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ABSTRACT

Dysfunction of regulatory elements through genetic
variants is a central mechanism in the pathogene-
sis of disease. To better understand disease etiology,
there is consequently a need to understand how DNA
encodes regulatory activity. Deep learning methods
show great promise for modeling of biomolecular
data from DNA sequence but are limited to large input
data for training. Here, we develop ChromTransfer,
a transfer learning method that uses a pre-trained,
cell-type agnostic model of open chromatin regions
as a basis for fine-tuning on regulatory sequences.
We demonstrate superior performances with Chrom-
Transfer for learning cell-type specific chromatin ac-
cessibility from sequence compared to models not
informed by a pre-trained model. Importantly, Chrom-
Transfer enables fine-tuning on small input data with
minimal decrease in accuracy. We show that Chrom-
Transfer uses sequence features matching binding
site sequences of key transcription factors for pre-
diction. Together, these results demonstrate Chrom-
Transfer as a promising tool for learning the regula-
tory code.

INTRODUCTION

The human genome encodes hundreds of thousands of
transcriptional regulatory elements, including enhancers,
promoters, and silencers, that control how genes are ex-
pressed in any given cell in the human body (1,2). Regu-
latory elements are short stretches of DNA that act as reg-
ulators of transcription via their ability to interact with key
proteins, transcription factors (TFs), that can modulate the

expression of genes (3,4). Regulatory dysfunction may be
caused by disruptions of the regulatory code, for instance
through point mutations or structural variants affecting the
chromatin accessibility of regulatory element DNA or bind-
ing of TFs (5,6). Consequently, dysfunction of regulatory
elements has emerged as a central mechanism in the patho-
genesis of diseases (7). As a foundation for understanding
cellular and disease programs, we therefore need to under-
stand the regulatory code of the human genome. In essence,
deciphering genetic variants-to-phenotype associations re-
quires an understanding of how DNA codes for regulatory
activities (1,8).

The major challenge in understanding the regulatory
code is its complexity. Only considering sequences matching
known TF binding sequences, regulatory elements involve
millions of possible sequences that can encode regulatory
function, which can be interpreted differently across cell
types. Therefore, experimentally testing every sequence or
regulatory element in every cell type is not feasible. Instead,
we will need to learn the underlying mechanisms and logic
of regulatory elements by building computational models
that can be applied to predict regulatory element activity.
With an increasing amount of large-scale molecular data for
regulatory activities readily available (9–15), we are now in
a position to approach this challenge.

Deep learning approaches show great promise for such a
task, due to their ability to detect complex patterns within
unstructured data (16,17), as demonstrated by the ability of
convolutional neural networks to learn novel features from
DNA sequences (18–20). The major obstacle for their use
to derive the regulatory code is the requirement of large
input data sets for training the models. Training on small
input data may lead to overfitting and, as a consequence,
non-generalizable interpretations. Learning efficiency and
prediction accuracy can be improved through multi-task
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learning, in which multiple types of molecular signatures
or the same type of measurement across multiple cell types
or species (tasks) are modeled jointly through exploitation
of commonalities and differences in the data for the dif-
ferent tasks (17). Such an approach has been successful
in genomics, including modeling of chromatin accessibility,
histone post-translational modifications, TF binding, and
expression from DNA sequence alone (21–26). However,
multi-task learning may lead to optimization imbalances
(27), causing certain tasks to have a larger influence or even
dominate the network weights, which may result in worse
accuracy for weaker tasks or inefficacy to separate similar
tasks (21).

Transfer learning (28) has the potential to avoid the pos-
sible problems of optimization imbalances in multi-task
learning or overfitting due to small data sets in single-task
learning. During transfer learning, a model is first trained
on a problem with sufficiently large input data. The knowl-
edge gained during the first stage is then used on a re-
lated or more specific problem for which input data may
be smaller, using the features and network weights learnt
in the first model as a basis for training a new model for
the specific problem through fine-tuning. Transfer learn-
ing has been highly successful in biological image classi-
fication (29,30) and also shows great promise for training
models from DNA sequences to predict 3D genome folding
(31), chromatin accessibility (24,25,32,33) and TF binding
(34,35).

