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ABSTRACT: Solute carriers (SLCs) are relatively underexplored compared to
other prominent protein families such as kinases and G protein-coupled
receptors. However, proteins from the SLC family play an essential role in
various diseases. One such SLC is the high-affinity norepinephrine transporter
(NET/SLC6A2). In contrast to most other SLCs, the NET has been relatively
well studied. However, the chemical space of known ligands has a low chemical
diversity, making it challenging to identify chemically novel ligands. Here, a
computational screening pipeline was developed to find new NET inhibitors.
The approach increases the chemical space to model for NETs using the
chemical space of related proteins that were selected utilizing similarity
networks. Prior proteochemometric models added data from related proteins,
but here we use a data-driven approach to select the optimal proteins to add to
the modeled data set. After optimizing the data set, the proteochemometric
model was optimized using stepwise feature selection. The final model was created using a two-step approach combining several
proteochemometric machine learning models through stacking. This model was applied to the extensive virtual compound database
of Enamine, from which the top predicted 22,000 of the 600 million virtual compounds were clustered to end up with 46 chemically
diverse candidates. A subselection of 32 candidates was synthesized and subsequently tested using an impedance-based assay. There
were five hit compounds identified (hit rate 16%) with sub-micromolar inhibitory potencies toward NET, which are promising for
follow-up experimental research. This study demonstrates a data-driven approach to diversify known chemical space to identify novel
ligands and is to our knowledge the first to select this set based on the sequence similarity of related targets.

■ INTRODUCTION
Solute carriers (SLCs) are a divergent class of transporters and
are understudied compared to other prominent receptor
families, such as kinases and G protein-coupled receptors
(GPCRs).1 However, SLCs can play a critical role in complex
diseases and several SLCs are promising drug targets.2−4 To
further characterize SLCs, the RESOLUTE consortium was
founded to develop and distribute biochemical tools and assays
for in vitro and in vivo studies of these transporters.5 SLC
subfamilies recognize highly divergent natural substrates, and
their sequence identity is low compared to the sequence identity
in other superfamilies.6 Therefore, it is challenging to design
family-wide studies, for example, kinome-wide studies,7 to find
new ligands interacting with SLCs. Instead, the focus typically
lies on single subfamilies, or even single SLCs, to identify novel
compounds as promising candidates for SLC-related diseases.1

One such SLC-related disease is major depressive disorder,
one of the leading causes of disability. An increasing trend in the
worldwide incidence and prevalence of depression has been
observed in recent years.8,9 Selective serotonin reuptake
inhibitors, serotonin-norepinephrine reuptake inhibitors, and
selective norepinephrine reuptake inhibitors are established

classes of prescription drugs for the first-line treatment of
depression that work by targeting SLCs.10 Although these drugs
improve on the poly-pharmacological profile of tricyclic
antidepressants that were used before, the current generation
of reuptake inhibitors suffers from partial or nonresponsiveness,
relatively low remission rates, slow onset of action, and risk of
adverse effects.11 The norepinephrine transporter (NET/
SLC6A2) is involved in the rapid reuptake of the neuro-
transmitter norepinephrine (NE) from the synaptic clefts of
noradrenergic neurons in the peripheral and central nervous
system.12 Thus, the identification of NET inhibitors could
improve the efficacy of current antidepressants as well as provide
scaffolds for alternative methods such as the development of
(fluorescent) probes for in vitro imaging.13 Here, we aim to find
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these ligands using a combination of computational and wet lab
experiments.
Computational studies, such as statistical modeling and ligand

docking, have increased in popularity over the past decades.
However, application to SLCs has been relatively limited.14,15 A
3D structure (crystal, cryo-EM, or homology-modeling based)
of sufficient quality is required to perform structure-based drug
discovery.16 However, the crystallization of SLCs is complex,
given their membrane-bound nature, analogous to GPCRs.
Therefore, only a limited number of structures are available for
this protein family, limiting the ability to perform the structure-
based design of ligands.17,18 While advances in cryo-EM and
machine learning, such as AlphaFold, are expected to
significantly increase the available structures and alleviate
some of these issues, the application of AlphaFold in virtual
screening remains to be demonstrated.19−21 In the absence of
structural information, virtual screening can be performed using
2D chemical structures (ligand-based) or proteochemometric
models (PCMs) that use both ligand and protein information.22

