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Abstract
Cardiomyopathy is a pathological condition characterized by cardiac pump 
failure due to myocardial dysfunction and the major cause of advanced heart 
failure requiring heart transplantation. Although optimized medical therapies 
have been developed for heart failure during the last few decades, some patients 
with cardiomyopathy exhibit advanced heart failure and are refractory to medical 
therapies. Desmosome, which is a dynamic cell-to-cell junctional component, 
maintains the structural integrity of heart tissues. Genetic mutations in desmo-
somal genes cause arrhythmogenic cardiomyopathy (AC), a rare inheritable 
disease, and predispose patients to sudden cardiac death and heart failure. Recent 
advances in sequencing technologies have elucidated the genetic basis of 
cardiomyopathies and revealed that desmosome-related cardiomyopathy is 
concealed in broad cardiomyopathies. Among desmosomal genes, mutations in 
PKP2 (which encodes PKP2) are most frequently identified in patients with AC. 
PKP2 deficiency causes various pathological cardiac phenotypes. Human 
cardiomyocytes differentiated from patient-derived induced pluripotent stem 
cells (iPSCs) in combination with genome editing, which allows the precise 
arrangement of the targeted genome, are powerful experimental tools for 
studying disease. This review summarizes the current issues associated with 
practical medicine for advanced heart failure and the recent advances in disease 
modeling using iPSC-derived cardiomyocytes targeting desmosome-related 
cardiomyopathy caused by PKP2 deficiency.
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Core Tip: Prevention of advanced heart failure caused by cardiomyopathy is an urgent unmet need in the 
field of cardiovascular medicine. Desmosome, a cell-to-cell junctional component, maintains the structural 
integrity of heart tissues. Genetic mutations in desmosomal genes cause desmosome-related cardiomy-
opathy, an intractable disease refractory to standard medical therapies. This review introduces the recent 
advances in disease modeling of desmosome-related cardiomyopathy caused by PKP2 mutations using 
induced pluripotent stem cell-derived cardiomyocytes.
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INTRODUCTION
Heart failure is a clinical syndrome characterized by dyspnea, malaise, swelling, and/or decreased 
exercise capacity owing to impaired cardiac pumping function[1]. The established optimal medical 
therapies for heart failure have increased the survival rates of patients in the last few decades[2-4]. 
However, some patients are refractory to medical therapies and develop symptoms that are diagnosed 
as advanced heart failure. Currently, the therapeutic strategies available for these patients are heart 
transplantation and implantation of the ventricular assisting device[1,5]. Cardiomyopathy is a disease of 
cardiac pump failure due to myocardial dysfunction and is the major cause of advanced heart failure 
requiring heart transplantation[6-11]. Cardiomyopathies are differentially diagnosed mainly by using 
imaging modalities, including echocardiography, scintigraphy, computed tomography, magnetic 
resonance imaging, and cardiac catheterization. Based on the findings of these modalities, cardiomy-
opathies are classified into dilated cardiomyopathy (DCM), hypertrophic cardiomyopathy (HCM), 
restrictive cardiomyopathy (RCM), or other rare cardiomyopathies, such as arrhythmogenic right 
ventricular cardiomyopathy (ARVC)[12]. Among 36,883 heart transplantation recipients registered in 
the International Society for Heart and Lung Transplantation Thoracic Organ Transplant Registry 
between 2010 and 2018, the major primary diagnoses were non-ischemic DCM (50.8%), ischemic 
cardiomyopathy (ICM) (32.4%) with coronary artery disease, RCM (3.5%), and HCM (3.4%)[13]. In 
Japan, cardiomyopathies [DCM (64%), end-stage HCM with left ventricular systolic dysfunction (12%), 
and ICM (9%)] account for more than three-quarters of underlying diseases among heart transplant 
recipients[14]. ARVC, a rare inherited disease, is characterized by the risk of life-threatening 
arrhythmias, myocardial dysfunction, and fibrofatty replacement of myocardial tissue, predisposing the 
patients to sudden cardiac death and heart failure[9,11]. The prevalence of ARVC among the registrants 
for heart transplantation is rare (0.3% and 1%-2% in the United Network for Organ Sharing registry[15] 
and Japan Organ Transplant Network[14], respectively).