As a step towards establishing transfer learning for mod-
eling the regulatory code, we here develop ChromTransfer,
a transfer learning scheme for single-task modeling of the
DNA sequence determinants of regulatory element activ-
ities (Figure 1A). ChromTransfer uses a pre-trained, cell-
type agnostic model, that we derive from a large com-
pendium of permissively defined regulatory elements from
open chromatin regions (Figure 1B) across human cell
types, tissues, and cellular stages, to fine-tune models for
specific tasks (Figure 1C). We demonstrate improvements
in performances with ChromTransfer for predicting cell-
type specific chromatin accessibility for all cell types consid-
ered compared to baseline models derived from direct mod-
eling of individual cell types. We find that transfer learn-
ing minimizes overfitting, allowing fine-tuning of models
with high predictive performances using only a small frac-
tion of input data. Through feature importance analysis, we
identify how ChromTransfer uses sequence elements to pre-
dict chromatin accessibility differently across cell types and
match these elements to key TF binding site sequences. Our
results demonstrate ChromTransfer as a promising tool for
deciphering how DNA codes for regulatory activities from
small input data.

MATERIALS AND METHODS

Data used for modeling of regulatory sequences

We considered the ENCODE compendium of 2.2 million
rDHSs (14) as positives for training a cell-type agnostic neu-
ral network (pre-trained model) the sequence determinants
of chromatin accessibility. The rDHSs were originally de-
rived from 93 million DHSs called by ENCODE (14) and
the Roadmap Epigenomics (11) projects from hundreds of

human biosamples, including cell lines, cell types, cellular
states and tissues, and was originally used as an entry point
for in the ENCODE Registry of candidate cis-regulatory el-
ements (cCREs, described at https://screen.encodeproject.
org/). For each rDHS, we extracted the plus strand 600
bp sequence (GRCh38) centered on the rDHS midpoint.
600 bp was used to make sure that sequences influencing
regulatory activity and chromatin accessibility contained
within a central open chromatin site (150–300 bp) as well as
within flanking nucleosomal DNA (150–200 bp) were cap-
tured (10,15). To ensure that the pre-trained model was not
biased towards any of the specific cell lines considered be-
forehand, all rDHSs with called accessibility in any of the
considered six cell lines (described below) were removed be-
fore training of the pre-trained model. This is not neces-
sary for the modeling purpose per se, but was done to test
ChromTransfer’s ability to fine-tune the pre-trained model
to new, unseen data. Negatives were derived from tiling the
genome (GRCh38) in 600 bp non-overlapping windows us-
ing BedTools (36), followed by removal of any region that
overlapped gaps in the GRCh38 genome assembly or manu-
ally curated ENCODE blacklist regions (ENCFF356LFX)
(37,38), or those within 300 bp of rDHSs.

For modeling of cell-type specific chromatin accessibil-
ity (fine-tuning), we considered human cell lines A549,
HCT116, HepG2, GM12878, K562 and MCF7. The chro-
matin accessibility of each rDHSs in each of these cell lines
were quantified as described elsewhere (14). In summary,
ENCODE BigWig signals were aggregated in each rDHS
for each replicate of the cell line, followed by a global Z-
score transformation of the log10-transformed signal ag-
gregates. Z-scores were binarized into closed/open using
a threshold of 1.64. Finally, rDHSs were considered open
if they were called open in any replicate of the cell line.
We defined positives for each cell line as rDHSs that were
only accessible in that cell line among the six cell lines con-
sidered (GM12878: 31740, K562: 36769, HCT116: 20018,
A549: 14112, HepG2: 31211, MCF7: 39461), while neg-
atives (GM12878: 81805, K562: 103995, HCT116: 62389,
A549: 78725, HepG2: 54995, MCF7: 91122) were sampled
from the positives of the other cell lines and the rDHSs
used for pre-training (positive:negative ratio ranging be-
tween 1:2.5 and 1:3.5).

Neural network architecture, training and hyperparameter
tuning of the pre-trained model

We implemented a ResNet (39) inspired neural network, vi-
sualized in Figure 1C (upper panel). The neural network
model uses as input one-hot-encoded DNA sequences (A
= [1,0,0,0], C = [0,1,0,0], G = [0,0,1,0], T = [0,0,0,1]) of
600 bp to predict closed (negative) or open (positive) chro-
matin as output. The neural network consists of a 1D con-
volutional layer with 64 hidden units and a kernel size of
25, followed by a residual block with 32 hidden units and a
kernel size of 20, 3 merged blocks without residual connec-
tions with 32 hidden units and a kernel size of 15, another
residual block with 64 hidden units and a kernel size of 10,
another 3 merged blocks without residual connections with
64 hidden units and a kernel size of 5, two 1D convolutional
layers with 64 hidden units each and a kernel size of 10 and