In both cases, machine learning is used to identify a correlation
between bioactivity and structural features to screen for novel
ligands.
Here, proteochemometric modeling and an impedance-based

assay were applied to identify new chemotypes for NETs. While
this transporter has been relatively well characterized compared
to other SLCs, there is a need for novel ligands that effectively,
efficiently, and selectively target NETs.23,24 For our PCM
approach, we add proteins to the training data set based on
sequence similarity. The novelty here is to use a data-driven
selection method for the additional targets. This approach has
not been reported in the literature to the best of our knowledge.
However, it has been shown that expanding the data set with
interaction data and protein information from related proteins
leads to more predictive models, and it was expected that this
equally applies to NETs.25 The optimal number of included
proteins were sampled using similarity networks (SNs) and
phylogenetic trees. PCMs were trained on the extended ligand
space using publicly available bioactivity data from ChEMBL.26

The final model was subsequently applied to the extensive 600
million make-on-demand compounds in the Enamine REAL
database. Finally, a subselection of candidates were synthesized
and validated experimentally for sub-micromolar inhibitory
potencies toward NETs with a hit rate of 5 out of 32 (16%),
identifying diverse and novel chemotypes.

■ METHODS
Computational Pipeline. An overview of the full computa-

tional pipeline is shown in Figure 1. This workflow can be
applied to different targets to enrich the chemical space of a
target of interest, provided the sequences and ligands with
bioactivity measurements for these targets to be added are
known. The steps are described below in further detail.
Software. Proteochemometric modeling, data curation,

feature extraction, and cluster analysis were performed in
Pipeline Pilot (version 1827). Similarity network construction
was done with Cytoscape (version 3.7.128) in RStudio (version
3.6.029). Any seeds used in randomization or model creation/
prediction were set to “12345”.
Bioactivity Data. Bioactivity data were gathered from the

ChEMBL database (version 25.026). A data point was defined as
a combination of the chemical structure and protein target.
Properties included per data point were canonical SMILES for
the compound, the protein amino acid sequence of the target,

and a pChEMBL value representing the affinity (in −log M). If
there was more than one pChEMBL unit assigned to a data
point, the leftmost of the following ranked units was chosen�Ki
> IC50 > EC50 > Kd. Duplicate pChEMBL values were averaged
so that only a single bioactivity value for each interaction
remained. Ultimately, 1,152,765 data points were collected for
subsequent selection steps, containing 5,142 proteins and
622,007 compounds.
Compound Standardization. Pipeline Pilot was used to

convert canonical SMILES to structures. Compounds were
standardized as done previously by Burggraaf et al.30 Steps
included removing salts, standardizing stereoisomers/charges,
and (de)protonation based on a pH of 7.0.
Compound Descriptors. Physicochemical properties were

calculated using Pipeline Pilot built-in components. Several
fingerprints were calculated: estate keys/counts, MDL finger-
prints, and a selection of extended-connectivity fingerprints.31 A
full list of these compound descriptors can be found in
Supporting Information Table S1. All these descriptors were
used during the feature selection process to identify the optimal
performing type.
Protein Descriptors. Three classes of protein descriptors

were tested. The first set of protein descriptors are alignment
agonistic and were generated using the PROFEAT interface.32

Second, three alignment-based protein descriptors were
included as used previously (Z-scales, FASGAI, and BLO-
SUM).33 Finally, a third set of protein descriptors was prepared
using an in-house algorithm that samples a selection of protein
descriptor generators and returns an autocross-correlated
version.34 An overview can be found in Supporting Information
Table S1. Like the compound descriptors, these were also used
in the feature selection part of the process.
Cross-Term Descriptors. No cross-term descriptors were

calculated as it has been shown that these are not required when
using nonlinear machine learning methods.35,36 Moreover, these
cross-terms are generally poorly interpretable compared to

Figure 1. Schema for the sequential computational steps performed in
this study. Data was collected from ChEMBL 25, fetching interaction
data for NET and related SLC6members. This data was then filtered for
relevance with both SNs and phylogenetic trees to expand the data set
with sequence information of the related proteins and the chemical
space known for these proteins. The model was subsequently trained
and optimized with feature selection and parameter optimization.
Cross-validation was performed, alongside an external validation from a
test set that was kept separate from optimization (10% of data) to
ensure a minimal amount of overfitting. Subsequently, the Enamine
database was virtually screened using the optimized model and
predictions were clustered based on structural similarity. Finally,
cluster centers were chosen for experimental validation via a TRACT
assay.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.2c01645
J. Chem. Inf. Model. 2023, 63, 1745−1755

