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Abstract

Phthalate esters (PAEs) are hazardous organic compounds that are widely added to plastics to 

enhance their flexibility, temperature, and acidic tolerance. The increase in global consumption 

and the corresponding environmental pollution of PAEs has caused broad public concerns. As 

most PAEs accumulate in soil due to their high hydrophobicity, composting is a robust remediation 

technology for PAE-contaminated soil (efficiency 25%–100%), where microbial activity plays an 

important role. This review summarized the roles of the microbial community, biodegradation 

pathways, and specific enzymes involved in the PAE degradation. Also, other green technologies, 

including biochar adsorption, bioaugmentation, and phytoremediation, for PAE degradation 

were also presented, compared, and discussed. Composting combined with these technologies 

significantly enhanced removal efficiency; yet, the properties and roles of each bacterial strain in 

the degradation, upscaling, and economic feasibility should be clarified in future research.
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1. Introduction

In plastic manufacturing, phthalate esters (PAEs) are often used to enhance the flexibility 

and durability of plastics. PAEs are widely detected in many industrial, residential, and even 

agricultural areas worldwide because of the ubiquitous use of plastics (Abdel daiem et al., 

2012; Ferreira and Morita, 2012; Kaewlaoyoong et al., 2018; Nguyen et al., 2022b). As 

the global production of plastics is over 150 million tons year−1, the annual consumption 

of PAEs is around 6–8 million tons (Gao et al., 2018; Lönnstedt and Eklöv, 2016; Net 

et al., 2015). With this widespread use and subsequent environmental contamination, PAE 

has been found in every environmental media, including soil, sediment, water, and even air 

(Dargnat et al., 2009; Lee et al., 2019b; Lin et al., 2009). Yet, with high hydrophobicity, 

PAE contamination mainly occurs in soil (Lee et al., 2019a; Wei et al., 2020). In fact, PAEs 

are one of the most frequently detected persistent organic pollutants (POPs) in soil with 

half-lives varying from 3 to 2000 years under natural conditions (Gao and Wen, 2016).

PAEs are endocrine-disrupting chemicals (EDCs) and potential carcinogens. The impart on 

normal physiological hormones function has been previously reported (Diamanti-Kandarakis 

et al., 2009; Katsikantami et al., 2016; Mankidy et al., 2013), and exposure to PAEs is 

linked to an increased risk of breast cancer (Hsieh et al., 2012; López-Carrillo et al., 2010). 

Additionally, PAEs have shown adverse effects on the reproductive system (Schettler, 2006; 

Wang et al., 2019c). Due to their high toXicity, specific PAEs, di-n-butyl phthalate (DnBP), 

diethyl phthalate (DEP), diethylhexyl phthalate (DEHP), diisononyl phthalate (DINP), are 

listed as EDCs by WHO/IPCS (2002) and WHO-UNEP (2013) (Kay et al., 2014; Kay et al., 

2013; WHO-UNEP, 2013). Therefore, in recent years, the remediation of PAE-contaminated 

soil has been a focus of environmental engineering, especially when the “hot” topic of 

micropollutants is attracting broad public interest.
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Several treatment technologies are recommended for the remediation of PAE-contaminated 

soil, including biochar adsorption (Zhang et al., 2016), electrokinetic and nano oXidation 

processes (Yang et al., 2015), chemical oXidation (Wang et al., 2014), and composting (Tran 

et al., 2021b). Among them, composting is a promising biodegradation technology due to 

its high biodegradation efficiency, low environmental impacts, and cost feasibility (Tran 

et al., 2018). There are two main composting techniques, aerobic and anaerobic. Aerobic 

composting has shown higher removal efficiency and shorter incubation time than anaerobic 

composting (Tran et al., 2020). For instance, Yuan et al. (2011) reported 91%–96% DEHP 

removal (initial concentration 50–250 mg kg−1) in soil after 30 days of aerobic incubation, 

whereas only 55%–69% DEHP (initial concentration 100 mg kg−1) was removed after 

112 days of anaerobic composting (He et al., 2018). In the composting biodegradation 

process, microbial activity plays a critical role in determining the removal efficiency and 

rate (Hoang et al., 2022). Among the microorganisms in the compost miXture, bacteria are 

key to biodegradation since their enzymes (e.g., hydrolase, esterase, protocatechuate) vastly 

accelerate biodegradation.