https://screen.encodeproject.org/
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Figure 1. Transfer learning of the sequence determinants of regulatory elements using ChromTransfer. (A) ChromTransfer is a transfer learning scheme
for single-task modeling of the DNA sequence determinants of regulatory element activities. ChromTransfer uses a pre-trained, cell-type agnostic model,
derived from a large compendium of open chromatin regions to fine-tune models for predicting cell-type specific activities. (B) Illustration of a genomic
locus with DNase-seq signal across six cell lines along with called DHSs and the cell-type agnostic rDHS compendium. The strategy for selection of
positives, 600 bp sequences centered on all rDHSs (for pre-training) or cell-type specific DHSs (for fine-tuning) are shown. (C) Model architecture (upper
panel) and strategy for fine-tuning (lower panel). For network details, see Materials and Methods. (D) ROCs for training/validation and the test set of
the pre-trained model for rDHS classification. AUROCs are provided in parentheses. (E) Precision recall curves (PRCs) for training/validation and the
test set for the pre-trained model for rDHS classification. AUPRCs are provided in parentheses. (F, G) Test set ROCs of the six fine-tuned models (F,
ChromTransfer) and the six binary class baseline models (G, direct training scheme) for classification of cell-type specific chromatin accessibility. AUROCs
for each cell line model are provided in parentheses. (H) Overall and per-class (positive: open chromatin, negative: closed chromatin) test set F1 scores for
the fine-tuned and binary class baseline models of the six considered cell lines. F1 scores are also given in Supplementary Table S1.

5, global average pooling and two dense layers with 512 and
128 nodes. Batch normalization and dropout (0.1) were ap-
plied after each layer. The activation function ReLU (40)
was used in all layers except the last, in which a sigmoid ac-
tivation function was used to predict the final class (negative
or positive).

rDHSs located on chromosomes 2 and 3 were only used
as the test set and rDHSs from the remaining chromosomes
were used for training and hyperparameter tuning with 3-
fold cross-validation. Hyperparameters were adjusted to

yield the best performance on the validation set. The neu-
ral network model was implemented and trained in Keras
(version 2.3.1, https://github.com/fchollet/keras) with the
TensorFlow backend (version 1.14) (41) using the Adam
optimiser (42) with a learning rate of 0.001, batch size
of 256, and early stopping with a patience of 15 epochs.
Both pre-trained and fine-tuned models (see below) were
trained on a Linux SMP Debian 4.19.208–1 × 86 64 ma-
chine using NVIDIA Quadro RTX 6000 cards with 24 GB
of VRAM.

https://github.com/fchollet/keras
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Training and hyperparameter tuning of the fine-tuned models

For fine-tuning of the pre-trained model, the trained con-
volutional blocks of the pre-trained model were transferred
to a new model and the last two dense layers of the network
were adjusted to 1024 and 32 nodes, respectively, and added
anew. Batch normalization and dropout (0.1) were applied
after each layer. As in the pre-training phase, rDHSs from
chromosomes 2 and 3 were only used as a test set for the
fine-tuned models. The regions of the remaining chromo-
somes were used for training and tuning of the hyperpa-
rameters with 3-fold cross-validation. The hyperparameters
were tuned to give the best performance in the validation
set. In order to gradually adapt the pre-trained features to
the new data, both the convolutional blocks and the dense
layers are trained with a considerably lower learning rate
(0.000005). Training was performed with a batch size of 128
and early stopping with a patience of 10 epochs. Time per
epoch was 142 s (2 ms/sample) for a total ∼82K samples
(A549) and 60 epochs (142 min, average of the three cross
validation models).

Training and hyperparameter tuning of the binary and multi-
class baseline models

For training and fine-tuning of the binary class baseline
models we used the same architecture as when training the
pre-trained model (see above), but adjusted the last two
dense layers before the output layer of the network to 1024
and 32 nodes, respectively. As in the pre-training and fine-
tuning phases, rDHSs from chromosomes 2 and 3 were only
used as a test set for the baseline models. The regions of the
remaining chromosomes were used for training and tuning
of the hyperparameters with 3-fold cross-validation. The
hyperparameters were tuned to give the best performance in
the validation set. Training was performed with a learning
rate of 0.001, batch size of 128, and early stopping with a pa-
tience of 10 epochs. Time per epoch was 142s (2ms/sample)
for a total ∼82K samples (A549) and 100 epochs (236 min-
utes, average of the three cross validation models).

Lastly, we trained a multi-class model as an additional
baseline model, using the same architecture of the fine-
tuned and binary class baseline models, except for the out-
put layer, which was changed to a fully connected layer with
7 units (one for each cell line and one for the universal nega-
tive class). The model was trained for 50 epochs on the con-
catenation of cell-line specific fine-tuning datasets. Due to
differences in class frequencies when compared to the bi-
nary classification models, performance of the multi-class
model was evaluated via the class balance agnostic ROC
curve metric (AUROC).