1746

https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.2c01645/suppl_file/ci2c01645_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.2c01645/suppl_file/ci2c01645_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c01645?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c01645?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c01645?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c01645?fig=fig1&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.2c01645?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


chemical and/or protein descriptors. Hence, it was chosen to
not use these here.
Data Set Selection. Both SNs and phylogenetic tree

formation were applied to filter the 5,142 available proteins
from our initial data set to a relevant subset based on sequence
similarity. As it has been shown that expanding the data set with
interaction data and protein information from related proteins
leads to more predictive models, it was expected that this equally
applies to NET.25 Substrates of the family share similarities, yet
compounds tested on non-NET proteins may not have been
tested on the NET itself. addition of targets based on sequence
information adds more chemically diverse compounds. The
optimal data set from the created data sets based on the SNs and
phylogenetic trees was identified using cross-validation. An “out-
of-the-box” random forest model was trained on each set. The
number of trees was set to 100, the number of descriptors to the
square root for each layer, the minimum node size of 1, and no
maximum depth for the layers. Then, internal cross-validation
was performed in a 5-fold manner, with the R2 and residual
mean-squared error (RMSE) reported for each model.
Modeling performance on the data for both the similarity
network-based approach as well as the phylogenetic tree-based
approach was obtained using a 70/30 target-based data split
using PCA-assisted K-means. The R2 and RMSE were then
calculated using 10-fold cross-validation. The data set from the
best-performing model was chosen for further follow-up.
Similarity Networks. SNs were created using RStudio and

package “Rcy3” in Cytoscape while displayed using “yFiles”. The
full set of 5,142 proteins obtained from ChEMBL was used in
the similarity investigations. Proteins were first analyzed using
pBLAST, resulting in an all-versus-all similarity matrix. Networks
were then created using a varying pBLAST threshold; a higher
threshold resulted in a higher required similarity for inclusion
and hence fewer proteins included for the network. Two
networks represented the extremes and limits of the search
space. These were a broad network (required similarity ≥ 100)
representing multiple SLCs and a narrowed-down network
(required similarity ≥ 800) containing only NET homologs.
Phylogenetic Tree Formation. Phylogenetic trees were

created using R packages “msa”, “seqinr”, and “ape”. Alignment
was performed using the “msa” implementation of ClustalW.
Phylogenetic tree formation ended at the largest network
(pBLAST ≥ 100) possible within our available resources as a
complete alignment was impossible for the full set of 5.142
proteins. Tree layers were created upward from the small
network (pBLAST ≥ 800, NETs only), with each layer above it
including the previous layer. Tree creation was stopped when it
reached the large network (pBLAST ≥ 100).
Data Set Pruning. Similarity clusters in the SN were

iteratively trimmed by increasing the BLAST score threshold
until proteins were separated from the cluster. Six separate
clusters were formed from the iterative trimming at thresholds of
850, 650, 550, 350, and 100, again with 100 as the most inclusive
and largest cluster. Similarly, a phylogenetic tree was
constructed from the most extensive cluster of the SNs. The
phylogenetic tree was pruned into subsets to contain
progressively fewer proteins. These layers are numbered
progressively up from the NET protein and were used to
identify proteins similar to each other and NET.
Model Construction. Models were constructed with three

machine learning algorithms: random forest (RF, “ranger”
package37), gradient boosting (GB, “xgboost” package38), and
partial least squares (PLS, “pls” package39). For each model,

optimization was performed for both the ligand and protein
descriptors (feature selection) wherein the parameters for the
model were found by grid-based parameter optimization (Table
1). Subsequently, stacking was added by running one or two of
the algorithms to predict affinity (mean affinity plus standard
deviation over 10-fold k-validation) for a given target. These
predictions would form a new set of features for a secondary
machine learning algorithm that would predict the affinity for
the target based on the underlying model predictions. To check
for potential overfitting on the data, predictions were performed
on a 10% hold-out set. A list of descriptors is shown in
Supporting Information Table S1. Optimal descriptors and
parameters for each algorithm, as well as the final model, can be
found in Supporting Information Table S2.