Numerous studies have evaluated bioremediation strategies for PAE-contaminated soil (Cai 

et al., 2008b; Das et al., 2021; Xiang et al., 2020). The role of the microbial community 

and the overall mechanism of PAE biodegradation have also been reported. However, a 

knowledge gap exists for the microbial community’s structure and dynamic response during 

the composting process. Also, the role of bacterial strains and their specific enzymes in 

PAE degradation remains ambiguous. Therefore, this study aims to comprehensively discuss 

composting degradation of PAE-contaminated soil. Current knowledge on the variation 

of microbial community structure, the role of bacteria and their specific enzymes, and 

biodegradation pathways were also provided. Further, other green technologies, including 

biochar adsorption, phytoremediation, and bioaugmentation were summarized, compared, 

and discussed. Finally, research gaps were identified and recommendations for future 

research were accordingly provided.

2. Methodology

The database of this review was created using Google Scholar, NCBI, PubMed, and Web 

of Science (Table S1 and Fig. S1). We paid more attention to the publications between 

2010 and 2022 since they provided up-to-date information. Reflecting the concern of PAE 

contamination, the number of publications has increased more than 10 times from 2010 – 

to 2020 (Fig. 1). Meanwhile, the number of publications on the composting remediation of 

PAE-contaminated soil has displayed a similar increasing trend.

3. Overview of PAEs

3.1. Physicochemical properties of PAEs

The fate and transport of PAEs in the environment depend much on their physicochemical 

properties, especially KOW (octanol-water partition coefficient), KOA (octanol-air partition 

coefficient), KAW (air-water partition coefficient), KOC (organic carbon partition coefficient) 

and vapor pressure (Kashyap and Agarwal, 2018) (Table 1). For example, Cousins et al. 

(2003) reported that high KOW values mean easy sorption onto surfaces and organic matters, 
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and the Log (KOW) increases with increasing alkyl chain length, which also means greater 

hydrophobicity. Vapor pressure (at 25 °C, in mm Hg) decreases with increasing molar 

volume (g mol−1) or alkyl chain length. In general, low molecular weight (LMW-) PAEs 

(e.g., DEP and DBP) are easier to biodegrade than high molecular weight (HMW-) PAEs 

(e.g., DEHP and DnOP) (Tuan Tran et al., 2022).

3.2. Main sources of PAEs

Anthropogenic (residential, agricultural, and especially industrial) activities are the main 

PAE sources (Fig. 2). Currently, there are about 60 different PAE categories used for 

various types of industries such as personal care products (e.g., cosmetics, hair sprays, 

gels), material packaging, plastic manufacturing, lubricants, insecticides, paint additives, and 

adhesives (Eichler et al., 2019). Moreover, agricultural activities (e.g., irrigation, biosolid 

fertilization, and sewage sludge discharge) with the use of agricultural film mulching, 

pesticides, and fertilizers contribute significantly to PAE-contamination in soil (Cai et al., 

2007; Guo and Kannan, 2012; Lü et al., 2018; Net et al., 2015; Tran et al., 2022a; Wang et 

al., 2013; Weschler et al., 2008; Yang et al., 2013b; Zhu et al., 2010). Residential activities 

can generate urban dust that contributes to soil contamination through deposition. Dry and 

wet deposition contributes to PAE contamination in soil in highly industrialized areas (Wu et 

al., 2015). Lan et al. (2012) found that both wastewater sludge and urban dust increased PAE 

levels in soil.

3.3. Current status of worldwide PAE-contaminated soil

PAE contamination in soil has been found worldwide, including Asia (e.g., China and 

Taiwan), Europe (e.g., Netherlands, Scotland, United Kingdom, and France), and Africa 

(e.g., South Africa) (Fig. 3) (Brodskiy et al., 2019; Gibson et al., 2005; Hu et al., 2003; 

Peijnenburg and Struijs, 2006; Rhind et al., 2013; Zeng et al., 2008). As a result of 

urbanization and industrialization, PAE concentrations are higher in urban areas (Zheng 

et al., 2014) than concentration in rural areas (Huo et al., 2016; Lü et al., 2018; Zhang 

et al., 2015). High PAE levels are often found in urban areas. For instance, Tran et al. 