DESMOSOME-RELATED CARDIOMYOPATHY IS CONCEALED IN ADVANCED HEART 
FAILURE
Recent clinical studies utilizing high-throughput sequencing technologies have elucidated the genetic 
basis of cardiomyopathies, identified various causative genetic variants, and revealed the correlation 
between genetic factors and clinical phenotypes or cardiac morphologies in patients with cardiomy-
opathies[16-20]. ARVC is an inherited disease caused by mutations in desmosomal genes (PKP2, JUP, 
DSC2, DSG2, and DSP) (Figure 1)[11,21,22]. These genes encode the structural components of the 
desmosome, a dynamic junction between cells that maintain the structural integrity of heart tissues[23,
24]. The original disease phenotypes of ARVC are characterized by predominant right ventricular 
enlargement and contractile dysfunction. However, recent studies have reported left ventricular or 
biventricular involvement in patients with ARVC, resulting in the use of a broad phrase [arrhyth-
mogenic cardiomyopathy (AC)][9,11]. Although the prevalence of AC in patients with advanced heart 
failure is rare, recent genetic analyses in large cohorts have demonstrated an increased incidence of 
desmosomal gene mutations in patients with DCM[18,25,26], which is the most frequent basal disease 
among heart transplantation registrants. Furthermore, homozygosity and compound or digenic hetero-
zygosity of desmosomal genes are not rare, and patients with combined mutations exhibit a severe 
phenotype[27-30]. Recently, we identified DSG2-deficient cardiomyopathy caused by a rare 
homozygous stop-gain mutation in a patient initially diagnosed with idiopathic sporadic DCM[30]. 
Dsg2 deficiency is associated with embryonic lethality in mice. Additionally, Dsg2-depleted embryonic 
stem cells do not proliferate[31]. However, a human male patient with a complete lack of DSG2 
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Figure 1 Modeling impaired desmosome assembly and reduced contractility using isogenic induced pluripotent stem cell-derived 
cardiomyocytes with the precisely adjusted dose of PKP2. Heterozygous frameshift mutation in patient-derived induced pluripotent stem cells (iPSCs) 
was repaired through homology-directed repair. Homozygous frameshift mutations were introduced in PKP2 through non-homologous end joining in patient-derived 
iPSCs. The generated isogenic iPSC-derived cardiomyocytes with the precisely adjusted expression of PKP2 recapitulated impaired desmosome assembly and 
reduced contractility caused by PKP2 deficiency. Desmosomal cadherin proteins (DSG2 and DSC2) form homo-dimers and hetero-dimers. PKP2 is a scaffold protein 
for desmosomal cadherins, JUP, and DSP. Desmosomes are linked to sarcomere structure via the intermediate filament protein DES that targets both desmosome 
and Z disc structure. HDR: Homology-directed repair; NEHJ: Non-homologous end joining; Hetero: Heterozygous mutation.

expression did not exhibit pathological phenotypes at birth but developed advanced heart failure 
during the teenage years. Immunohistochemical and transmission electron microscopy analyses of left 
ventricular heart tissues revealed that the loss of DSG2 leads to aberrant deposition of desmosomal 
proteins and disruption of intercalated discs in cardiomyocytes. These findings suggest that 
desmosome-related cardiomyopathy is concealed in patients with advanced heart failure who are 
diagnosed with idiopathic DCM. As desmosome impairment is the most upstream molecular change in 
these patients, experimental studies must focus on elucidating the molecular mechanisms underlying 
the instability of cell-to-cell junctions to overcome advanced heart failure caused by desmosome-related 
cardiomyopathy. For disease modeling, patient-derived induced pluripotent stem cells (iPSCs) in 
combination with genome editing, which allows precise genomic modification of the targeted 
mutations, are powerful experimental tools to recapitulate pathological phenotypes based on the 
molecular factors of inherited cardiomyopathies[30,32-35].