Feature Selection. Stepwise feature selection was per-
formed during model optimization in Pipeline Pilot using the
“caret” package in R.40,41 At each step, the maximum number of
iterations was set to 25 and the number of iterations without
model improvement was set to 3. Model improvement was
defined as an increase in 5-fold cross-validated R2. The resulting
set of descriptors was deemed optimal for that specific type of
model and was subsequently used in each model of that type.
Hyperparameter Optimization. Hyperparameter optimi-

zation was performed using a full grid search. Model
improvement was defined as an increase in 5-fold cross-validated
R2. Once optimal hyperparameters were determined, these were
subsequently used in eachmodel of a given type. Parameter grids
were separated per model as shown in Table 1.
Model Validation. The robustness of our model was

subsequently tested using a temporal split validation.35 The final
data set after target selection and hyperparameter optimization
(20,189 data points) was split into entries based on their year of
publication according to ChEMBL. The training set contained
known interactions before 2010 (15,106 data points), while the
test set contained entries from 2010 (5,083 data points) and
later as done previously in our lab.35

Predicting and Clustering. Using the final model,
predictions were performed on the Enamine REAL data set
containing over 600million compounds. A threshold was set at a
predicted NET affinity of 100 nM (−log 7), and only

Table 1. Grids Used during the Parameter Optimization
Procedurea

model parameter grids

random forest
(ranger)

number of trees 100, 250, 500, 1000

number of
descriptors

Sqrt(D)*, Log2(D)*, fraction:
10%, 50%, 90%

minimumnode size 1, 5, 7
maximum depth 5, 7, no max

gradient boosting
(xgboost)

maximum number
of trees

100, 250, 500, 1000

learning rate 0.1, 0.3, 0.5
gamma 0, 0.3, 0.5
maximum depth 5,7
data fraction 0.1, 0.5, 1.0
descriptor fraction 0.5, 0.7

partial least squares
(pls)

number of variables 100, 200, 300

aFor different algorithms, different hyperparameters were sampled.
Parameter grids are separated per model. *D represents the number
of descriptors.
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compounds predicted with a better affinity were taken into
consideration for follow-up. The resulting set of compounds was
then further filtered based on chemical diversity using clustering
based on the Tanimoto Similarity. As an additional step after
clustering, an identity filter was applied that removed points with
either a 90% or higher identity or a 50% or lower identity to
compounds found in the training data. This filter ensured that
compounds were novel compared to existing ligands, yet did not
stray too far from known chemical space to influence model
reliability. Clustering was performed using the R package
“hdbscan”. Clusters were visualized in Pipeline Pilot. Finally,
compounds were ranked within these clusters based on
predicted NET affinity, and the top-ranked compound from
each cluster was chosen for further experimental validation.
Chemicals and Reagents. Jump In T-Rex HEK 293 cells

modified for doxycycline-inducible overexpression of the wild-
type human NET (JumpIn-NET) were provided by CeMM
(Research Center for Molecular Medicine, Medical University
of Vienna, Austria). JumpIn-NET cells were generated as
described previously.42 Doxycycline hyclate was purchased from
Sigma-Aldrich (St. Louis, MO, USA). Nisoxetine hydrochloride
was purchased from Santa Cruz Biotechnology (Dallas, TX,
USA). All other chemicals were of analytical grade and obtained
from standard commercial sources.
Cell Culture. JumpIn-NET cells were grown as adherent

cells in the culture medium (high-glucose Dulbecco’s modified
Eagle’s medium supplemented with 10% (v/v) fetal calf serum, 2

mM Glutamax, 100 IU/mL penicillin, and 100 μg/mL
streptomycin) at 37 °C and 7% CO2. Cryopreserved cells
were thawed and cultured for 1−2 passages in a culture medium.
Cells were then cultured for up to 1 week in a culture medium
supplemented with 2 mg/mL G418 and 5 μg/mL blasticidin
before switching back to the culture medium at least 24 h prior
to an experiment. Cell cultures were split twice per week at ratios
of 1:8−1:16 in 10 cm plates.
TRACT Assay. Label-free transport activity through receptor

