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Abstract

The use of artificial intelligence (Al) to generate automated early warnings in epidemic surveillance
by harnessing vast open-source data with minimal human intervention has the potential to be both
revolutionary and highly sustainable. Al can overcome the challenges faced by weak health systems
by detecting epidemic signals much earlier than traditional surveillance. Al-based digital surveillance
is an adjunct to—not a replacement of—traditional surveillance and can trigger early investigation,
diagnostics and responses at the regional level. This narrative review focuses on the role of Al in
epidemic surveillance and summarises several current epidemic intelligence systems including
ProMED-mail, HealthMap, Epidemic Intelligence from Open Sources, BlueDot, Metabiota, the
Global Biosurveillance Portal, Epitweetr and EPIWATCH. Not all of these systems are Al-based,
and some are only accessible to paid users. Most systems have large volumes of unfiltered data; only
a few can sort and filter data to provide users with curated intelligence. However, uptake of these
systems by public health authorities, who have been slower to embrace Al than their clinical
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counterparts, is low. The widespread adoption of digital open-source surveillance and Al technol-
ogy is needed for the prevention of serious epidemics.
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Introduction

Artificial intelligence (AI) has been adopted
in a wide spectrum of clinical medicine appli-
cations;' however, the uptake of Al technol-
ogies in public health remains slow.”> The
coronavirus disease 2019 (COVID-19) pan-
demic has led to substantial investment in Al
tools for epidemic surveillance. With rapid
advancements in Al and machine learning
algorithms, state-of-the-art epidemic surveil-
lance systems have been developed to detect
early signs of epidemics by processing open-
source data including news reports and
social media data. The implementation of
Al in outbreak detection requires 1) natural
language processing (NLP) of a large quan-
tity of multi-dimensional open-source data
to detect early warning signals, 2) identifying
local and regional patterns in the detected
signals, 3) modelling and simulating out-
break behaviours and 4) rapidly identifying
misinformation and disinformation that can
cripple pandemic responses.®* In this narra-
tive review, we focus on the role of Al in the
early detection of and response to outbreaks
and summarise the current Internet-based
epidemic intelligence systems available. This
review aims to update the knowledge of Al in
epidemic surveillance and assess the need for
widespread adoption of Al-driven open-
source surveillance in public health.

The use of Al to generate automated
early warnings for epidemics by harnessing
vast open-source data with minimal human
intervention can be revolutionary and

highly sustainable. In low-income coun-
tries, Al has the potential to overcome the
shortfall in human resources for traditional
labour-intensive disease surveillance, which
relies on doctors or laboratories to report
infections and is a passive and untimely
system that requires multi-level reporting
structures.® Al can further address politically
sensitive issues such as data censorship.
Epidemics grow exponentially and often
spread by the time health authorities
become aware of them. Although notifica-
tions based on confirmations from laborato-
ries and healthcare systems are valid, early
detection can be expedited and enhanced by
using as early epidemic signals open-source
data such as news reports, social media and
geospatial, temporal, environmental and
meteorological satellite data.® Time is critical
in an epidemic. For example, the severe
acute respiratory syndrome coronavirus
(SARS-COV-2) epidemic in Wuhan, China
may have started with a single case that rap-
idly increased to a handful of cases in a short
timeframe.” Before the spread of the virus
outside of China, transmission could have
been contained through case isolation, con-
tact tracing and quarantine, and the global
pandemic could have been prevented.
Infectious disease outbreaks are further
characterised by non-linear complex dynam-
ics that are not well captured by conventional
statistical approaches. Al technology applied
to open-source data and followed up with
formal outbreak investigation enables rapid
epidemic signals that can detect and prevent
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serious epidemics. Open-source systems gen-
erate large quantities of unfiltered data with
uncertain meaning and may overwhelm users
or lead to misleading conclusions. Al can be
used to curate, filter and decipher such data
to provide more valid early warning signals.
Al technology can also predict spread at a
granular scale, guiding data-driven early
local responses that can be critical in the ini-
tial stages of a pandemic.’® Given the non-
linear complex spread dynamics and the
uncertainty inherent in early epidemic evolu-
tion, complex dynamic Al-based modelling
frameworks such as multi-agent models can
help temporally and geospatially simulate the
evolution of epidemics, allowing targeted and
effective public health responses.® In addition,
these frameworks can be used to identify the
most effective interventions and their impor-
tance in limiting spread. Finally, AI technol-
ogy can overcome the challenges faced by
weak health systems and issues such as poor
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A vast array of uncurated, open-source
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demics before official detection by health
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Figure |. Enhancement of epidemic detection by rapid epidemic intelligence and risk analysis.
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early detection to prevent global spread. The
early detection of epidemics affords the
best prospect of preventing global spread.
Currently, epidemics are detected using tra-
ditional surveillance methods that rely on
disease surveillance data formally reported
by healthcare workers and laboratories.
Given the time lag between the onset of a
symptom and the formal laboratory confir-
mation report, traditional surveillance meth-
ods are not rapid enough to allow for the
early detection of serious epidemics.’
The COVID-19 pandemic is an example:
the SARS-CoV-2 virus had already spread
worldwide before the virus was first
reported. The first COVID-19 cases present-
ing severe pneumonia of unknown origin
were officially reported in China on approx-
imately 8 December 2019. However, a retro-
spective study using open-source intelligence
data identified another COVID-19 case in
China in mid-November 2019.” In Spain,
the first COVID-19 case was officially
reported on 25 February 2020; however,
the virus was detected in sewage water in
Barcelona 41 days before that date.’ The
COVID-19 pandemic demonstrates the crit-
ical need for the early detection of epidemics
using Al technology in public health.’
Currently, investment in epidemic prepared-
ness predominantly supports the develop-
ment of drugs and vaccines. Although
essential, drugs and vaccines tend to become
available a considerable time after a serious
new infection has emerged and spread
widely.® Figure 1 highlights currently missing
system capability—rapid epidemic intelli-
gence, recognition and risk analysis—and
the potential gains of Al-based epidemic
intelligence.