PHENOTYPIC RECAPITULATION OF CARDIOMYOPATHY CAUSED BY PKP2  
DEFICIENCY USING PATIENT-DERIVED IPSC-CMS
PKP2, which is encoded by PKP2, is a desmosomal protein localized to the outer dense plaque and 
functions as a scaffold for the other desmosome proteins DSG2, DSC2, JUP, and DSP[23,36] (Figure 1). 
Among the desmosomal genes, mutations in PKP2 are most frequently identified in patients with AC
[11,37-39], and have been extensively studied using patient-derived iPSC-CMs compared to other 
desmosomal genes (DSG2[30,40,41], DSP[42,43], and DSC2[44,45]). Various clinical phenotypes and 
pathological characteristics observed in patients with AC harboring PKP2 mutations, downregulated 
desmosomal protein expression, upregulated lipogenesis, and increased apoptosis in heart tissues have 
been recapitulated using genetically engineered mouse models[11] and human cardiomyocytes differen-
tiated from iPSCs[46-54] (Table 1). Most known mutations of PKP2 are heterozygous and are missense, 
nonsense, and frameshift mutations. Studies on patient-derived iPSCs have identified that PKP2 
variants are heterozygous missense[48], heterozygous frameshift[46,47,49,50,54], homozygous fram-
eshift[47,51], compound heterozygous, and frameshift[52] mutations. Disease-specific iPSCs are 
generated from fibroblasts[46-48,51], keratinocytes[49], adipose tissue-derived stromal cells[52], and 
peripheral blood mononuclear cells[54], whereas control iPSCs are generated from healthy subjects[46-
49,51,52], human embryonic stem cells[50], or isogenic cells engineered from patient-derived iPSCs 
using genome editing[54]. Genome editing allows disease modeling by introducing heterozygous and 
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Table 1 Human disease model of PKP2 deficiency using induced pluripotent stem cell-derived cardiomyocytes and experimental pathological phenotypes of arrhythmogenic cardiomyopathy

Genetic mutation
Origin of 
disease-
specific iPSC

Experimental 
control Desmosome proteins Lipid 

accumulation Apoptosis Electrophysiology Ultrastructure 
of desmosome Contractility

Phenotypic 
rescue by 
gene 
replacement

Ref.

Heterozygous missense 
(c.1841T>C, p.L614P)

Dermal 
fibroblasts from a 
30-yr-old male 
patient with AC

iPSCs from a 32-
yr-old healthy 
male donor

Decreased JUP; No change 
in DSP, CDH2, and GJA1 
(immunofluorescence 
staining at weeks 4-5)

Increased oil red O 
staining after 
exposure to 
adipogenic differ-
entiation medium 
for 2 wk (oil red O 
staining)

NA Ventricular-like action 
potential profile (single-
cell patch-clamp 
recording (without 
control))

Increased cell 
width (TEM at 
weeks 4-5)

NA NA Ma et al[48]

Heterozygous 
frameshift (c.971_972ins, 
pA324fs335X); Hetero-
zygous frameshift 
(c.148_151delACAG, 
p.T50SfsX110)

Dermal 
fibroblasts from a 
30-yr-old male 
patient with AC

iPSCs from a 
healthy control

Decreased JUP and GJA1 
(immunofluorescence 
staining)

Lipid droplet 
accumulation 
(TEM on day 40)

Increased 
apoptosis after 
serum starvation 
(TUNEL)

Prolonged field potential 
rise time (multielectrode 
array)

Widened and 
distorted 
desmosomes 
(TEM on day 40)

NA NA Caspi et al
[46]