activation (TRACT) assays were performed using the
xCELLigence real-time cell analysis (RTCA) platform as
described previously.42 In short, cells grown on gold-coated
electrodes of 96-well E-plates impede the electric current
generated on the electrodes. Impedance is measured at 10 kHz
and is converted to the dimensionless parameter Cell index (CI)
using the following formula: CI = (Zi − Z0)Ω/15Ω, where Zi is
the impedance at any given time and Z0 is the baseline
impedance measured at the start of each experiment.
Assays were performed at 37 °C and 5% CO2 in 96-well E-

plates in a total volume of 100 μL. Background impedance was
measured in a 40 μL culture medium. JumpIn-NET cells were
seeded in 50 μL at 60,000 cells/well in the presence of 1 μg/mL
doxycycline (or no doxycycline for the counter screen). The E-
plate was left at room temperature for 30 min before placement
in the recording station. Cells were grown for 22 h prior to
inhibitor pretreatment. All compound additions were made
using a VIAFLO 96 handheld electronic 96-channel pipette

Figure 2. Sequence-based SNs obtained from SLCs in ChEMBL. Displayed are SNs wherein each node represents a single protein and each
connection a pBLAST similarity above the chosen cutoff. A node in yellow denotes human NET. SN ChEMBL resulted in one large cluster of all
proteins and was discarded (left hand). From there, the following thresholds were used for the SN SN100 (34 proteins), including NETs and related
proteins from different species. SN350 (33 proteins), showing a smaller network with a section appearing to nearly dissociate from the main section.
SN550 (15 proteins), containing the serotonin and dopamine transporters together with NETs. SN650 (11 proteins) serotonin was absent, and the
minimum viable similarity network SN850 (and all SNs above this threshold) contains solely NETs from humans and other species.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.2c01645
J. Chem. Inf. Model. 2023, 63, 1745−1755

1748

https://pubs.acs.org/doi/10.1021/acs.jcim.2c01645?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c01645?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c01645?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c01645?fig=fig2&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.2c01645?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(INTEGRA Biosciences, Tokyo, Japan). After 22 h, cells were
pretreated for 1 h with either a single concentration (single-
point primary screen, 10 μM) or increasing concentrations (full-
range concentration−inhibition curves, ranging from 10 pM to
10 μM) of compound or nisoxetine (positive control). Dilutions
of compounds were first made in DMSO and then in phosphate-
buffered saline (PBS). Vehicle-pretreated cells received only
DMSO in PBS. Final amounts of DMSO were kept at 0.1% per
well. After 1 h of inhibitor pretreatment, cells were stimulated
with either vehicle or 1 μM norepinephrine in PBS containing 1
mM ascorbic acid (final concentration). Impedance was then
measured every 15 s for 30 min.
Data Analysis.Raw data fromTRACT assays were recorded

using RTCA Software v2.0 or v2.1.1 (ACEA Biosciences). CI

values were normalized to the time point prior to substrate
addition, obtaining normalized CI (nCI) values to analyze NE-
induced cellular responses. Data were exported from RTCA
Software and analyzed in GraphPad Prism v8.1.1 (GraphPad
Software, San Diego, CA, USA). Per E-plate, nCI values of
vehicle-pretreated and vehicle-stimulated cells were subtracted
from all other data points to correct for any inhibitor and
substrate-independent effects. NE-induced cellular responses
were quantified by taking the net area under the curve (AUC) of
the first 30 min after NE stimulation. Inhibitory potency (pIC50)
values of compounds are reported as a concentration-dependent
enhancement of the NE-induced response by fitting the AUC
data with nonlinear regression to a sigmoidal concentration−
inhibition curve with a fixed pseudo-Hill slope of 1. Data are

Figure 3. Phylogenetic tree of the maximally viable similarity network (SN100) reveals eight individual layers. Displayed is the phylogenetic tree of the
proteins analyzed and colored with the various layers (defined as splits from the root of the tree defined by NET). This resulted in eight layers
(including NETs as the first layer).
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shown as mean ± standard error of the mean (SEM) of three
separate experiments each performed in duplicate.