As demonstrated during the 2020
COVID-19 pandemic and the 2014 Ebola
epidemic, non-pharmaceutical interventions
are critical during epidemics, especially
when drugs or vaccines are unavailable.’
Epidemic growth was exponential in both

cases, making rapid intervention critical to
mitigating spread.” The Ebola epidemic
could have been detected in late 2013,
3 months before the World Health
Organisation (WHO) was informed, using
rapid social media-based intelligence—even
in Guinea, which has relatively low smart-
phone penetration.'® Similarly, a retrospec-
tive study using open-source data on Weibo
detected a signal of unknown severe pneu-
monia in Hubei Province in mid-November
2019, a month before the COVID-19 out-
break was officially reported.’

The most widely used outbreak alert
system is the Program for Monitoring
Emerging Disecases (ProMED-mail), a qual-
itative reporting system to which clinicians
report unusual outbreaks.!' This system
relies on health professionals notifying
moderators of unusual outbreaks. While
the system has improved the speed of tradi-
tional health system surveillance and has
been the first to detect many important epi-
demics, it is still largely dependent on
human reporting and does not harness the
full capabilities of open-source data and Al.
The ideal system must harness and process
multiple sources of unstructured data and
display data in a curated, filtered and struc-
tured format that can inform rapid public
health action.>'?

Another system used for outbreak alerts is
Google Flu Trends, which was in use from
2008 to 2015 but was terminated because
of errors in estimation.”> Another tool,
DEFENDER,'* was an outbreak detection,
surveillance, forecasting and nowcasting
system developed as a research tool by the
United Kingdom. The system integrated geo-
coded symptom data from Twitter with news
reports and used this information for out-
break detection, situational awareness
and nowcasting.'* DEFENDER was not a
public system and is not currently in use.
This review focuses on systems in current use.
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Current Internet-based epidemic
intelligence systems

Several digital systems for the early identi-
fication of important public health events
are currently available.'> The systems vary
in scope based on the type of event covered;
event types range from solely human diseases
to a combination of human, animal and plant
diseases and infectious diseases to all health
events including non-communicable diseases,
natural disasters and humanitarian emergen-
cies.'® A One Health approach is ideal for
infectious diseases.!” This approach describes
that an end-user, whether a public health offi-
cial from a national agency or a lay person,
should be able to access a range of services
such as news reports, geographical heat
maps, risk analysis tools on the web or via
mobile applications. Some services are com-
mercially available and others are internal
systems accessible only to public health
agencies.

Internet-based surveillance systems are
breaking new ground in the surveillance of
public health events that otherwise rely exclu-
sively on laboratory diagnostic capability and
timely notification by health professionals.
Although vast open-source data are freely
available online, they may be irrelevant or
lead to false positive reports. Research on
the level of human moderation required to
operate a valid epidemic intelligence system
is currently limited.*'® However, the incorpo-
ration of AI technology such as machine
learning and text mining using NLP is unde-
niably essential for processing and filtering
large amounts of unstructured data and gen-
erating valid early warning signals of serious
epidemics.'” We describe eight known early
warning systems below.