Homozygous frameshift 
(c.2484C>T leading to 
cryptic splicing); 
Heterozygous 
frameshift (c.2013delC, 
p.Lys672ArgfsX12)

Fibroblasts from 
a female patient 
with AC; 
Fibroblasts from 
a patient with AC

H9 human 
embryonic stem 
cell; iPSCs from 
cardiac fibroblasts 
of aborted fetus 
without a family 
history of AC

Nuclear translocation of 
JUP (immunofluorescence 
staining)

Increased 
lipogenesis after 
adipogenic 
stimulation for 4-5 
wk (Nile red 
staining)

Increased 
apoptosis after 
adipogenic 
stimulation for 
4-5 wk (TUNEL)

Slow intracellular 
calcium relaxation; 
Prolonged relaxation 
time (calcium imaging 
using Fura-2 acetoxy-
methyl on day 60)

NA NA NA Kim et al
[47]

Heterozygous 
frameshift (c.1760delT, 
p.V587Afsx655)

Dermal 
keratinocytes 
from a male 
patient with AC

iPSCs from 
dermal 
keratinocytes of a 
healthy control

Interrupted expression of 
DSP (immunofluorescence 
staining)

Lipid droplet 
accumulation after 
adipogenic 
stimulation for 4 
wk (oil red O 
staining at months 
3-4)

Genes associated 
with apoptosis 
remained 
unchanged 
(quantitative 
real-time PCR)

NA NA NA NA Dorn et al
[49]

Homozygous frameshift 
(c.2484C>T leading to 
cryptic splicing)

Fibroblasts from 
a female patient 
with AC

iPSCs from a 
healthy control

Reduced JUP (immuno-
fluorescence staining)

NA NA NA (decreased co-
localization of NaV1.5 
with PKP2)

NA NA (increased 
pro-fibrotic gene 
expression after 
stretch)

NA Martewicz 
et al[51]

Heterozygous 
frameshift 
(c.971_972InsT, 
p.A324fs335X)

A patient with 
AC

H9 human 
embryonic stem 
cells

Decreased membrane-
localized JUP (immuno-
fluorescence staining on 
day 34)

Increased lipid 
content (Nile red 
staining on day 34)

NA Short action potential 
and slow spontaneous 
beat rate in engineered 
heart slices [optical 
mapping (relative to 
monolayer 
cardiomyocytes)]

NA NA NA Blazeski et 
al[50]

Compound hetero- Adipose tissue- Gender-matched Increased cytoplasmic and No presence of Not increased Reduced sodium current Restored Khudiakov NA NA
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zygous frameshift and 
missense (c.354delT, 
p.Y119MfsX23 and 
p.K859R)

derived 
mesenchymal 
multipotent 
stromal cells from 
a 14-yr-old 
female patient 
with AC

healthy donor nuclear JUP levels 
(immunofluorescence 
staining on days 24-30)

lipid droplets (oil 
red O staining on 
day 24)

(PI staining at 
day 24-30)

density; Decreased 
action potential upstroke 
velocity (whole-cell 
patch-clamp and 
microelectrodes on days 
24-30)

sodium current 
after lentiviral 
transduction of 
PKP2

et al[52]

Heterozygous and 
homozygous frameshift 
mutation 
(p.D109AfsX10, 
introduced mutation via 
genome editing)

Wild-type iPSC 
lines from two 
different donors 
with introduced 
heterozygous and 
homozygous 
frameshift 
mutations

Isogenic wild-type 
iPSCs

Decreased junctional 
localization of DSP and 
GJA1 (immunofluor-
escence staining); Impaired 
stability of junctional 
CDH2 (fluorescence 
recovery after 
photobleaching)

NA NA Prolonged action 
potential duration 
(optical voltage 
recording on day 30)

NA Decreased systolic 
force (three-
dimensional 
cardiac 
microtissues on 
day 40)

NA Zhang et al
[53]

Heterozygous 
frameshift mutation 
(c.1228dupG, 
p.D410fsX425)