■ RESULTS
Data Set Pruning. The full ChEMBL data set (5,142

proteins) had to be pruned as it was too large and contained too
many proteins that were not related to NET. From the pruning,
both a similarity network (Figure 2) and a phylogenetic tree
(Figure 3) were created. Subsequently, the training data sets
were formed by combining the chemical space from the proteins
in the protein clusters of the SN or layers in the phylogenetic
tree. Overlapping cluster-layer pairs were evaluated once, for
example, SN850 (SN) overlapped with layer2 (phylogenetic),
SN650 overlapped with layer3, SN550 overlapped with layer4,
and SN100 overlapped with layer8.
Final Data Set Selection. The alignment methods resulted

in nine extended “layers” for NET. Adding these chemical spaces
to the NET data set was empirically tested to find the optimal
training subset. To this end, an RF model was created and cross-
validated to assess the R2 and RMSE (Figure 4). Subgroups
layer5, layer6, layer7, SN350, and SN100 scored comparable,
with an R2 of 0.71−0.72 and an RMSE of 0.66−0.67. The other
sets scored worse, with an R2 of 0.58−0.62 and an RMSE of
0.66−0.75. Out of these five comparable sets, SN100 was
selected as this contained the most data (20.189 data points)
and produced top-performing models.

Optimized Model Creation. After selecting the optimal
amount of proteins and chemical space connected thereto, the
best ensembling approach was identified. Three different
methods were used for base models: RF, GB, and PLS. These
were subsequently tested in an ensemble approach. Finally, the
best scoring model of each method was kept for further analysis
using a 30% random-split hold-out set of NET interactions in
the data set using the R2 and RMSE. Here, we will report the
external (hold-out) set performance; cross-validation perform-
ance can be found in Figure 5. Due to the absence of cross-terms,
PLS (R2: 0.28; RMSE: 0.93) underperformed compared to RF
(R2: 0.61; RMSE: 0.70) and GB (R2: 0.65; RMSE: 0.62). Hence,
the latter two were selected for continuation.
Next, stepwise feature selection and parameter optimization

were used to fine-tune the models. Optimization of the RF and
GB models showed a minor increase in R2 (final values of 0.62
and 0.66, respectively) and a decrease in RMSE for RF (0.67)
(Figure 5). The performance further increased when PLS was
stacked as a second model after the RF and GB models, which
are used as additional descriptors. This combination performed
the best (R2 0.66 of and RMSE of 0.62) and will be referred to as
the NET model from now on. The best-performing features and
parameters can be found in Supporting Information Table S2.
Finally, temporal split-based external validation was performed
with ChEMBL data using the chosen model configuration,
retrained without the temporal hold-out data (Supporting

Figure 4.Differences in cross-validated R2 and RMSE from models trained on the different subsets. Displayed are the R2 and RMSE values generated
during the data set selection process. A high value for R2 and a low value for RMSEwere desired. SN100 was eventually preferred based on the obtained
RMSE and R2 values combined with a larger size compared to the other sets.

Figure 5. Overview of the performance of selected modeling approaches. Displayed are the internal (training, cross-validation) and external (testing
30% hold-out) statistics. Shown are three intermediate models, an RF model, an optimized RF model, and a GB model (left 3 bar sets); also shown is
the final model consisting of an RF plus GB ensemble with a stacked PLS ensemble as the second step (right set of bars). At each step, model
performance is improved.25
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Information Figure S1). The external validation had an R2 of
0.24 and an RMSE of 1.02, worse than cross-validation but in
line with previous examples of a temporal split.35 Based on the
optimization and temporal validation and our prior experience
with the expected performance of models trained on temporal
split ChEMBL data, it was concluded that the NET model was
robust enough to continue prospectively.
NET Model Predicted 46 Groups of Compounds as

Viable Candidates. The Enamine database was virtually
screened with the optimized NET model to predict the
bioactivity of these compounds for NETs. Subsequently, a
final selection was made with filtering steps. Only compounds
with a predicted affinity toward NETs better than 100 nM (7.00
log units) were considered (Figure 6). This threshold resulted in
22,206 compounds remaining, with the highest predicted
affinity reaching 7.65 log units.
Subsequently, the compounds were clustered using