Bootstrap analysis and evaluation of overfitting

To examine the impact of training data size on model fine-
tuning, we performed a bootstrap analysis using HepG2
training data. The original training data of 74673 input se-
quences were subsampled to target sizes of 1%, 5%, 10%,
15%, 20%, 25%, 50% and 75% in 10 bootstraps each, fol-
lowed by fine-tuning of the pre-trained model (as above).
For each bootstrap, the overall and per-class F1 scores for
the test set (chromosome 2 and 3) were calculated and the

mean and standard deviations of F1 scores were reported
for each target size.

Overfitting of the models was evaluated by inspection of
the cross-validation and training accuracies using learning
curves of the validation and training losses (binary cross-
entropy). We further evaluated the disagreement between
observed and predictive probabilities by inspection of cali-
bration curves on the test data (external calibration).

Feature importance analysis

To investigate the sequence elements underlying the predic-
tions of the pre-trained model and the K562 and HepG2
fine-tuned models, we calculated feature importance scores
as the dot product between the input DNA sequence gra-
dients (with respect to the output neuron) and the one-hot
encoding of the sequence (gradient × input). For compar-
ison with the pre-trained model, feature importance scores
were derived from the 27 940 and 35 179 positive predic-
tions (from training and test data) of the HepG2 and K562
models respectively. For comparison between the K562 and
HepG2 fine-tuned models, we considered the union (62 689)
of positive predictions.

Since gradient × input scores may have problems to cor-
rectly estimate the importance of sequence elements for
making predictions in case of multiple occurrences in the
same input sequence (17,43), we evaluated their agreement
with delta scores derived from in-silico mutagenesis (ISM).
For computational reasons, we limited the ISM calculations
to true positives (from training and test data) of the HepG2
and K562 fine-tuned models. For each input sequence and
base pair, we calculated the max difference in output prob-
ability (ISM delta score) after mutating the original nu-
cleotide to any of the other three nucleotides. Nucleotides
within the original input sequences important for positive
predictions of a model will yield a negative ISM delta score
(decrease in positive prediction score) in contrast to gradi-
ent × input scores of important sequences that will be pos-
itive. Validation of gradient × input scores by ISM delta
scores were performed for the HepG2 model by correlat-
ing the feature importance scores associated with predicted
TF binding sites (see below) of CEBPA, HNF4A and FOS-
JUNB heterodimer.

Model interpretation using predicted TF binding sites

To systematically evaluate sequence elements important for
the two fine-tuned models, we analyzed the gradient × in-
put and ISM delta scores with respect to predicted bind-
ing sites from the JASPAR 2022 motif database (derived
from motif scanning; P < 1e–5) (44) using R (version 4.0.3)
(45). Results were plotted using ggplot2 (version 3.3.5) (46)
and Gviz (version 1.34.1) (47). Predicted TF binding sites
were imported and overlaid rDHS regions using rtracklayer
(version 1.55.4) (48) and GenomicRanges (version 1.42.0)
(49). Each predicted TF binding site was associated with the
maximum gradient × input score (or minimum in-silico mu-
tagenesis delta score) across the contained base pairs. Only
TFs with at least 100 predicted binding sites across all con-
sidered rDHSs were considered.

The importance of each TF for each model was eval-
uated through rank-based enrichments of the importance
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scores of its predicted rDHS-associated binding sites versus
the importance scores of non-overlapping predicted bind-
ing sites of all other TFs. Evaluation was carried out using
both manual inspection of the associated empirical cumu-
lative distribution functions and, more systematically, us-
ing the Kolmogorov–Smirnov test. For visualization pur-
poses, we changed the sign of the resulting D statistic if the
average ranks of the scores for the predicted binding sites
of a TF were smaller than the average ranks of all other
non-overlapping binding sites. Only TFs with significant de-
viation from the null hypothesis of no difference in rank
(Benjamini-Hochberg adjusted FDR < 0.001) were plotted.

RESULTS

Transfer learning improves regulatory element prediction ac-
curacy compared to direct learning

As a basis for learning sequence features associated with
chromatin accessibility, we considered the ENCODE com-
pendium of 2.2 million representative DNase I hyper-
sensitive sites (rDHSs, cell-type agnostic open chromatin
regions, https://screen.encodeproject.org/) (14) (Figure 1B).
The ENCODE rDHSs were assembled using consensus
calling from 93 million DHSs called across a wide range of
human cell lines, cell types, cellular states, and tissues, and
are therefore likely capturing the great majority of possible
sequences associated with human open chromatin.