Peripheral blood 
mononuclear 
cells from a 
female patient 
with AC

Isogenic iPSCs 
with corrected 
mutation (wild-
type) and 
introduced 
homozygous 
frameshift 
mutations

Decreased area of 
desmosomes (DSG2, DSC2, 
and DSP) (immunofluor-
escence staining on day 14)

Lipid droplet 
accumulation in 
iPSC-CMs with 
homozygous 
frameshift 
mutations (TEM 
on day 28)

Increased 
apoptosis in 
iPSC-CMs with 
homozygous 
frameshift 
mutations 
(cleaved CASP3 
expression on 
day 28)

Decreased propagation 
speed in iPSC-CMs with 
homozygous frameshift 
mutations (motion vector 
analysis on day 28)

Increased 
desmosome gap 
width (TEM on 
day 28)

Decreased 
contractility 
(contraction 
velocity and 
deformation 
distance 
evaluated using 
motion vector 
analysis on days 
14 and 28)

Recovered 
contractility and 
desmosome 
assembly via 
AAV-mediated 
PKP2 delivery

Inoue et al
[54]

Gender of the patient or control donor is indicated if specified. Analytical methods along with time post-cardiomyocyte differentiation (if specified) are indicated. AAV: Adeno-associated virus; iPSC: Induced pluripotent stem cell; iPSC-
CMs: Induced pluripotent stem cells-derived cardiomyocytes; PI: Propidium iodide; TEM: Transmission electron microscopy; NA: Not applicable; AC: Arrhythmogenic cardiomyopathy.

homozygous frameshift mutations in wild-type iPSC lines[53]. Decreased expression of desmosomal 
proteins, aberrant lipogenesis, and apoptosis of cardiomyocytes are observed in the heart tissues of 
patients with AC[9,55,56]. These pathological phenotypes are recapitulated in iPSC-CMs with PKP2 
mutations as determined using immunostaining[46-54], lipid staining[47-50], electron microscopy[46,
54], terminal transferase dUTP nick end labeling staining[46,47], and cleaved-CASP3 expression analysis
[54]. Lethal arrhythmia is a hallmark of patients with AC. Arrhythmia phenotypes are recapitulated 
using iPSC-CMs with PKP2 mutations as evidenced by the results of patch-clamp[48,52], multielectrode 
array[46], calcium imaging[47], and optical voltage recording[53]. In clinical settings, global or regional 
ventricular contractile dysfunction is defined as a major criterion for the diagnosis of ARVC in modified 
Task Force criteria[21] and Padua criteria[57]. However, the functional consequence in cardiomyocyte 
contractility caused by PKP2 mutations has not been fully studied in human iPSC-CMs.