(2015) reported that the total PAE concentrations in French urban and rural soils were 

1.089 and 0.154 μg g−1, respectively. In rural areas, high PAE contamination was found in 

agricultural fields (Xu et al., 2008; Zeng et al., 2008). Also, due to rapid industrialization 

and urbanization, PAE concentrations in China were higher than those in other countries (Lü 

et al., 2018). Among PAEs, DEHP and dimethyl phthalate (DMP) are the most frequently 

detected in the soil since they are the main constituents of plastic products (e.g., houseware, 

household appliances, and agricultural equipment).

3.4. Toxicity and risk assessments

PAEs are regarded as hazardous organic contaminants due to their adverse effects on 

the endocrine system, erythrocytic functions, and reproductive system of organisms (Li 

et al., 2018; škrbić et al., 2016; Tan et al., 2017). He et al. (2015) also reported that 

PAEs were highly toXic to microbes in soil. PAEs’ toXicity is determined by their 

physicochemical properties (Giuliani et al., 2020). HMW-PAEs (e.g., DEHP and DnBP) 

can cause hormonally mediated diseases and are considered potential carcinogenic agents 

(Adeniyi et al., 2008; Fukuwatari et al., 2002; McKee et al., 2004). Thus, the United 
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States Environmental Protection Agency (USEPA) has listed DEHP as a high-priority 

pollutant (US.EPA, 2019). PAE exposure negatively impacts human health via pathways like 

inhalation of contaminated aerosols and consumption of contaminated food. Daily vegetable 

consumption is the main intake source of PAEs (Cheng et al., 2015; Niu et al., 2014; Wang 

et al., 2015a, 2018; Xia et al., 2011) The risks of PAEs exposure are assessed via a reference 

dose, which is related to the tolerable daily intake (Giuliani et al., 2020) with elevated risks 

for sensitive subpopulations including fetuses and breastfeeding infants (Filardi et al., 2020).

4. Composting remediation of PAE-contaminated soil

4.1. Overview of composting remediation of PAEs in soil

Composting has been reported as a promising treatment for PAEs in soil (Amir et al., 2005; 

Pakou et al., 2009). Aerobic and anaerobic composting with different scales (e.g., pilot 

(10–110 L) (Solano et al., 2022) and field (1800–5000 L) (Chen et al., 2022) could remove 

20%–100% PAEs in soil (Table 2). Various types of organic wastes (e.g., sewage sludge, 

manure, fruit, and vegetable waste) have been used as compost material. Bulking agents 

(e.g., sawdust, wood waste, rice straw) have been used to adjust the moisture of the compost 

miXture. Composting biodegradation can (1) decrease moisture content due to metabolism 

and volatilization mechanisms, (2) increase pH due to the release of organic acids, and (3) 

decrease C/N ratio due to the decrease of substrates via microbial activity (Chang et al., 

2009; Lin et al., 2017). Thus, in order to achieve high PAE biodegradation, composting 

conditions are often maintained as follows: initial moisture content of 50%–60%, and C/N 

ratio of 20–30 (Lü et al., 2021; Tran et al., 2021a).

In general, aerobic composting (oXygen content >10%) results in higher PAE removal and 

reguires a shorter incubation time compared to anaerobic composting (Amir et al., 2005; 

Liang et al., 2008). Aerobic composting could remove DEHP at 91%–97% after 30 days, 

whereas anaerobic composting removed 55%–70% after 112 days (He et al., 2018; Yuan 

et al., 2011). During the composting process, the biodegradation rate at the thermophilic 

phase is significantly higher than that of other phases (mesophilic, cooling, and maturation) 

(Fu et al., 2013; Tran et al., 2021b). For instance, Tran et al. (2021b) showed that 

composting biodegradation removed was 98% of DOTP, with the majority of the degradation 

(76%) occurring in the thermophilic phase. The thermophilic phase also had the highest 

degradation rate (0.149 day−1). Similarly, the thermophilic phase accounted for 60% of 

DEHP degradation compared to the total removal of 85% (Cheng et al., 2008). Thermophilic 

phase degradation is higher for two reasons. First, high temperatures (55–70 °C) accelerate 

microbial growth, especially PAE-degrading strains. Second, at higher temperatures, the 

viscosity of the PAEs significantly decreases, enhancing oXygen penetration and interaction 

between PAEs and the bacterial community.

