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Abstract: Critically ill COVID-19 patients display signs of generalized hyperinflammation. Macrophages
trigger inflammation to eliminate pathogens and repair tissue, but this process can also lead to
hyperinflammation and resulting exaggerated disease. The role of macrophages in dysregulated
inflammation during SARS-CoV-2 infection is poorly understood. We inoculated and treated human
macrophage cell line THP-1 with SARS-CoV-2 and purified, glycosylated, soluble SARS-CoV-2
spike protein S1 subunit (S1) to clarify the role of macrophages in pro-inflammatory responses.
Soluble S1 upregulated TNF-α and CXCL10 mRNAs, and induced secretion of TNF-α from THP-1
macrophages. While THP-1 macrophages did not support productive SARS-CoV-2 replication or
viral entry, virus exposure resulted in upregulation of both TNF-α and CXCL10 genes. Our study
shows that extracellular soluble S1 protein is a key viral component inducing pro-inflammatory
responses in macrophages, independent of virus replication. Thus, virus- or soluble S1-activated
macrophages may become sources of pro-inflammatory mediators contributing to hyperinflammation
in COVID-19 patients.
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1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent
of coronavirus disease 2019 (COVID-19). Severely ill COVID-19 patients display lung tissue
damage associated with cell death and pathologic inflammation [1,2], which are linked to
enhanced pro-inflammatory cytokine and chemokine levels (e.g., TNF-α and CXCL10) [3,4].
These pathologies are compatible with a dysregulated inflammatory response characteristic
of cytokine release syndrome or macrophage activation syndrome [5] and generalized
hyperinflammation [6]. These patients often progress to respiratory failure due to complica-
tions from hyperinflammation and require mechanical ventilation. Analysis of bronchoalve-
olar lavage fluid (BALF) from critically ill COVID-19 patients revealed upregulation of
inflammatory cytokine signatures, indicating an influx of active inflammatory macrophages
in the airways [7,8]. Macrophages mediate inflammatory responses following infection via
activation of pro-inflammatory responses. Macrophages also migrate to localized infected
tissues to mitigate infection. Indeed, an influx of macrophages in the pulmonary tissue
of postmortem patients with COVID-19 has been observed [7,9], and virus antigens have
been detected in subsets of tissue-resident and lymph node-associated macrophages [8].
These findings implicate macrophages in inflammatory responses during SARS-CoV-2
infection. Therefore, in the current study, we investigated the pro-inflammatory response
of SARS-CoV-2-infected human THP-1 macrophages and further elucidated the role of
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the soluble SARS-CoV-2 spike glycoprotein S1 subunit in inducing such a response in
THP-1 macrophages.

2. Materials and Methods

Cells: Cell cultures were maintained at 37 ◦C in a 5% CO2 atmosphere. Vero E6 cells
(ATCC, Manassas, VA, USA; catalog no. CRL-1586) and HEK293T cells (ATCC, Manas-
sas, VA, USA; catalog no. CRL-3216) were cultured in DMEM medium (ThermoFisher,
Waltham, MA, USA; catalog no. 12430062) supplemented with 10% FBS, 100 IU/mL peni-
cillin, and 100 µg/mL streptomycin. Human monocyte-like cells (THP-1 cell line, ATCC,
Manassas, VA, USA; catalog no. TIB-202) were cultured in RPMI 1640 medium (Ther-
moFisher, Waltham, MA, USA; catalog no. 21870076) supplemented with 10% FBS, 10 mM
HEPES, 1 mM sodium pyruvate, 50 µM beta-mercaptoethanol, 100 IU/mL penicillin, and
100 µg/mL streptomycin. ACE2-expressing HEK293T cells were generated by transduction
with an ACE2-expressing lentivirus made from plasmid pLVX-ACE2 (a gift from Dr. Ed-
ward Campbell, Loyola University Chicago) and the packaging plasmids described below.
Stably transduced cells were selected with puromycin (0.25 µg/mL) and ACE2 expression
was monitored by Western blot analysis.