PKP2 DEFICIENCY AND CONTRACTILE DYSFUNCTION
We established iPSCs from a patient with AC harboring a heterozygous frameshift PKP2 mutation 
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(c.1228dupG, p.D410fsX425) and generated an isogenic set of iPSC clones harboring three genotypes 
[heterozygous mutation (Hetero), homozygously corrected with homology-directed repair (HDR), and 
homozygously introduced frameshift mutations via non-homologous end joining (NHEJ)] using genome 
editing[54] (Figure 1). These isogenic sets of iPSCs comprise patient-derived Hetero-iPSCs, HDR-iPSCs 
with two-fold higher PKP2 expression relative to Hetero-iPSCs, and NHEJ-iPSCs, which do not express 
PKP2, recapitulating both haploinsufficiency and complete loss of PKP2. After cardiomyocyte differen-
tiation using the monolayer protocol with chemically defined medium[58], NHEJ-iPSC-CMs lacking 
PKP2 expression exhibit lipid droplet accumulation, increased apoptosis, and decreased propagation 
rate (Table 1). However, patient-derived Hetero-iPSC-CMs with half-dose PKP2 expression do not 
exhibit these pathological phenotypes, suggesting that the haploinsufficiency of PKP2 is not sufficient to 
induce the above pathological phenotypes within 28 days after differentiation. In contrast, haploinsuffi-
ciency of PKP2 decreased contractility, which was evaluated using motion vector analysis, within 14 
days of differentiation. As the monolayer protocol confers strong contraction to iPSC-CMs on culture 
plates immediately after differentiation[58,59], continuous tensile overload may facilitate the contractile 
phenotype among isogenic iPSC-CMs. A recent study used isogenic iPSC-CMs in which heterozygous 
or homozygous frameshift mutation was introduced into wild-type iPSC-CMs[53]. The authors reported 
that PKP2 deficiency decreased systolic force in three-dimensional cardiac microtissues. This further 
supported the functional relationship between PKP2 deficiency and contractile dysfunction. An experi-
mental study using cardiac tissue-specific Pkp2 knockout mice demonstrated that the loss of Pkp2 
increased the distance between the cell periphery and DES, an intermediate filament protein in 
cardiomyocytes[60]. As DES connects Z-discs of sarcomeres to sarcolemmal costameres, desmosomes, 
and nuclear envelope[11,61], further experimental studies focusing on these cellular networks are 
required to elucidate the pathogenesis of desmosome-related cardiomyopathy.

DESMOSOME IMAGING USING THE ISOGENIC IPSC-CMS AND AAV-MEDIATED GENE 
REPLACEMENT
In the isogenic background, the haploinsufficiency of PKP2 did not affect the localization or expression 
levels of desmosomal proteins in iPSC-CMs as evidenced by the results of immunostaining or western 
blotting analyses. However, the desmosome area represented by dot distribution on the cell periphery 
in Hetero-iPSC-CMs was significantly lower than that in HDR-iPSC-CMs[54], suggesting that 
desmosome assembly is impaired by PKP2 haploinsufficiency. The impaired assembly of desmosomal 
proteins in human iPSC-CMs is supported by another study using isogenic iPSC-CMs. Fluorescence 
recovery after photobleaching experiments combined with lentivirus-mediated expression of fluorescent 
protein-tagged N-cadherin provided evidence that molecular stability of junctional N-cadherin is 
impaired by PKP2 deficiency[53]. To trace the molecular behavior of endogenous proteins in 
cardiomyocytes, fluorescent tagging of the structural proteins through genome editing is a powerful 
tool[62,63]. However, fluorescent tagging of endogenous desmosomal genes might affect desmosome 
structures or cell-to-cell integrity in iPSCs or iPSC-CMs. We previously identified a patient with DSG2-
deficient cardiomyopathy due to a rare homozygous stop-gain mutation and demonstrated that 
complete loss of DSG2 in human iPSCs does not affect the differentiation or cellular morphology in 
iPSC-CMs[30]. These findings prompted us to use DSG2 as the target of endogenous tagging by 
fluorescent protein to trace desmosome dynamics in live human iPSC-CMs. Genome editing targeting 
DSG2 alleles was performed to establish the isogenic iPSC-CMs harboring identical two DSG2 alleles 
comprising intact and knocked-in tdTomato alleles under the adjusted PKP2 expression levels 
(Figure 2). The desmosome area (represented by desmoglein-2-tdTomato fusion protein) was 
significantly downregulated due to PKP2 haploinsufficiency. Adeno-associated virus (AAV), a small, 
nonenveloped virus with a linear, single-stranded DNA, is widely used for gene therapy targeting 
human diseases, including heart failure[64,65]. AAV-mediated gene replacement of PKP2 significantly 
restored the decreased contractility in Hetero-iPSC-CMs and NEHJ-iPSC-CMs, demonstrating the proof-
of-concept for PKP2 gene therapy in human cells. Furthermore, time-lapse imaging using NHEJ-iPSC-
CMs captured the recovery of desmosomes, which gradually assembled at the cell periphery after AAV-
mediated PKP2 replacement (Figure 2). The established isogenic iPSCs harboring knocked-in tdTomato 
alleles allowed desmosome-imaging in living cells and provided distinct readouts for therapeutic 
development.