We implemented a ResNet (39) inspired deep neural net-
work architecture with residual layers to classify chromatin
accessibility (open/closed) from 600 bp DNA sequences
centered at rDHSs (Figure 1C, upper panel). The network
was used for cell-type agnostic modeling of chromatin ac-
cessibility versus sampled negative genomic regions (Meth-
ods). Training and hyperparameter tuning were carried out
using 3-fold cross-validation. rDHSs located on chromo-
somes 2 and 3 were held out as the test set. The resulting
model (herein referred to as pre-trained) was capable of dis-
tinguishing between open and closed chromatin with high
accuracy (area under receiving operating curve (AUROC)
of 0.94 and area under precision-recall curve (AUPRC) of
0.90 for the out of sample test set; per-class test set F1 scores
of 0.93 and 0.80 for open and closed chromatin, respec-
tively; Figure 1D,E). This demonstrates that DNA sequence
is a major determinant of chromatin accessibility, in agree-
ment with previous work (24,25), and that the pre-trained
model is able to capture the high sequence complexity in the
input data.

To examine how well the pre-trained model could be
transferred to more specific prediction tasks with limited
training data, we developed a new transfer learning proce-
dure, ChromTransfer, and evaluated its ability to learn the
sequence determinants of open chromatin regions unique
to specific cell types (Figure 1A-C). We focused on rDHSs
with cell-type specific chromatin accessibility across six cell
lines (defined as accessible sites unique to one cell line
among the six considered cell lines; Figure 1B; GM12878:
31740, K562: 36769, HCT116: 20018, A549: 14112, HepG2:
31211, MCF7: 39461) together reflecting diverse biological
cell types, each with its own key TFs (38). During trans-
fer learning with ChromTransfer, the representations of the

higher-order features in the convolutional blocks of the pre-
trained model are re-trained to make them more relevant for
the new data alongside training of newly added dense layers.
In order to gradually adapt the pre-trained features to the
new data, both the convolutional blocks and the dense lay-
ers are trained at a reduced learning rate (Figure 1C, lower
panel; Materials and Methods). In this way, the pre-trained
model can be fine-tuned to capture the sequence determi-
nants of chromatin accessibility in individual cell types. A
similar approach was taken to fine-tune a general model to
capture time-point specific chromatin accessibility during
epidermal differentiation (32).

ChromTransfer achieved high predictive performances
for all cell lines (overall test set F1 scores ranging be-
tween 0.73 and 0.86, AUROC ranging between 0.79 and
0.89, and AUPRC ranging between 0.4 and 0.74; Fig-
ure 1F; Supplementary Figure S1B; Supplementary Ta-
bles S1-2). In comparison, the pre-trained model (with-
out fine-tuning) demonstrated only a weak ability to pre-
dict cell-type specific chromatin accessibility (overall test
set F1 scores ranging between 0.24 and 0.49; Supplemen-
tary Table S1), indicating that fine-tuning of the pre-trained
model adapts the network weights to capture cell-type spe-
cific sequence elements. The largest improvement was ob-
served for K562, having an increase in overall F1 score from
0.24 for the pre-trained model (per class test set F1 score
of 0.22 and 0.33 for closed and open chromatin, respec-
tively) to 0.86 for the fine-tuned model (per class test set
F1 score of 0.91 and 0.62 for closed and open chromatin,
respectively).

We next examined if transfer learning using ChromTrans-
fer added any performance increase compared to a direct
training approach. As baseline models, we trained the same
ResNet-like network (Figure 1C, upper panel) ab initio us-
ing the same DNA sequences from cell-type specific open
chromatin regions for each of the six cell lines either sep-
arately as a binary classification task (one model per cell
type) or together with a multi-class classification output
layer (one model for all six cell types). Hence, any perfor-
mance differences observed for the binary class baseline
models versus ChromTransfer models will reflect the ab-
sence of cell-type agnostic pre-training of the convolutional
layers on the rDHSs. Indeed, the fine-tuned models consis-
tently outperformed the direct binary class training scheme
(mean increase in overall test set F1 score of 0.13, ranging
between 0.05 for K562 to 0.27 for MCF7; Figure 1G, H;
Supplementary Figure S1B, C; Supplementary Table S1).
The largest performance increase was observed for the pos-
itive class (open chromatin), with HCT116 and MCF7 bi-
nary class baseline models having very weak positive predic-
tive performances (test set positive class F1 score of 0 and
0.11, respectively). Similarly, the fine-tuned ChromTrans-
fer models demonstrated consistent improvements in pre-
dictive performances over the multi-class baseline model
(mean increase in overall test set AUROC of 0.15; Supple-
mentary Table S3).