ProMED-mail

ProMED-mail is a system established by
the International Society for Infectious

Diseases in 1994 to identify unusual health
events affecting humans, animals and
plants.?®?' This free service is moderated
by expert staff who review reports from
health professionals, the Internet (e.g., offi-
cial government websites) and traditional
media.?* This system largely relies on a net-
work of health personnel to provide quali-
tative reports of events of interest and an
expert assessment of risk. In the absence of
an automated data collection process, the
importance of articles is judged on a case-
by-case basis, introducing the potential for
human error and personal bias that are
inherent in human moderation.?"** With a
network of staff from at least 30 countries
working in different time zones and nearly
80,000 subscribers from approximately
200 countries, ProMED-mail operates
24/7 and has identified several important
epidemics.”* ProMED-mail has ongoing
collaborations with other services such as
HealthMap, the United States Agency for
International Development and Public
Health England.*** Human moderation
continues while research to automate the
data collection and curation processes is cur-
rently in progress.”” On average, six posts
are displayed daily by ProMED-mail.*®

HealthMap

HealthMap is a fully automated system that
does not rely on human moderation. It
reports all health events including non-
communicable diseases and is therefore not
specific to epidemics.?” Developed in 2006,
HealthMap uses Fisher—-Robinson Bayesian
filtering in a Linux/Apache/MySQL/PHP
application with other products such as
Google Maps, GoogleMapAPI for PHP,
Google Translate API and a single AJAX
library in PHP.*® HealthMap uses a text
processing algorithm to automate identify-
ing, classifying and overlaying relevant
information on a map.”’ This system
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contains multiple modules including a data
acquisition engine, a classification engine, a
back-end web application, a database and a
front-end web application that enable the
system’s smooth operation.”® HealthMap
processes approximately 80 infectious dis-
ease alerts daily.’!

Epidemic Intelligence from Open Sources
(EIOS)

The EIOS was developed as a collaboration
between the WHO and the Joint Research
Committee of the European Commission.'”
Developed in 2017, the EIOS is an automated
system with roots in the Global Public Health
Intelligence Network and the Global Health
Security Initiative and endorses the Early
Alerting and Reporting system and the
Hazard Detection and Risk Assessment
System.>* The EIOS is estimated to have a
system capacity of at least 40 million news
items from 12,000 web sources including
social media in multiple languages.* The
system includes NLP recognition technology,
article classification and priority algorithms
to identify, tag and categorise reports.™’
Additionally, the EIOS includes human
review before reports are made available to
users® and reports a broad scope of events
that range from human health, natural disas-
ters, conflicts and mass gatherings. During
the COVID-19 pandemic, the EIOS provided
a public COVID-19 news map™ and access to
COVID-19 data with accompanying graphs
through a public dashboard*® that displayed
data from the WHO, Johns Hopkins
University, the European Centre for Disease
Prevention and Control (ECDC) and
Worldometer.*> The EIOS was operational
in 2019 but did not contribute to the early
detection of the COVID-19 pandemic.
System access is granted exclusively to the
WHO and specific agencies or countries.
The EIOS system is integrated with the
INFORM suite, which includes risk analysis
tools.”’

BlueDot

BlueDot is a commercial system that began
as a transport network modelling tool and
later added open-source intelligence and
clustering tools to allow the identification
of potential hot spots for infectious disease
outbreaks.”® BlueDot uses both Al and
human moderation and includes a search
capacity in multiple languages. However,
this system is not available for public use
and is only available to paying clients.* In
addition, the system has access to closed-
source information such as government
data, which is usually provided by clients.

Metabiota

Accessible to the public, the Metabiota
Epidemic Tracker provides a heat map to
show the geographic distribution of event-
based epidemics for 208 pathogens.*
Metabiota couples disease impact with eco-
nomic impact by calculating a Pathogen
Sentiment Index, a unique feature of poten-
tial interest to insurance companies and the
travel and tourism industry.** Metabiota
provides a large set of simulated events—
with up to 18 million simulations for a
single pathogen—using big data and cloud
computing platforms.*! Metabiota further
has a validated library with various disease
models that facilitate risk analysis and
inform planning and response activities
using a peer-review process.

Global Biosurveillance Portal (GBSP)

The web-based information-sharing system
GBSP* facilitates timely responses and
decision-making to support the detection
and management of natural and unnatural
biological hazards. Based on the Ozone
Widget Framework architecture, an open-
source data integration framework, the
GBSP provides end-users with a single web
front-end to access reports in HTML frames
from multiple web applications.*> The GBSP
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further integrates systems in a whole-
of-government approach by including data
from the United States Department of
Defense and other government agencies. To
support the COVID-19 response, the GBSP
provides near real-time data sharing, map-
ping and Al-based predictive analysis
models for users and has partnerships with
various health organisations and industry
partners across countries.** However, the
GBSP is not publicly available, and its early
warning sensitivity is currently unknown.