Virus: SARS-CoV-2 isolate USA-WA1/2020 (BEI resources catalog no. NR-52281) was
propagated in Vero E6 cells to generate a virus stock with a titer of 1.76 × 106 50% tissue
culture infective dose (TCID50)/mL. All SARS-CoV-2 titrations were performed by TCID50
assay on Vero E6 cells, and titers were calculated by the method of Reed and Muench. Work
with infectious virus was performed in biosafety cabinets within a biosafety containment
level 3 facility. Personnel wore powered air purifying respirators (MAXAIR Systems, Irvine,
CA, USA) during all procedures.

Pseudotyped Virus Assays: Pseudotyped lentiviral particles were generated fol-
lowing published protocols [10] by transfection of HEK293T cells using the TransIT-293
reagent (Mirus Bio, Madison, WI, USA) with the following plasmids: pHAGE-CMV-Luc2-
IRES-ZsGreen-W (BEI Resources, NR-52516), HDM-Hgpm2 (BEI Resources, NR-52517),
HDM-tat1b (BEI Resources, NR-52518), and pRC-CMV-Rev1b (BEI Resources, NR-52519),
along with a viral glycoprotein-expressing plasmid: pcDNA3.1-SARS-CoV-S, pcDNA3.1-
SARS-CoV-2-S (D614G), or pCAGGS-VSV-G (KeraFast, Boston, MA, USA). The SARS
spike-expressing plasmids were provided by Dr. Thomas Gallagher, Loyola University
Chicago [11]. Pseudotyped lentiviral particles were used to inoculate HEK-ACE2 cells
(HEK293T cells stably expressing human ACE2) or THP-1 cells. GFP expression was
monitored by fluorescence microscopy and luminescence was measured at various time
points using the Bright-Glo reagent (Promega, Madison, WI, USA) and a FLUOstar Optima
microplate reader (BMG LabTech, Ortenberg, Germany).

THP-1 cell infection: THP-1 monocyte-like cells were seeded in plastic dishes in the
presence of phorbol 12-myristate 13-acetate (PMA, 100 ng/mL) to induce differentiation
into macrophages. After 24 h of incubation, undifferentiated cells were washed away and
the attached differentiated macrophages were incubated in fresh media without PMA for an
additional 24 h. THP-1 cells were either mock infected with supernatants from non-infected
Vero E6 cells or inoculated at an MOI of 0.5 for 1 h at 37 ◦C with virus stock generated in
Vero E6 cells. Cells were washed once with PBS and incubated at 37 ◦C in complete media
for the indicated times. Vero E6 cells were seeded and incubated for 24 h before virus
infection at an MOI of 0.1, following the same procedure as with THP-1 cells. After the
indicated times, culture supernatants were collected for titration assays (TCID50) and RNA
was extracted from infected cells using the RNeasy Plus Mini Kit (Qiagen, Germantown,
MD, USA; catalog no. 74134), following the manufacturer’s instructions. RNA extracted
from THP-1 cells treated with 100 ng/mL of LPS (Invivogen, San Diego, CA, USA; catalog
tlrl-eklps;) for 4 h was used as a positive control.

THP-1 cell treatment with S1 purified protein: THP-1 monocyte-like cells were seeded
in the presence of phorbol 12-myristate 13-acetate (PMA, 100 ng/mL) and allowed to
differentiate as described above. Differentiated macrophages were treated with 8 nM
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(0.6 µg/mL) recombinant soluble SARS-CoV-2 spike S1 protein subunit purified from
HEK293 cells (SinoBiological, Wayne, PA, USA; catalog no. 40591-V08H-B) or an equivalent
volume of vehicle control for the specified times. Cell culture supernatants were collected
for ELISA assays, and RNA was extracted from infected cells using Trizol (ThermoFisher,
Waltham, MA, USA; catalog no. 15596026) following the manufacturer’s instructions.

