the divide between academic research
and industrial production systems in the future.

5. Conclusions

e Intheexperiment described here, teams autonomously were able to control greenhouse
lettuce crop production by Al algorithms.

e  Autonomous Al algorithms were developed based on greenhouse climate sensor
information in time and on crop images maximizing the net profit of lettuce cultivation.

e  Realized crop growth and densities due to timely spacing decisions and realized final
target harvest due to timely estimation of crop weight have shown to have a large
impact on net profit.

e Images from 3D cameras and intelligent computer vision algorithms are helpful to
make timely decisions on plant spacing and final harvest decisions.

e Images of the lettuce crop canopy in the greenhouse have to be related to relevant
crop parameters to predict crop growth. From the images inside the greenhouses over
time, coverage, crop volume, maximum height, and light loss can be calculated to
determine the optimum spacing moment. If the light loss is close to zero, an optimum
spacing moment was reached, in our experiments that were at a coverage of 98%. The
product of area per plant with a maximum height of the plant is a promising indicator
for the moment of harvest given a target weight. Deviations from other destructive
indicators are highly linked to the results of the crop’s architecture as the impact of
leaf occlusion.

e  We have shown that computer vision and deep learning algorithms can be used for
automated plant spacing decisions toward the autonomous control of greenhouses.
The provided open-source dataset contributes to another step in the development of
autonomous greenhouses.

e  The reality gap between optimum research and commercial production conditions is a
crucial aspect to be considered in computer vision applications. Larger datasets need
to be acquired to bridge the gap.

e Early pest and disease detection, real-time inclusion of the volatile market prices,
robotics in activities of crop handling are among the next steps for higher levels of
automation in horticulture (not part of this research).
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Appendix A

Table Al. Data collected throughout the cultivation cycles for all greenhouse compartments on
outdoor and indoor greenhouse climate, weather forecast, requested and realized operational controls,
weekly destructive plant measurements on which images were annotated, and final harvest plant
data. Data are open access [49,56].

Parameter Unit Intervals Description
Outdoor temperature °C 5 min Meteo
Outdoor relative humidity % 5 min Meteo
Global radiation W/m?2 5 min Meteo
Wind speed m/s 5 min Meteo
Wind direction - 5 min Meteo
Rain [1 rain—0 dry] 5 min Meteo
g Heat emission- pyrgeometer W/m?2 5 min Meteo
g Absolute humidity content 5 min Meteo
=
§ Temperature greenhouse °C 5 min Indoor climate
§ Relative humidity greenhouse % 5 min Indoor climate
CO; concentration greenhouse ppm 5 min Indoor climate
Humidity deficit g/m3 5 min Indoor climate
Leeward vent position % [0-100] 5 min Indoor climate
Windward vent position % [0-100] 5 min Indoor climate
Temperature rail pipe °C 5 min Indoor climate
Assimilation lighting (LED) % [0-100] 5 min Indoor climate
Energy screen position % [0-100] 5 min Indoor climate

Blackout screen position % [0-100] 5 min Indoor climate
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Table Al. Cont.

Parameter Unit Intervals Description
Cumulative minutes of CO, dosing minutes 5 min Indoor climate
Heating temperature °C 5 min Indoor climate
Outdoor temperature °C 5 min Meteo
- Outdoor relative humidity % 5 min Meteo
§ Global radiation W/m?2 5 min Meteo
-
i Wind speed m/s 5 min Meteo
Degree of cloudiness [1-8] 5 min Meteo
Ventilation temperature °C 5 min Indoor climate
Lee side min vent position % [0-100] 5 min Indoor climate
g Net pipe minimum °C 5 min Indoor climate
§ Energy screen % [0-100] 5 min Indoor climate
Blackout screen % [0-100] 5 min Indoor climate
CO, Ppm 5 min Indoor climate
Humidity deficit g/ mS3 5 min Indoor climate
A class harvest g At harvest >250 g
B class harvest g At harvest 220-250 g
C class harvest g At harvest <220 g or VI.SIble
malformations
2
Plant density #/m? Team dependent 92 plants/m at
transplanting
Days after
Day of harvest - Once Team dependent
transplanting
Weekly sampled plants
Height cm Weekly/At and at harvest day which
harvest
was team dependent
o,
2 Weekly sampled plants
“ Diameter cm Weekly/At and at harvest day which
harvest
was team dependent
Weekly sampled plants
Fresh Weight g Weekly/At and at harvest day which
harvest
was team dependent
Weekly sampled plants
Dry Weight g Weekly/At and at harvest day which
harvest
was team dependent
Weekly sampled plants
and at harvest day which
Leaf deformation [1-3] Weekly/At was team dependent.
harvest .
Scoring protocol 1-3,
applies to a head of lettuce
RGB, depth images ) End of each Annotated single crop and