Epitweetr

Epitweetr, an R-based tool developed in 2018
by the ECDC, is an open-source system that
monitors tweets on infectious diseases.*> To
identify potential public health threats, indi-
vidual detection signals can be sorted by geo-
location, time and language.*® The rationale
for creating this system was based on the
proven value to public health responses of
monitoring tweets and social media.>'%4’
This system is publicly available, provides
open-source code and can be customised
by users.

EPIWATCH

EPIWATCH is an Al-based system that har-
nesses open-source data to generate automat-
ed early warnings of epidemics worldwide.
A public dashboard provides analytics with
a searchable and sortable table of outbreak
reports, analytics capability and geographic
information systems mapping functionality
free of charge. EPIWATCH provides
Al-based event filtering, prioritisation, cura-
tion and human review of reports. These fea-
tures ensure that the user is not overwhelmed
with an impractical volume of data and pro-
vides a more reliable and trustworthy predic-
tion of disease outbreaks.

EPIWATCH captures specific infectious
diseases and clinical syndromes that may
signal new and emerging infections. The

system uses Al techniques that incorporate
contemporary NLP and named entity rec-
ognition algorithms to automatically detect
data points within scanned articles.
A second Al sub-system of classification
and prioritisation is empowered by bidirec-
tional encoder representations derived from
transformers (BERT)*** and can assess
with 88.2% accuracy whether articles con-
tain relevant outbreak information. BERT
allows the articles to maintain contextual-
ised representations® and achieves state-
of-the-art results in many downstream
tasks including text classification, named
entity recognition and text summarisation
in NLP fields.>® Use of pre-trained BERT
on datasets such as Google News and fine-
tuning on a smaller dataset using transfer
learning techniques have proven effective in
increasing the robustness of the model.”!
This AT system is trained and validated on
article datasets.

In addition to EPIWATCH’s public dash-
board, extra functionality is provided with an
internal dashboard. EPIWATCH also has
a suite of risk analysis tools such as
FLUCAST,” EPIRISK> and ORIGINS™
that are designed to forecast the severity of
an emerging influenza season, prioritise
serious developing epidemics and provide
insights into the origins of epidemics,
respectively.

Using the Centers for Disease Control
and Prevention’s guideline for evaluating a
public health surveillance system’>, we com-
pared available systems using 15 specific
parameters (Table 1).

Geospatiotemporal forecasting

Understanding and predicting the geospa-
tial risk of outbreaks and the evolution
and spread of epidemics can further
inform public health responses. In this con-
text, machine learning methods can identify
and predict the risk of outbreaks at a gran-
ular level—both geospatially and
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temporally.  Processing  such  multi-
dimensional (i.e., geospatiotemporal) data
for analysis and forecasting requires
machine learning approaches that can utilise
these features to develop prediction models
without losing salient information that car-
ries important signals. Convolutional neural
networks,'”  transfer learning, support
vector machines, random forest,''® deep
learning and gradient boosting machine
learning have been applied with high accu-
racy to these challenges in different contexts.
Used in research, these models typically uti-
lise regional data on past outbreaks, envi-
ronmental factors, travel data, social
factors, vector distribution and satellite
meteorological data (e.g., temperature and
rainfall). These data can be highly predictive
of the occurrence and timing of regional out-
breaks, providing a framework for early pre-
paredness and response. None of the
available epidemic intelligence systems has
automated capability for geospatial risk
prediction.

Modelling of interventions and
response

Early warning systems can be enhanced by
modelling pandemic growth and the effec-
tiveness of interventions. This requires
modelling complex dynamic systems with
non-linearities that can be applied to time-
series data with lags between interventions
and responses. A variety of Al-based
approaches have been applied to develop
frameworks for these data and can be auto-
mated, customised and added to early warning
systems. These approaches include long-
short term memory networks that are ideal
for modelling temporal data trends and can
be trained to retain memory for features that
are important for prediction at a given point
in time whilst ‘forgetting’ features that
are unimportant.'”’> These networks retain
‘memory’, as needed, over time and can

account for lags between intervention and
response. Support vector machine models
and transformers have also been used to
flexibly model the impact of interventions
on pandemic growth globally; these systems
have identified the most effective interven-
tions employed during the SARS-CoV-2
pandemic.