Reverse Transcription Quantitative PCR (RT-qPCR): For cellular genes, total RNA
(500 ng) was used for cDNA synthesis using a High-Capacity cDNA Reverse Transcrip-
tion Kit (Applied Biosystems, Waltham, MA, USA; catalog no. 4368814) following the
manufacturer’s instructions. Approximately 20 ng of cDNA was used as a template for
qPCR reactions using SSOAdvanced Universal SYBR Green Supermix, following the manu-
facturer’s instructions (BioRad, Hercules, CA, USA; catalog no. 1725271). The following
primers were used for the detection of cellular genes by qPCR:

GAPDH Fw: 5′-ACAACTTTGGTATCGTGGAAGG-3′;
Rv: 5′-GCCATCACGCCACAGTTTC-3′

TNF-α Fw: 5′-CCTCTCTCTAATCAGCCCTCTG-3′;
Rv: 5′-GAGGACCTGGGAGTAGATGAG-3′

IL6 Fw: 5′-ACTCACCTCTTCAGAACGAATTG-3′;
Rv: 5′-CCATCTTTGGAAGGTTCAGGTTG-3′

IFN-γ Fw: 5′-TCGGTAACTGACTTGAATGTCCA-3′;
Rv: 5′-TCGCTTCCCTGTTTTAGCTGC-3′

IFN-β Fw: 5′-GCTTGGATTCCTACAAAGAAGCA-3′;
Rv: 5′-ATAGATGGTCAATGCGGCGTC-3′

CXCL10 Fw: 5′-GTGGCATTCAAGGAGTACCTC-3′;
Rv: 5′-GCCTTCGATTCTGGATTCAGACA-3′

qPCR reactions were performed in a CFX96 Touch Real-Time PCR Detection System
(BioRad, Hercules, CA, USA). The relative gene expression of the target genes was deter-
mined using the average Ct for technical replicates normalized to GAPDH. The fold change
over mock-infected cells was determined using the 2−∆∆Ct method.

For the quantification of viral RNA, total RNA (250 ng or 500 ng) was used for
cDNA synthesis using SuperScript IV VILO Master Mix (Invitrogen, catalog no. 11756050)
according to the manufacturer’s instructions. cDNA was diluted to 1:10 and used as a
template for qPCR reactions using PowerUp SYBR Green Master Mix (Applied Biosystems,
Waltham, MA, USA; catalog no. A25742). Primers for detection of SARS-CoV-2 genes [12] N
(Fw: 5′-CAATGCTGCAATCGTGCTAC-3′; Rv: 5′-GTTGCGACTACGTGATGAGG-3′) and S
(Fw: 5′-GCTGGTGCTGCAGCTTATTA-3′; Rv: 5′-AGGGTCAAGTGCACAGTCTA-3′) were
used for qPCR, along with the GAPDH primers listed above for THP-1 cell samples or actin
primers (Fw: 5′-AAGGATTCATATGTGGGCGATG-3′; Rv: 5′-TCTCCATGTCGTCCCAGTTGGT-
3′) for Vero cell samples. qPCR reactions were performed using a StepOnePlus Real-Time
PCR System (Applied Biosystems, Waltham, MA, USA). Ct values were determined using
Design and Analysis 2.5.0 (Applied Biosystems, Waltham, MA, USA) and normalized to
GAPDH or Actin Ct values using 2−∆Ct.

Enzyme-linked immunosorbent assay (ELISA): Human TNF Alpha Uncoated ELISA
Kit (ThermoFisher, Waltham, MA, USA; catalog no. 88-7346) was used to determine
secretion of TNF-α in culture supernatants of cells treated with the SARS-CoV-2 S1 subunit.
The cytokine concentration was calculated according to the manufacturer’s instructions.