HDBSCAN on structural similarity and visualized with t-SNE
using a 1024-bit ECFP-6 fingerprint (Figure 7) as we did
previously.43 Compounds were first filtered (colored gray) by
similarity to the training set, removing entries that either had a
90% or higher similarity or a 50% or lower similarity to the
training set to ensure novelty and to stay within the applicability
domain. Theminimal amount of points in a cluster was set to 19,
eliminating smaller clusters and resulting in 46 clusters
remaining. Afterward, the compound with the highest predicted
affinity within each cluster was selected for a final suggested list
of 46 potential NET inhibitors. Of the 46 compounds, 32 could
be obtained and tested for NET activity in a label-free
impedance-based assay. The selected compounds are shown in
Supporting Information Table S3 with analytical spectra
available in the Supporting Information. The nearest training
molecule based on Tanimoto Similarity is shown for each
highest predicted molecule in Supporting Information Table S4.
The average Tanimoto Similarity to the training set of these
compounds is 0.38 ± 0.14.
Experimental Validation. An impedance-based TRACT

assay was performed to validate if predicted actives were

biologically active.42,44 Here, a HEK293 cell line with inducible
expression of NETs was used and the activation of endogenously
expressed alpha-2 adrenergic receptors by NE was measured as a
cellular response. A compound was considered a NET inhibitor
if the compound was able to significantly enhance the NE-
induced cellular response in a concentration-dependent manner.
A single-point primary screen was performed with a 10 μM test
compound, using the reference NET inhibitor nisoxetine as a
positive control (Figure 8A; Supporting Information Table S5).
Five of the 32 tested compounds were able to enhance the NE-
induced response to a similar level as nisoxetine, indicating that
the compounds inhibited NETs with high potency. None of the
five compounds showed modulation of the NE response in cells
lacking NETs (Supporting Information Figure S2), confirming
that the enhanced NE-induced response was specific to NETs.
To further characterize the most potent inhibitors, full-range
concentration−inhibition curves were obtained for the top five
compounds and inhibitory potency (pIC50) values were
determined (Figure 8B; Table 2). The compounds on their
own did not induce substantial cellular responses during
pretreatment (Supporting Information Figure S3). All tested
compounds showed concentration-dependent enhancement of
the NE response with sub-micromolar inhibitory potencies
(Figure 8B; Supporting Information Figure S5). Compounds 3
and 4 showed the highest pIC50 values (7.6 ± 0.1 and 7.5 ± 0.2,
respectively), which were in the range of the pIC50 of nisoxetine
(8.0± 0.0). These results demonstrate that at least five of the 32
tested compounds were biologically active NET inhibitors in a
label-free TRACT assay.

■ DISCUSSION
In this study, an ML model that can identify novel inhibitors for
human NETs was developed and validated. After the virtual
screening of the Enamine database with this model, 46 diverse
compounds were selected using clustering that were predicted to
be highly active. Subsequently, these were submitted for
experimental validation using a live cell, impedance-based

Figure 6. Distribution of all predictions with an affinity above 100 nM. Displayed is a histogram plot of the predicted affinities for the NET based on
virtual screening of the Enamine compound database. Only molecules with a predicted affinity better than 100 nM were included (22,206
compounds).
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Figure 7. t-SNE of the 22.206 predictions with HDBSCAN designated clusters. The t-SNE displayed was created using 1024 bits of ECFP_6, and
HDBSCAN shows 46 distinct clusters with different colors. Gray points were filtered out as they were deemed too similar (<90%) or too dissimilar
(>50%) by HDBSCAN. The member of each cluster with the highest predicted activity was used as a representative of that cluster in the prospective
validation.

Figure 8. In vitro functional validation of hits in a label-free impedance-based TRACT assay. (a) Single-point screen of 32 hit compounds and (b) full-
range concentration−inhibition curves of the top five compounds from the single-point screen. Doxycycline-induced JumpIn-NET cells were
pretreated for 1 h with either vehicle or (a) 10 μMor (b) increasing concentrations of nisoxetine or hit compound. Subsequently, cells were stimulated
with 1 μMNE and the CI was measured for 30 min. Cellular responses are expressed as the net AUC of the first 30 min after stimulation with NE. Data
were normalized to the response of NE only (vehicle, 0%) and the response of NE in the presence of 10 μMnisoxetine (100%). Data are shown as the
mean ± SEM of three separate experiments each performed in duplicate.
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TRACT assay. In the end, five novel inhibitors for NETs were
identified.
Data Selection. Here, we introduce a method to determine

an optimal set of related proteins to include in a PCM,
improving performance over single target models due to the
inclusion of more data.45 Prior work in the area has primarily
focused on small conserved families or very large protein
superfamilies, and the ability to tune target inclusion as a
parameter offers new possibilities.36,46 The optimal number of
included similar sequences depends on the similarity, chemical
diversity, and the number of data points per target. Therefore,
the optimal amount is data set-dependent and should be
optimized rather than giving a guideline.
ML models generally increase performance using more or