Agent-based simulation models can fur-
ther provide a flexible alternative to conven-
tionally used susceptible-infectious-removed
models to model geospatial dynamics and
spread. These models can create synthetic
populations and wuse available granular
data on geospatial context, contact rates,
behaviour, mobility and infrastructure to
model the spread and impact of interven-
tions at a fine scale.

The potential of Al in public
health

The potential of Al in public health is illus-
trated through the development and use of
the epidemic intelligence systems described
in this review. Nevertheless, Al is not
widely implemented at an operational level
in the everyday practice of public health
compared with the use of AI in clinical
medicine. By generating ecarly epidemic
warnings even in low-resource settings or
in areas in which data are censored by gov-
ernments, Al can be revolutionary. Al ena-
bles early identification and intervention,
allowing the early management of newly
emergent epidemics to feasibly result in
eradication. When added to late-stage inter-
ventions such as diagnostics, drugs and vac-
cines, Al can considerably improve health
security and the prospect of preventing pan-
demics. Al can be used to identify not only
specific diseases but also clinical syndromes
that may predict new and emerging
infections. Innovations in novel digital syn-
dromic surveillance systems using open-source
data can support the early detection of serious
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emerging infectious epidemics. The key fea-
tures of an optimised Al system are:

1. Rapid intelligence drawn from open-
source data to generate higher-level and
earlier epidemic alerts compared with tra-
ditional surveillance without the need for
human reporting. These alerts can be fol-
lowed up with formal investigation and
traditional surveillance methods such as
laboratory confirmation by public health
authorities.

2. The capability to rapidly and globally
identify key serious syndromes that
may result from new emerging infections
or biowarfare events.

3. The ability to address the issues of cen-
sorship of reporting and reliance on
human reporting and the challenges
faced by weak health systems.

4. The capability to predict in real time the
likelihood of serious outcomes of identi-
fied events using a suite of decision sup-
port tools (e.g., risk analysis, modelling
and simulation), prioritise responses and
determine the urgency of intervention.

5. Tailored user interfaces on the Web,
mobile applications for real-time decision
support and tools that can be adapted for
use in health and defence across govern-
ment and non-government sectors that
require early warning and intelligence on
serious epidemics.

The COVID-19 pandemic has prompted
substantial investment in Al tools for
epidemic surveillance. The United States
Centers for Disease Control and Prevention
established the Center for Forecasting and
Outbreak Analytics in 2021,'"" and the
United Kingdom announced its Global
Pandemic Radar the same year.''? In Berlin,
the WHO further established the Pandemic
Hub,'"® which is co-funded by the German
government. The ECDC established an
open-source tool called Epitweetr in
August 2018.%% The unprecedented 2022

monkeypox epidemic in non-endemic coun-
tries provided a test case for using learnings
from epidemic intelligence systems’ responses
to the COVID-19 pandemic. All systems
reported on monkeypox; however, we are
aware of only two special initiatives.
HealthMap created a monkeypox dashboard
with daily updates of case counts,'* and
EPIWATCH created a weekly summary of
syndromic surveillance for rash and fever ill-
nesses that could be monkeypox misdiag-
nosed as other illnesses.'">

The past decade has seen the emergence
of epidemics such as the novel zoonotic
influenza,''®!'"” the Middle East respiratory
syndrome coronavirus, Ebola, Zika virus
and SARS-CoV-2.'"® These events highlight
the increasing risk of emerging infectious dis-
eases and the need for early warning signals.
Strategies to adopt open-source early warning
systems and provide the source code for such
systems would allow for collaborative design
on a global scale. Harnessing the creative tal-
ents of health and software engineering
experts working collaboratively in interdisci-
plinary teams could support optimising
global early warning systems. The creation
of tools with free availability and user inter-
faces in all major international languages can
increase access—including for the community
and local health authorities—to open-source
intelligence.

Conclusion

The widespread adoption of Al technology
in public health and clinical medicine can
revolutionise disease prevention and con-
trol. Currently, the use of available systems
is not widespread at the grassroots level of
public health practice. Al technology can
generate early epidemic warnings without
reliance on passive human reporting,
enable intervention early in the timeline of
an epidemic and allow newly emergent epi-
demics to be identified and eradicated as
quickly as possible. In this review of existing
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epidemic intelligence systems, EPIWATCH
is identified as having substantial value in
epidemic intelligence collection, the identifi-
cation of outbreak alerts and early epidemic
signal detection. Widespread adoption of
digital surveillance by public health agencies
at the global, national and local operational
levels offers the best prospect of preventing
the next pandemic.
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