Western blot analysis: To evaluate the expression of ACE2, HEK-ACE2 (HEK293T
cells stably expressing human ACE2), THP-1, and Vero cells were lysed using 1%-Triton
X-100 (pH 7.4) and EDTA-free protease inhibitor cocktail (Roche Diagnostics, Indianapolis,
IN, USA; catalog no. 11836170001) in PBS. Cell lysates were subjected to SDS-PAGE, and
separated proteins were transferred onto 0.2 µm nitrocellulose membrane (ThermoFisher,
Waltham, MA, USA) and blotted with antibodies specific to ACE2 (Abcam, Waltham, MA,
USA; catalog no. ab108252) and actin (Bethyl Laboratories, Montgomery, TX, USA; catalog
no. A300-491A). Immunoblots were developed using Western Lightning ECL Pro (Perkin
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Elmer, Waltham, MA, USA; catalog no. NEL120E001EA) and imaged in Bio-Rad Chemidoc
XRS+ (Bio-Rad, Hercules, CA, USA).

Statistical analysis: Two-way ANOVA, adjusted by Sidak’s multiple comparison test,
was performed to evaluate the relative expression from the RT-qPCR and ELISA data
from three experimental groups compared at multiple time points. A p value of <0.05 was
considered significant for all statistical tests. All statistical tests were performed using
GraphPad Prism v6.01 (San Diego, CA, USA).

3. Results
3.1. Soluble Glycosylated SARS-CoV-2 Spike Protein S1 Subunit Induces Pro-Inflammatory
Response in Human THP-1 Macrophages

It has been reported previously that the purified SARS-CoV-2 trimeric spike (S) gly-
coprotein produced in mammalian cells [13] and the purified S1 subunit produced in
E. coli [14] activate pro-inflammatory responses in macrophages. However, these two forms
of S proteins do not reflect the physiologically relevant S protein that is generated during
SARS-CoV-2 infection of mammalian cells. Prefusion trimeric S is cleaved by cellular pro-
teases [15] that dissociate the S1 subunit during virion assembly [16] or after engagement
of the ACE2 receptor [17]. Therefore, trimeric S is transient on the surface of virions, and
as reported earlier [13], constructs designed to stabilize this conformation do not reflect
the dynamic state of the S glycoprotein and subunits in contact with cells. Importantly,
in such a scenario, dissociated S1 may remain engaged to cell receptors and stimulate
yet-undefined effects. Likewise, purified S1 derived from non-mammalian sources such
as E. coli [14] does not reflect a physiologically relevant form of the S1 protein, since S1 is
glycosylated at numerous positions [18] that mediate functions such as shielding of viral
epitopes. Glycosylation patterns are not recapitulated in proteins purified from E. coli, and,
thus, non-glycosylated S1 produced in E. coli may not reproduce the biological effects of
SARS-CoV-2 S1.

To clarify the role of S1 in activating a pro-inflammatory response, we tested whether
glycosylated, soluble SARS-CoV-2 S1 purified from mammalian cells induced the expres-
sion of pro-inflammatory and antiviral cytokines in human THP-1 macrophages. We
treated THP-1 macrophages with purified S1 protein to evaluate the expression of the
pro-inflammatory cytokines TNF-α, CXCL10, and IFN-γ [19,20] due to their association
with hyperinflammation in SARS and COVID-19 patients, as well as the antiviral cytokine
IFN-β, since it restricts SARS-CoV-2 infection [21]. While S1 did not induce gene expression
of IFN-β (Figure 1A) or IFN-γ (Figure 1B) in THP-1 macrophages, expression of proinflam-
matory TNF-α (Figure 1C) and CXCL10 (Figure 1D) was upregulated following exposure
to S1. TNF-α was significantly upregulated, by 30-fold, at 4 h post-treatment with S1
and remained higher than vehicle treatment, though not statistically significant, 16 h after
treatment (Figure 1C). CXCL10 expression was consistently upregulated by 3- to 8-fold
in THP-1 macrophages exposed to S1 up to 16 h post-treatment (Figure 1D). Although
macrophages respond to IFN-γ by producing CXCL10, they are not substantial sources of
IFN-γ [22], which is mostly produced by lymphocytes to recruit macrophages to infection
sites [23]. Thus, SARS-CoV-2 S1 upregulated CXCL10 independently of IFN-γ, similarly to
other stimuli such as LPS [24] and TNF-α [25].