4.2 Roles of microbial community

The microbial community is key to PAE degradation in composting (Liang et al., 2008; 

Wang et al., 2015b). Next-generation sequencing has been used to identify microbial strains 

and their function in PAE degradation (Tran et al., 2021b). High-throughput sequencing 

technologies have increasingly been used to study the succession and characteristics of 
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microbial communities during composting of PAE-contaminated soil, including bacteria, 

fungi, algae, and yeast (Fang et al., 2017; Wang et al., 2019b). Various bacteria (e.g., 

Rhodococcus pyridinivorans XB, Bacillus subtilis No.66, Gordonia sp. QH-11), fungi (e. 

g., Aspergillus niger, Tranmetes versicolor, Pleurotus ostreatus), algae (e.g., Chlorella 
pyrenoidosa, Closterium lunula) and yeast (e.g., Rhodotorula rubra, Saccharomyces 
cerevisiae) have been reported as PAE-degraders (Benjamin et al., 2015; Liang et al., 

2008). Among these microorganisms, bacteria are the most abundant and play major roles 

in degrading PAEs (Ren et al., 2018). The characteristics and function of the bacterial 

community are affected by both internal (e.g., initial compost materials, substrates, pH, and 

C/N ratio) and external factors (e.g., operational conditions, including: aeration, moisture 

content, and temperature).

The richness and diversity of the bacterial community are expressed via parameters like 

OTUs, Chao 1, Shannon diversity and Shannon evenness indexes (Bai et al., 2020). The 

richness and diversity vary with composting phases. Often, without PAEs, the indices 

increase from the mesophilic phase to the maturation phase (Wang et al., 2017, 2019a). 

For instance, Wang et al. (2017) indicated that after 29 days of food waste composting, the 

Chao 1 and Shannon index increased rapidly from 229 to 411 and 3.31 to 3.85, respectively. 

However, with the presence of high levels of PAEs (e.g., DEHP and DOP), the richness and 

diversity decrease (Bai et al., 2020; Zhang et al., 2017). For instance, at DOP concentration 

of 1000 mg kg−1, the bacterial diversity dramatically reduced from 2.6 (day 2) to 1.7 (day 

12) (Zhang et al., 2017). Similarly, at a DEHP concentration of 40 mg kg−1, the measured 

Chao 1 (1293) and Shannon index (5.83) were lower than those at a concentration of 10 mg 

kg−1 (1411 and 5.97, respectively) (Gao et al., 2020). The toXicity of PAEs can disrupt cell 

membrane fluidity and integrity, causing growth abnormalities and thus adverse effects on 

the structure of the bacterial community (Cartwright et al., 2000).

Distinct shifts in bacterial community structure were observed during the composting 

process (Bai et al., 2020; He et al., 2018). Firmicutes, Proteobacteria, Acidobacteria, 

and Bacteroidetes play a vital role in PAE biodegradation. Among them, Firmicutes 

were the most abundant at the phylum level (Bai et al., 2020; Zhang et al., 2017). The 

relative abundance of Firmicutes declined remarkably with increasing temperature during 

composting (Wang et al., 2019a). For example, on day 1 (mesophilic phase), Firmicutes 

were the most abundant (76.7%) but gradually declined to 60% on day 10 (thermophilic 

phase, > 55 °C) (Wei et al., 2018). The thermophilic phase may limit bacterial growth 

and even eliminate some mesophilic members. Lactobacillales (phylum Firmicutes) were 

reported to dominate during the thermophilic phase, while Bacillales dominated the bacterial 

community during the mesophilic phase (Graça et al., 2021).