We conclude that ChromTransfer’s pre-training of a cell-
type agnostic model on the sequence determinants of chro-
matin accessibility followed by fine-tuning on individual
cell-types consistently improves classification accuracy.

https://screen.encodeproject.org/
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Figure 2. Transfer learning minimizes overfitting and enables training on small data sets. (A, B) Learning curves (binary cross-entropy, loss) for training
and validation data for the HepG2 binary class baseline model (direct training scheme; (A) and fine-tuned model (ChromTransfer; (B) for 3-fold cross-
validation (partitions 0, 1, 2). (C, D) Calibration curves displaying the observed fraction of positives (vertical axes) across 10 bins of predicted probabilities
of positive class (horizontal axes) for unseen test set data (external calibration) for each of the six binary class baseline models (direct training scheme; (C)
and the six fine-tuned models (D; ChromTransfer). The number of samples in each predicted probability bin and the bin ranges for each cell line and model
are shown in Supplementary Figure S2. (E) Overall F1 scores on test set data for HepG2 models fine-tuned after bootstrapping training data (1–75% of
original training data). The overall F1 score of the original HepG2 fine-tuned model is included for reference. Error bars show standard deviations (10
bootstraps). For exact values, see Table 1.

Table 1. ChromTransfer allows fine-tuning on small input data. Mean overall and per-class (positive: open chromatin, negative: closed chromatin) F1
scores on test set data for HepG2 models fine-tuned after bootstrapping training data (1–75% of original training data, 10 bootstraps). The overall F1 score
of the original HepG2 fine-tuned model (100%) is included for reference. Bootstrap sample sizes refers to the total number of training examples, including
both positive and negative examples. Standard deviations (sd) across bootstrap estimates are included

Sample (%)
Sample (size of

training)
Mean F1
negative

sd F1
negative

Mean F1
positive

sd F1
positive

Mean F1
overall

sd F1
overall

1% 747 0.65 0.22 0.68 0.03 0.67 0.12
5% 3733 0.76 0.01 0.72 0.01 0.74 0.01
10% 7467 0.77 0.01 0.71 0.04 0.74 0.02
15% 11201 0.76 0.02 0.73 0.01 0.75 0.01
20% 14935 0.77 0.01 0.74 0.01 0.75 0.01
25% 18668 0.77 0.01 0.74 0.02 0.75 0.01
50% 37366 0.79 0.01 0.76 0.01 0.77 0.01
75% 56005 0.80 0.01 0.77 0.01 0.79 0.01
100% 74673 0.82 - 0.75 - 0.79 -

Transfer learning allows for fine-tuning on small training data
without overfitting

The weak class performances for some cell line models with
the direct training scheme (baseline models; Figure 1H;
Supplementary Table S1) indicates that training of the net-
work architecture on these data sets is not capable of gener-
alizing to the test data. Indeed, examination of the learning
curves (Figure 2A) showed clear signs of overfitting to the
training data, with early stopping only after a few epochs
and limited convergence between validation and training
losses. Further examination revealed that the direct train-
ing scheme for the binary class baseline models could not
properly calibrate class probabilities (lack of external cali-
bration; Figure 2C; Supplementary Figure S2). In contrast,

the ChromTransfer-derived fine-tuned models showed no
signs of overfitting (Figure 2B, D).

The stable performances of ChromTransfer’s fine-tuned
models without indications of overfitting prompted us to in-
vestigate how small training datasets could be used without
a major decline in predictive performance. To this end, we
performed a bootstrap analysis in which we subsampled the
training data for HepG2-specific chromatin accessibility to
different fractions (1–75%, 10 bootstraps per target) of the
original training data and re-ran the fine-tuning of the pre-
trained model on the resulting data (Table 1). Remarkably,
we observed only a marginal decrease in predictive perfor-
mance (decrease in mean overall test set F1 score of 0.05) on
the original test data when using as low as 5% of the train-
ing data (3733 input sequences, among which 1283 were
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positive training examples; Figure 2E). With only 1% of the
training data (747 sequences, 257 positives), we observed a
slightly larger reduction (mean overall test set F1 score of
0.67) and more variation (test set overall F1 score standard
deviation of 0.12) in performances. Still, the models fine-
tuned on 1% of the training data outperformed both the
pre-trained model (overall test set F1 score of 0.49) and the
binary class baseline model derived from the direct training
scheme (overall test set F1 score of 0.60).

Taken together, we conclude that ChromTransfer al-
lows for accurate sequenced-based modeling of chromatin
accessibility using small input data sets while being ro-
bust towards overfitting. This suggests that ChromTransfer-
derived models capture the regulatory code for chromatin
accessibility.