GENE REPLACEMENT THERAPY TARGETING HEART FAILURE
Several clinical trials using AAV-mediated gene replacement have been designed targeting 
cardiovascular disease[65,66]. A large-scale clinical trial was conducted as a randomized, multinational, 
double-blind, placebo-controlled phase 2 study targeting up to 250 patients with moderate-to-severe 
heart failure and reduced contractile function (CUPID2 trial)[67]. The study aimed to deliver 
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Figure 2 Allele-specific fluorescent labeling of DSG2 captures desmosome dynamics in isogenic induced pluripotent stem cell-derived 
cardiomyocytes. To establish a model for desmosome imaging, the tdTomato fluorescent reporter was knocked-in at the 3′-terminus of DSG2 in the three 
established isogenic induced pluripotent stem cells (iPSCs) using genome editing. These isogenic iPSCs carried identical DSG2 alleles comprising intact and 
knocked-in alleles distinguished by a synonymous single nucleotide variant (indicated as blue line). These iPSC-derived cardiomyocytes enable desmosome imaging 
and capturing desmosome recovery after adeno-associated virus-mediated replacement of PKP2. HDR: Homology-directed repair; NEHJ: Non-homologous end 
joining; AAV: Adeno-associated virus; Hetero: Heterozygous mutation.

sarcoplasmic reticulum Ca²+-ATPase (SERCA2a) into heart tissues via intracoronary injection. SERCA2a 
regulates cardiomyocyte contraction and relaxation by transporting Ca²+ from the cytosol into the 
sarcoplasmic reticulum during diastole[68]. The deficiency of SERCA2a is associated with heart failure 
progression[69,70]. Although promising results were achieved in preceding preclinical and clinical 
studies[71-73], gene replacement of SERCA2a did not improve the clinical course of patients with heart 
failure[74]. The two clinical trials of gene therapy targeting patients with heart failure conducted in the 
same period (AGENT-HF[75] and SERCA-LVAD[76]) were terminated due to the neutral result of the 
CUPID2 trial and the lack of functional benefit. The amount of vector DNA in heart tissues obtained 
from patients who received gene therapy and subsequently underwent heart transplantation or 
mechanical circulatory support device implantation was low, suggesting that only a small proportion of 
cardiomyocytes expressed AAV-delivered SERCA2a in the myocardium. Although these clinical trials 
demonstrate the difficulty of gene delivery targeting human heart tissues, they provide the evidence for 
the safety of cardiac gene therapy and a basis for the design of future gene therapy trials. Recent genetic 
analysis clarified a large number of genetic mutations that cause cardiomyopathies with advanced heart 
failure in a loss-of-function manner and can be targeted by specific gene replacement therapy[77,78]. In 
desmosome-related cardiomyopathy, most of the identified mutations in PKP2 are heterozygous[22,37,
79,80]. However, in extremely rare cases, homozygous mutations of PKP2 cause lethal infantile heart 
failure with left ventricular non-compaction or hypoplastic left heart syndrome[81-83]. No effective 
therapies are available for these patients who require a novel therapeutic approach for desmosome-
related cardiomyopathy. Proof-of-concept studies for structural and functional recovery using both 
human iPSC-CM models and in vivo models are required for future clinical application.

CONCLUSION
Although human iPSC-CMs are immature and do not fully recapitulate in vivo heart tissues[59], tissue 
engineering approaches[84,85] will promote the maturation of iPSC-CMs and provide a useful tool in 
combination with genome editing. The isogenic iPSC-CMs that we established represent a human 
disease model that recapitulates reduced contractility and impaired desmosome assembly and provides 
a convenient cellular platform for therapeutic screening to examine upstream molecular targets of 
desmosome-related cardiomyopathy.
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