During the thermophilic phase, Proteobacteria were also found in high abundance (60.8%) 

(Huang et al., 2021). Pseudoxathonomas sp. (phylum Proteobacteria) could use PAEs as the 

sole carbon and energy source for metabolism (Meng et al., 2015). Likewise, the relative 

abundance of Bacteroidetes dramatically increased (to 12.4%) during the thermophilic phase 

since they can break down macromolecules (e.g., cellulose, lipid, and protein) for energy 

production (Huang et al., 2021). In contrast, Acidobacteria dominated the maturation phase, 

indicating the maturity of compost. Some gram-negative (e.g., Shingomonas yanoikuyae, 
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Comamonas acidovorans and Delfia sp.) and gram-positive bacteria (e.g., Arthobacter sp., 

Gordonia sp., and Rhodococcus sp.) have been identified as key PAE-degraders.

4.3. Biodegradation pathway

Complete PAE biodegradation requires primary and secondary pathways (Fig. 4). The 

primary pathway includes beta-oxidation, de-esterification or dealkylation, and trans-

esterification or demethylation. PAEs with a long alkyl chain are converted to a short 

alkyl chain (such as diethyl phthalate (DEP)) via beta-oxidation. Then, the shorter chain is 

oxidized to phthalic acid (PA) through either de-esterification for DEP or trans-esterification 

DMP. For DEP, the hydrolysis of each ethyl group occurs in the de-esterification, producing 

mono-ethyl phthalate (MEP) and finally PA. For DMP, trans-esterification produces mono-

methyl phthalate and finally PA.

In the secondary degradation, PA is metabolized and mineralized under aerobic and 

anaerobic conditions. Under aerobic conditions, PA’s ring cleavage occurs differently with 

gram-negative and gram-positive bacteria. Gram-negative bacteria produce dioxygenase to 

catalyze phthalate 4,5- dioxygenase into cis-4,5-dihydroxy-4,5-dihydrophthalate, whereas 

gram-positive bacteria convert PA via cis-3,4-dihydroxy-3,4-dihydrophthalate. Both pathway 

produce protocatechuate, which is further metabolized via either ortho- or - meta cleavage 

(by ring cleavage enzymes). In the ortho-cleavage, protocatechuate is cleaved in the ring 

to form beta-carboxy-cis, cis-muconic acid, and finally beta-ketoadipate. Pseudomonas 
fluorescens and P. putida are known to support this metabolism. In the meta–cleavage, 

protocatechuate is degraded into 4-carboxy-2-hydroxymuconic and semi-aldehyde, which is 

finally oxidized to pyruvate and oxaloacetate. These intermediate products are then oxidized 

and enter the tricarboxylic acid (TCA) cycle.

Under anaerobic conditions, PA is converted to benzoate via decarboxylation. The 

benzoate is further degraded to acetate and methane. During the decarboxylation pathway, 

intermediate products have been identified in some cases. Anaerobic degradation pathway 

is still ambiguous due to the lack of some information on PAEs-bacteria degrading. So 

far, Clostridium sp. and methanogenic consortia were reported as degrading phthalate 

anaerobically.

4.4. The specific enzymes involved in PAE biodegradation

A list of bacteria and their specific enzymes for PAE biodegradation was summarized in 

Table 3. Esterase and hydrolase play an important role in the primary pathway (conversion 

to PA), whereas protocatechuate 3,4 dioXygenase, catechol 1,2, dioXygenase, and phthalate 

dioXygenase are key to the secondary pathway of PAE biodegradation. Niazi et al. (2001) 

reported that the four isoesterases (Et1–4) from the cell-free extract of the bacterium 

Bacillus sp. had the ability to utilize DMP as a carbon source. Their results also indicated 

that isoesterases Et-1 and Et-4 showed a significantly higher preference for DMP hydrolysis 

compared to Et-2 and Et-3, which played a vital role in the de-esterification. Hydrolase, 

purified from cell extracts of Gordonia sp. strain P8219, was reported to effectively 

hydrolyze DEHP (Nishioka et al., 2006). Serine hydrolases were reported to be able to 
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perform meta-cleavage of intermediates of the PAE-metabolism process (Habe et al., 2003; 

Omori et al., 1986).