Feature importance analysis reveals the importance of TF
binding site sequences for the fine-tuned models

To investigate the underlying sequence patterns used by
ChromTransfer when making predictions, we performed
feature importance analysis using gradient × input (17,43).
We specifically focused on how the importance of individ-
ual base pairs had changed during fine-tuning. To this end,
we focused on 27 940 and 35 179 positive predictions by the
HepG2 and K562 fine-tuned models, respectively. HepG2
cells are derived from a hepatocellular carcinoma, while
K562 cells are of erythroleukemia type. These two cell lines
are therefore expected to have highly different regulatory ac-
tivities and active TFs.

Feature importance analysis revealed both increased and
decreased importance for individual base pairs in the fine-
tuned HepG2, compared to the pre-trained model. This is
exemplified by increased importance of sequences at puta-
tive binding sites for HNF4A and HNF4G (Figure 3A),
hepatocyte nuclear factors, and CEBPA and CEBPD (Fig-
ure 3B), CCAAT/enhancer-binding proteins (CEBPs), all
of critical importance for hepatocyte function and differ-
entiation (50,51). In contrast, we observed a decreased
importance for sequences matching binding sites of non-
hepatocyte TFs, for instance OLIG2, NEUROD2 and
TAL1-TCF3 (Figure 3C). OLIG2 and NEUROD2 are im-
portant for the central nervous system and neurodevel-
opment (52,53) while TAL1-TCF3 is required for early
hematopoiesis (54), and neither are likely to be important
for hepatocytes. This indicates that transfer learning can re-
focus on relevant sequence elements important for the task
at hand.

To systematically evaluate sequence elements important
for the two fine-tuned models, we overlaid the feature im-
portance scores with predicted binding sites from the JAS-
PAR 2022 motif database (44) and associated each pre-
dicted TF binding site with the max corresponding score
(Materials and Methods). Examination of the distributions
of the feature importance scores for individual TFs ver-
sus all TFs considered confirmed the individual observa-
tions above, with overall high importance for HNF4A and
CEBPA in the HepG2 model (Figure 3D, E) and low impor-
tance for OLIG2 (Figure 3F), while these rank differences
were not observed for the pre-trained model. In-silico mu-
tagenesis (ISM) delta scores were in large agreement with

the feature importance scores derived from gradient × in-
put (Supplementary Figure S3).

Based on these observations, we calculated Kolmogorov–
Smirnov (K–S) rank statistics (D statistics) to examine dif-
ferences between the importance of TFs for the models
based on their association with gradient × input scores.
This analysis revealed major differences between the two
fine-tuned models. CEBPs were ranked among the most im-
portant TFs for HepG2 cells, while GATA factors, critical
for the development and maintenance of the hematopoietic
system (55), were ranked among the most important TFs for
K562 cells (Supplementary Figure S4). Furthermore, both
CEBP and GATA factors displayed increased importance
in the respective fine-tuned models compared to the pre-
trained model (Supplementary Figure S5).

Direct comparison between the two fine-tuned models
(Figure 3G) highlighted GATA factors (K562), CEBPs
(HepG2) and HNF4A (HepG2), alongside Forkhead box
proteins, DPB, HLF, NFIL3 and TEF (HepG2) as the most
discerning TFs for the two cell lines. Although PAR bZIP
(proline- and acid-rich basic region leucine zipper) TFs
NFIL3, DBP, TEF and HLF all recognize similar binding
site sequences, similar to the ambiguity between HNF4A
and HNF4G and that of CEBPA and CEBPD (44), mak-
ing it hard to predict actual TF binding, they are all of
relevance for hepatocyte function (56,57). FOS–JUN het-
erodimer binding site sequences were, on the other hand,
found important for both cell lines (Figure 3G; Supplemen-
tary Figure S4), and had an increased importance compared
to the pre-trained model (Supplementary Figure S5).

These results demonstrate that transfer learning from a
pre-trained model derived from a large compendium of
DHSs based on cell-type specific regulatory elements with
ChromTransfer does not only yield improved prediction ac-
curacy, but also reveals the underlying sequence elements
of relevance for the regulatory elements, indicating that
ChromTransfer has a large potential to further our under-
standing of the regulatory code.

DISCUSSION

The major challenge in understanding the regulatory code is
its complexity. Only considering sequences matching known
TF binding sequences, regulatory elements involve millions
of possible sequences that can encode regulatory function,
which can be interpreted differently across cell types. There-
fore, experimentally testing every sequence or regulatory el-
ement in every cell type is not feasible. Instead, we will need
to learn the underlying mechanisms and logic of regulatory
elements by building computational models that can be ap-
plied to predict regulatory element activity.