We further examined the release of TNF-α from THP-1 macrophages treated with the
SARS-CoV-2 S1 subunit. Treatment with S1 induced secretion of TNF-α by macrophages at
4 h and 8 h post-treatment (Figure 1E). These results demonstrated that soluble, glycosylated
S1 alone suffices to activate a pro-inflammatory response in human macrophages indepen-
dently of full-length S proteins, S-trimers, and virus infection. Non-glycosylated S1 purified
from E. coli induced TNF-α secretion in murine macrophages [14]. Non-glycosylated S1 [14]
may expose sites that trigger a pro-inflammatory response, which are cryptic in the glyco-
sylated S1 protein. Thus, we demonstrated that physiologically relevant glycosylated S1
derived from mammalian cells has pro-inflammatory activity in human macrophages.
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Figure 1. SARS-CoV-2 soluble, glycosylated spike protein S1 subunit (S1) induces a pro-inflammatory
response in human THP-1 macrophages. THP-1 cells were treated with purified, recombinant, soluble
S1 protein (0.6 µg/mL, 8 nM) or vehicle for the indicated times. RT-qPCR was used to quantify
the relative gene expression of IFN-β (A), IFN-γ (B), TNF-α (C), and CXCL10 (D). (E) Secretion of
TNF-α was determined by ELISA assays in supernatants from THP-1 cells treated with purified,
recombinant, soluble S1 proteins. Error bars denote the standard error of the mean (SEM) from
3 biologically independent experiments. * p < 0.05, determined by two-way ANOVA adjusted by
Sidak’s multiple comparison test.

3.2. Human THP-1 Macrophages Do Not Support SARS-CoV-2 Entry or Productive Viral Replication

Since SARS-CoV-2 S1 induced a pro-inflammatory response in macrophages inde-
pendently of virus infection or replication (Figure 1), we next evaluated viral replication
in THP-1 macrophages inoculated with SARS-CoV-2. As expected, infection with SARS-
CoV-2 in susceptible Vero E6 cells led to an exponential increase in viral nucleocapsid (N)
(Figure 2A) and S (Figure 2B) RNA. Instead of an exponential increase consistent with
active replication, the levels of N (Figure 2C) and S (Figure 2D) RNAs diminished over time
in THP-1 macrophages. While some viral RNA was detected at 0 hpi, corresponding to 1 h
post-virus adsorption, expression did not increase over time for either the N or S genes.
Virus replication and release of infectious progeny was determined by TCID50 assays in
supernatants from SARS-CoV-2-infected cells to corroborate the viral RNA findings. While
infected Vero E6 cells supported the robust release of infectious virions due to productive
replication, the infectious virus from infected THP-1 cells did not increase and became
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undetectable after 8 h post-infection (Figure 2E). Finally, THP-1 macrophages did not
develop cytopathic effects (CPE) following SARS-CoV-2 infection, whereas Vero E6 cells
displayed progressive cell rounding and monolayer damage (Figure 2F). These results
together indicate that THP-1 human macrophages do not support productive replication of
SARS-CoV-2. Our study is in accord with reports showing non-productive replication of
SARS-CoV-2 in human monocyte-derived macrophages and DCs [26–28].
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genes in SARS-CoV-2-infected Vero E6 cells. RT-qPCR was used to detect N (C) and S (D) viral genes
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in SARS-CoV-2-infected human THP-1 macrophages. (E) Culture supernatants from SARS-CoV-2-
infected human THP-1 macrophages and Vero E6 cells were analyzed by TCID50 assay to determine
infectious virus production. (F) Bright field microscopy photographs of Vero E6 (MOI = 0.1) and
THP-1 (MOI = 0.5) macrophages infected with SARS-CoV-2 for the indicated times. Luminescence
(RLU) was measured to determine transduction of HEK-ACE2 cells (HEK293T cells stably expressing
human ACE2) (G) and THP-1 macrophages (H) by luciferase-expressing lentiviruses pseudotyped
with VSV glycoprotein (VSV-G), SARS-CoV-1 S protein, or SARS-CoV-2 S protein. (I) ACE2 expression
was analyzed in HEK-ACE2, THP-1, and Vero cells by Western blotting with ACE2 and actin (loading
control) antibodies. Error bars denote the standard error of the mean (SEM) from 2 to 3 biologically
independent experiments. hpi = hours post-infection. * p < 0.05 was determined by two-way
ANOVA adjusted by Sidak’s multiple comparison test. * 0 h timepoint data were collected 1 h
post-virus adsorption.