Rhodococcus sp. strain DK17 was reported to be able to oxidize and subsequently 

dehydrogenate PAEs to form protocatechuate through the genes encoding protocatechuate 

3,4-dioxygenase (ring-cleavage enzyme) (Choi et al., 2005). A similar finding revealed 

that two bacterial strains Acinetobacter sp. and Arthrobacter sp. could take Butyl Benzyl 

Phthalate (BBP) as the carbon source and the degradation occurred via protocatechuate 3,4-

dioxygenase that was produced by these bacteria (Yang et al., 2013b). Moreover, catechol 

1,2-dioxygenase and catechol 2,3-dioxygenase could help in cleaving the benzene ring, and 

the activity of the former was reported to be higher than that of the latter (Sanakis et al., 

2003). Chen et al. (2007) indicated that Microbacterium sp. strain CQ0110Y contained both 

catechol 1,2-dioxygenase and catechol 2,3-dioxygenase, which helped accelerate DEHP 

degradation via hydroxylation of the benzoic acid. Then, the oxidation occurred to produce 

catechol and muconic acid, which finally entered the TCA cycle.

5. Green technologies for remediation of PAE-contaminated soil

In recent years, various promising green technologies such as biochar adsorption, 

bioaugmentation, and phytoremediation have successfully been employed in PAE removal 

(Tables 4–6, respectively). Their advantages and disadvantages are discussed below.

5.1. Biochar adsorption

Biochar, with a large surface area and high porosity, has been examined for the removal 

of many organic contaminants, including PAEs (Hung et al., 2018; Lap et al., 2021; Tran 

et al., 2022a; Vu and Wu, 2019; Yang et al., 2013a). Like other carbonaceous adsorbents, 

hydrophobic interaction, π-π coordination, and hydrogen bonding are the main adsorption 

mechanisms of biochar for organic pollutants (Vu and Wu, 2022; Zhang et al., 2013). 

Functional groups on the surface of carbonaceous adsorbents like biochar might improve 

the adsorption capacity via ion exchange, complexation, co-precipitation, and electrostatic 

interaction (Chen et al., 2021; Vu and Wu, 2022; Wu et al., 2019). Freundlich isotherm 

is often used to describe the biochar adsorption of PAEs. Zhang et al. (2016) amended 

PAE-contaminated soil with 0.5% bamboo biochar and achieved relatively high N values 

(sorption intensity) of 0.67–0.8. Similarly, Zhang et al. (2014) added rice straw biochar with 

0.1–0.5 (w/w) to remove DEP and achieved N values of 0.31–1.01.

The adsorption efficiency is affected by the physicochemical properties of contaminated soil 

(e.g., organic matter and soil texture) and biochar (Nguyen et al., 2022a; Zhang et al., 2016). 

High organic carbon soil (HS) may increase adsorptive removal more than low organic 

carbon soil (LS). For example, reported Kf values for LS and HS with the amendment of 

0.5%–1.0% pig manure-derived biochars were 2.78 ± 0.18 and 4.11 ± 0.17 mg1–NLNkg−1, 

respectively (Chen et al. (2021). HS contains more functional groups, which help bind PAEs 

via electrostatic, hydrophobic interactions, and hydrogen bonds (Zhang et al., 2013). Also, 

high mineral-humus complexes in HS increase its affinity for PAEs (Chen et al., 2019; Wu 

et al., 2019; Zhang et al., 2016). Xiang et al. (2020) investigated the effects of paddy soil on 

DBP sorption using biochar. The findings showed that the positive effects on DBP sorption 
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were brought about by high aerobic surface paddy soil, which further helped enhance DBP 

biodegradation via aerobic bacterial metabolism (Jin et al., 2014). On the other hand, Qin 

et al. (2018) investigated the DBP sorption by pig biochar (PB) and bamboo biochar (BB). 

The higher efficiency of PB was attributed to its higher surface area, surface alkalinity, and 

mineral content (Jin et al., 2014; Zhang et al., 2016).