better-quality data. In this research, ChEMBL version 25 was
used, but recently, a comprehensive data set called Papyrus was
released. Papyrus combines several data sets and is annotated
and standardized for compatibility.43 Future work could benefit
from using this larger set of bioactivity data and the inclusion of
the experimental results here in the training set.
Optimization of the Models. After optimizing our

prediction models using R2 and RMSE, it was concluded that

the ensemble-stacking model that combined all three methods
performed the best. A stacking model was implemented using a
combination of the RF and GB activity predictions that formed
descriptors for a PLS model. However, R2 and RMSE values
obtained from different combinations of these methods were
very close. In the end, an ensemble-stacking model was used as
earlier work concluded that these models tend to work better
compared to single models.35 As demonstrated in our earlier
work, deep learning could improve our model even further, but
this will likely require the use of more data.47

Similarity Networks. Phylogenetic trees and SNs were
created to identify the optimal selection of proteins. In
previously published comparisons between SNs and tree-
based approaches, often used in metabolic pathway studies,
both Oh et al. and Zhou et al.48,49 concluded that phylogenetic
trees were less adaptable than the networks due to the inability
to tune the threshold in trees. For networks, however, this
similarity threshold can be tuned, as shown by changing the
pBLAST score threshold, which allowed variation of the data
set.33,34 SNs have also been used in similar research, for example,
to visualize enzyme function using the protein sequence, to
visualize relationships between protein superfamilies, or to find
similarities using gene ontology databases.50−52 Applying
insights from these studies to the networks could create a
higher-quality network. Moreover, the here-introduced ap-
proach can be the subject of follow-up work to test different
methods than SNs or phylogenetic trees to select related targets.
NET Inhibitor Candidates’ Selection. For clustering, only

compounds with a predicted affinity of 100 nM or better were
included (resulting in a set of 22,206 compounds). Lowering
that threshold required clustering that was too computationally
expensive, and the interest was in finding novel high-affinity
ligands. In follow-up work, other dimensionality reduction
methods or an increase in computational power could reveal
other promising chemical clusters. In addition, exploring
analogues of the selected inhibitors and 14 cut candidates or
centers from the smaller clusters could lead to additional hits.
Experimental Validation. After clustering, 32 compounds

were screened for their activity on NETs using an impedance-
based TRACT assay.42,44 11 out of the 32 compounds displayed
more than 50% enhancement of the NE-induced response at 10
μM, which is substantial considering that these compounds are
structurally distinct from known ligands. This was also apparent
from the five hit compounds, which all display sub-micromolar
potencies toward NETs. Although all compounds contain
structural elements that are key to interacting with the sub-
pockets of the norepinephrine binding site, such as a secondary
amine and a substituted aromatic moiety, the scaffolds vary
significantly in the substitution and size of aliphatic groups or the
presence of an amidemoiety (Table 2).53 Moreover, the hits had
an average Tanimoto similarity of 0.38± 0.12 to the training set,
confirming their novelty. Thus, these scaffolds could provide a
starting point for the design and synthesis of derivatives,
quantitative structure−activity relationships, and subsequent hit
optimizations of novel NET inhibitors.

■ CONCLUSIONS
Here, we introduce a method to identify novel protein inhibitors
using a combination of machine learning techniques. In contrast
to prior work, an optimal set of related targets for the PCMwere
determined dynamically based on data analysis and subsequent
modeling. To the best of our knowledge, dynamically
determining the optimal number of related proteins has never

Table 2. Inhibitory Potency (pIC50) Values of Tested
Compounds as Determined in the Impedance-Based TRACT
Assaya

aData are reported as the mean ± SEM of three individual
experiments, each performed in duplicate. Tanimoto similarity was
calculated using ECFP_6 fingerprints.
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been done in a PCM setting. This approach was then applied to
identify novel NET inhibitors, which were found by virtually
screening a database containing virtual molecules that were
synthesized on demand. From this screen, 32 compounds were
ordered and 5 out of 32 compounds (16% hit rate) showed a
similar affinity as the reference high-affinity NET inhibitor
nisoxetine. Moreover, 11 out of 32 (34%) displayed >50%
inhibition in our single-point screen at 10 μM.
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