We then investigated whether S-mediated entry of SARS-CoV-2 occurred in THP-1
macrophages. Pseudotyped lentiviruses were created that harbored the vesicular stomatitis
virus (VSV) G protein (VSV-G), SARS-CoV-1 S, or SARS-CoV-2 S glycoproteins. We first
confirmed pseudotyped virus entry into HEK293T cells stably expressing ACE2 (HEK-
ACE2). Our results show that all three pseudotyped viruses entered HEK-ACE2 cells
(Figure 2G). Next, we transduced THP-1 macrophages with the pseudotyped viruses.
Although the VSV-G pseudotyped lentiviruses entered THP-1 macrophages, there was no
entry by the pseudotyped viruses bearing the S proteins of SARS-CoV-1 or SARS-CoV-2
(Figure 2H). The S proteins of both SARS-CoV-1 and SARS-CoV-2 viruses use ACE2 as
a receptor for cell entry. Thus, we analyzed ACE2 expression in THP-1 cells. The ACE2
protein was expressed by virus-susceptible Vero cells and HEK-ACE2 cells, but was not
detected in THP-1 cells (Figure 2I). These results suggest that the S protein containing
S1 facilitates the entry of SARS-CoV-2 into ACE2-expressing cells, but not that of THP-1
macrophages, which lack ACE2 expression. However, purified S1 proteins triggered a
pro-inflammatory response in THP-1 macrophages (Figure 1). This reflects a non-functional
role of virus-associated S in THP-1 entry, whereas the virus-independent soluble S1 protein
confers pro-inflammatory activity/function on THP-1 macrophages.

3.3. Low-Grade Pro-Inflammatory Response in SARS-CoV-2 Exposed Human THP-1 Macrophages
in the Absence of Productive Viral Replication

Despite the lack of replication or S-mediated entry of SARS-CoV-2, the expression
of TNF-α (Figure 3A) and CXCL10 (Figure 3B) in THP-1 macrophages inoculated with
SARS-CoV-2 was significantly upregulated by 2- and 3-fold at 4 and 24 hpi, respectively.
Similar to the response to S1 (Figure 1), SARS-CoV-2 infection did not induce antiviral
IFN-β (Figure 3C) or IFN-γ (Figure 3D) expression in THP-1 macrophages, whereas LPS
upregulated both cytokines by 80- and 3-fold, respectively. Since both TNF-α and CXCL10
are key pro-inflammatory cytokines, our results suggest a low-grade pro-inflammatory
response in THP-1 macrophages exposed to SARS-CoV-2 in the absence of productive
virus replication.
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Figure 3. Low-grade pro-inflammatory response in SARS-CoV-2-exposed human THP-1 macrophages
in the absence of productive virus replication. RT-qPCR was used to detect relative gene expression
of TNF-α (A), CXCL10 (B), IFN-β (C), and IFN-γ (D) in SARS-CoV-2-inoculated THP-1 macrophages.
LPS-treated macrophages (100 ng/mL, 4 h) were used as positive controls. Error bars denote the
standard error of the mean (SEM) from 2 to 3 biologically independent experiments. hpi = hours
post-infection. * p < 0.05, ** p < 0.01 was determined by two-way ANOVA adjusted by Sidak’s
multiple comparison test.