Understanding the regulatory code will be transforma-
tive for the field, ultimately allowing direct interpretation of
disease-associated genetic variants, fine-mapping of risk al-
leles, and a direct interpretation of cell types involved in dis-
ease etiology. However, computational modeling of the reg-
ulatory code has been hampered by the requirement of large
data sets for training, especially for deep learning (16,17),
and failure to meet this requirement may lead to non-
generalizable models. We here establish a transfer learning
scheme, ChromTransfer, that exploits available large-scale
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Figure 3. Feature importance analysis reveals TFs important for cell-type specific chromatin accessibility of regulatory elements. (A–C) Feature impor-
tance scores (gradient × input, upper panels) at example loci overlapping JASPAR 2022 predicted TF binding sites (lower panels), highlighting increased
importance of base pairs at putative binding sites for HNF4A/G (A) and CEBPA/D (B), and decreased importance of base pairs at those for NEUROD2,
OLIG2 and TAL1-TCF3 heterodimer. (C). (D–F) Empirical cumulative distribution functions (ECDF, vertical axes) of feature importance scores (gradi-
ent × input, horizontal axes) associated with predicted binding sites of HNF4A (D), CEBPA (E) and OLIG2 (F) in fine-tuned and pre-trained models.
ECDFs for that of predicted binding sites for all other TFs not overlapping target TFs (HNF4A, CEBPA or OLIG2) are shown for comparison. (G)
Kolmogorov–Smirnov (K–S) test statistics (D statistics) for feature importance scores (gradient × input) associated with predicted binding sites of each
considered TF in the HepG2 (horizontal axis) and K562 (vertical axis) fine-tuned models. TFs are colored according to a KS D statistic calculated from the
differences between the importance of TFs for the two models based on their association with gradient × input scores. Only TFs with Benjamini-Hochberg
adjusted FDR < 0.001 are shown. TFs of biased importance for HepG2 and K562 models are highlighted with red and blue ellipses, respectively.

data sets for training of a general sequence model of regu-
latory elements that can be fine-tuned on a specific problem
for which only a small amount of data is available or can be
generated. As a proof-of-concept, we demonstrate that this
approach is insensitive to overfitting, even at minuscule data
sizes, allowing accurate modeling of the sequence determi-
nants of cell-type specific chromatin accessibility. In con-
trast, using the same network architecture trained ab initio
on the same data failed to produce generalizable results, in-
dicating that transfer learning is required for such a model-
ing task, at least with the current network architecture. We

note that the amount of data required for fine-tuning will
depend on the complexity of the prediction task at hand.
A higher sequence complexity underlying cell-type specific
chromatin accessibility, enabling binding of different pro-
teins alone or in combinations, likely explains why trans-
fer learning for this task still requires larger training data
than learning the binding of individual TFs from sequence
(35). Further investigations of how the choice of network ar-
chitecture, the size and complexity of fine-tuning data, and
the difference between fine-tuning and pre-training data
impact various prediction tasks are therefore important,
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in order to fully establish transfer learning for regulatory
genomics.

For ease of validation, we here focused on well-studied
cell lines with known master regulatory TFs. Feature im-
portance analysis using gradient × input revealed binding
site sequences for these key TFs to be most important for
predicting cell-type specific chromatin accessibility, which
were further supported by in-silico mutagenesis. Although
our analysis shows promise, establishing the regulatory code
will require broad analysis across multiple cell types and
more in-depth modeling of different regulatory activities,
e.g. enhancer versus promoter function (1), as well as con-
text and stage-specific activities. We expect that such ef-
forts should be feasible with ChromTransfer. ChromTrans-
fer models may, for instance, enable investigations of the
mechanisms underlying dynamic activities during develop-
ment and in response to cellular stimuli. Such questions are
frequently limited to few data points, tasks which are suit-
able for transfer learning. We further acknowledge that fur-
ther work on model interpretation is needed to arrive at a
sequence code for regulatory activity. Recent developments
to this end (43,18,19,58) show great promise, and we expect
that integration of such analyses with the transfer learning
scheme of ChromTransfer will be important for future ef-
forts to understand the regulatory code.
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Dionne,M. et al. (2022) Decoding gene regulation in the fly brain.
Nature, 601, 630–636.

https://github.com/anderssonlab/ChromTransfer/
https://doi.org/10.5281/zenodo.7528544
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqad026#supplementary-data


10 NAR Genomics and Bioinformatics, 2023, Vol. 5, No. 2
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