cultivation canopy images
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Table A2. Actuators and defaul sensors installed in all the greenhouse compartments during the
growing cycles and description of the installed equipment.

Greenhouse Compartments Description
Rail pipe Max capacity 129 W/m?
Energy screen LUXOUS 1547 D FR, Ludvig Svensson
Blackout screen OBSCURA 9950 FR W, Ludvig Svensson
Dimming 27-270 pmol/m? /s with
LED lights efficiency 2.4 umol/J, VYPR 2p, Fluence
by Osram
Fogging 330 g/m?/h
. CO; supply Max capacity 15 g/m?/h
Equipment
Length 3.2 m, 30 plant holes, 11 cm
Hydroponic gutters (NFT) heart-to-heart distance, 10 cm wide,
Hortiplan
Indoor temperature, relative humidity
Measuring box and CO; sensor in ventilated measuring
& box placed in the middle of the
compartment above the growing crop
PAR sensor placed above canopy and
PAR sensor below LED lights
RGB, depth camera Depth Camera D415—Intel RealSense
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Figure A1. Heating energy consumption (MJ/m?) of all compartments during the first and second
cultivation.
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Figure A2. Energy screen usage in all compartments during the first and second cultivation.
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Table A3. Realized harvest dates and fresh weight at the moment of harvest along with the dates at
which the weight target was realized by interpolating linearly the weekly destructive measured data.

Harvest Date  Average FW

Number of Average FW Satisfying Satisfying

Realized

Compartment Harvest Date Cultivation at Realized the FW the FW
Days Harvest . o
[dd/mm] [Days] [¢/Head] Criterion Criterion
y [dd/mm] [g/Head]
Reference 9 June 38 271.18 8 June 258.10
Koala 17 June 46 402.81 9 June 260.50
CVA 13 June 42 342.06 7 June 265.35
MondayLettuce 14 June 43 294.96 9 June 254.02
DigitalCucumbers 15 June 44 390.85 7 June 260.61
VeggieMight 13 June 43 389.80 4 June 251.91

Table A4. Correlation coefficient between measured and predicted fresh weight using corresponding
parameters derived using RGB and depth image.

Parameters Correlation Coefficient

Coverage percentage 0.5392
Average height [em] 0.6953
Median height [cm] 0.6946
Max height [cm] 0.7606
Volume [em?] 0.6785

Head density —0.7912
Volume per plant [cm3 /head] 0.8975
Area per plant [cm?] 0.8987

Mm per pixel —0.6784

Area per plant divided by volume per plant —0.4801
Volume per plant divided by area per plant 0.6741
Area per plant multiplied by volume per plant 0.9214
Area per plant divided by mm per pixel 0.9048
Area per plant divided by the maximum height 0.8126
Area per plant divided by median height 0.8400
Area per plant divided by average height 0.8360
Area per plant multiplied by the maximum 0.9340

height

Area per plant multiplied by the median height 0.9048

Area per plant multiplied by average height 0.9065
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Figure A3. Blackout screen usage in all compartments during the first and second cultivation.
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Figure A4. Artificial lighting usage in all compartments during the first and second cultivation.
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Figure A6. Classification of lettuces at the different harvest moments as Class A, Class B, and Class C
lettuces for the first (left) and second (right) cultivation. The classification was carried out using a
standardized protocol that distinguished the harvested products given the satisfaction of the target
fresh weight, the presence, and severity of the outer-leaf burn, and the presence of diseases and or
malformations that resulted in non-sellable products.
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