4. Discussion

Macrophages promote inflammation by producing pro-inflammatory cytokines and
chemokines. The role of human macrophages in SARS-CoV-2 infection remains unclear
despite their function as pro-inflammatory cells and their contribution to immune dys-
regulation. Our study shows that although human THP-1 macrophages do not support
productive virus replication or S-mediated entry, exposure to SARS-CoV-2 upregulates the
expression of pro-inflammatory mediators linked to generalized hyperinflammation in
COVID-19 patients [4]. Similarly, SARS-CoV-1 has been shown to induce inflammatory re-
sponses in macrophages without viral replication [29]. Moreover, we show that the soluble,
glycosylated S1 subunit produced in mammalian cells is sufficient to induce this response
in the absence of viral infection. However, antiviral cytokines were not induced, suggest-
ing that S1-activated macrophages would contribute to hyperinflammation, rather than
effective antiviral responses. This reflects the reduced or delayed type I interferon (IFN)
response and hyperinflammatory response observed in severe cases of COVID-19 [30].

Our study identifies the SARS-CoV-2 soluble, glycosylated S1 subunit as a viral
factor involved in the activation of pro-inflammatory responses in human macrophages.
Therefore, formation of S trimers or even full-length S is not required to induce this response.
The soluble glycosylated S1 subunit triggers a pro-inflammatory response in non-infected
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macrophages, and, therefore, the interaction of the extracellular S1 subunit is sufficient
to induce this response independently of viral infection. Shedding of dissociated S1 has
been shown during expression of the full-length S protein on the surface of pseudotyped
viruses [17] and when S constructs are expressed in mammalian cells [31]. These studies
showed reduced shedding of S1 in S proteins with the D614G mutation [17,31]. Furthermore,
S1 has been detected in the plasma of patients with severe COVID-19 during the acute
phase of disease, and full-length S has been detected in post-acute phase patients [32].
Thus, we envision that extracellular, soluble S1 released from infected lung epithelial
cells may interact with uninfected macrophages and trigger a pro-inflammatory response
that contributes to disease pathology (Figure 4). Others have proposed that S1 activates
leukocytes by interaction with TLR2 [33] or TLR4 [14], possibly through the galectin-fold
domain in S1 [34].
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Figure 4. Proposed contribution of SARS-CoV-2 and soluble S1 to inducing inflammatory responses
by macrophages. SARS-CoV-2 virions and soluble S1 proteins released from productively infected
lung epithelial cells trigger proinflammatory responses by macrophages, which then contribute to
hyperinflammation and lung disease associated with COVID-19.

Exposure of macrophages to S1 did not induce any expression of type I or type II IFN,
and slightly lower expression levels were observed compared to the vehicle at the earliest
time point, 4 h after treatment (Figure 1). This agrees with other studies that have observed
increased expression of inflammatory cytokines, but not IFNs, by macrophages stimulated
with S1 [33]. One study also found that treatment of cells from bronchoalveolar lavage
of rhesus macaques with SARS-CoV-2 S1 results in the inhibition of both basal and poly
I:C-induced levels of type I IFN mRNAs [35]. It is unknown whether SARS-CoV-2 or S1
can actively down-regulate the expression of IFN-γ.

In addition, while SARS-CoV-2 infection in THP-1 macrophages does not lead to
CPE (indicative of cell death) or productive viral replication, the low-grade inflammatory
response remains upregulated for at least 24 h after exposure to SARS-CoV-2 (Figure 3B).
Therefore, virus-infected epithelial cells, or S1-activated macrophages, may become sources
of pro-inflammatory mediators contributing to hyperinflammation in COVID-19 patients.
Our study provides evidence for a contribution of human macrophages to inflammation-
associated immunopathology of SARS-CoV-2 by two possible mechanisms (Figure 4)—
macrophage activation by (1) the S protein on virions that are released from infected
lung epithelial cells, and (2) extracellular soluble S1 proteins released from infected lung
epithelial cells and virions.
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