Biochar can also reduce the bioavailability of PAEs and improve the properties of soil 

(Zhang et al., 2016). Chen et al. (2019) reported that biochar significantly reduced 

the bioavailability of DEHP and enhanced microbial activity, reducing DEHP uptake in 

contaminated soil. He et al. (2016) revealed that organic matter was key to reducing 

DEHP bioavailability in contaminated soil. Moreover, biochar plays an important role in 

soil amendment through immobilization and adsorption of organic contaminants, which 

significantly enhanced the properties of contaminated soil (Chen et al., 2021). In soil, 

biochar increases pH by allowing hydrogen ions to form due to its negatively charged 

functional groups (Zhang et al., 2013) and through the potential release of alkali salts (e.g., 

Ca, Mg and Na). For instance, Dai et al. (2014) indicated that adding 1% biochar derived 

from swine manure increased the soil pH by 9%–19%.

5.2. Bioaugmentation

Microbial inoculation (bioaugmentation) is the addition of specific bacterial strains to 

accelerate the degradation of PAE in contaminated soil. Several bacterial strains have been 

isolated from contaminated soil to enhance PAE biodegradation. Many bacterial strains 

such as Gordonia sp. QH-11 (Kong et al., 2019), Rhodococcus ruber YC-YT1 (Yang 

et al., 2018), and Rhodococcus pyridinivorans XB (Zhao et al., 2018) have successfully 

been employed to degrade PAEs with impressive efficiencies (80%–100%). For instance, 

Kong et al. (2019) showed that at a high initial DEP concentration of 400 mg kg−1, the 

biodegradation efficiency reached 100% with the addition of Gordonia sp. QH-11. Similarly, 

the DEHP degrading efficiency of Rhodococcus ruber YC-YT1 reached 93% after seven 

days of incubation (Yang et al., 2018).

Bacterial degradation often occurs as the hydrolysis of ester linkage between alkyl chains 

and the aromatic ring (under aerobic/anaerobic conditions) (Liang et al., 2008). Thus, the 

biodegradation efficiency decreased with increasing alkyl chain length. For example, Kong 

et al. (2019) reported that 100% of the DBP (short-chain) at a high initial concentration (400 

mg kg−1) was degraded within 15 days of incubation by Gordonia sp. However, at an initial 

concentration of 50 mg kg−1, only 92% of DEHP (long-chain) was removed after 30 days of 

incubation with a similar Gordonia strain (Zhang et al., 2020). Also, operational conditions 

(e.g., moisture, pH, temperature, and salinity) significantly affect the growth and activity 

of bacterial strains during incubation. Jin et al. (2016) indicated that with the addition of 

Gordonia sp. QH-12, DBP biodegradation rate of varying initial concentration (100–750 mg 

kg−1) reached its highest at pH 7.0 and temperature 30 °C. With the addition of Gordonia 
alkanivorans YC-RL2, DEHP biodegradation was significantly inhibited at high salinity 

(6%), which caused stress and negative effects on bacterial growth (Nahurira et al., 2017).

Among the PAE-degrading bacteria, Gordonia plays the most important role (Benjamin 

et al., 2015; Jin et al., 2016). Various strains of the genus Gordonia have been isolated 
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from contaminated soil, e.g., Gordonia QH-12, Gordonia terrae RL-JC02, Gordonia terrae 
RL-JC02, and Gordonia sp. QH-11 (Nahurira et al., 2017; Zhang et al., 2020). As the 

sole carbon and energy source, these bacteria metabolized PAEs into intermediate products 

(Benjamin et al., 2015). For instance, Gordonia sp. QH-11 rapidly converted PAEs into 

phthalic acid (PA), which then was degraded by protocatechuate 3,4-phthalate dioXygenase 

(Kong et al., 2019). Gordonia terrae RL-JC02 hydrolyzed DEHP into PA via mono (2-

ethylhexyl) phthalate (MEHP), and then PA was quickly metabolized to protocatechuic acid 

(PCA) (Zhang et al., 2020). Gordonia sp. JDC2 is able to metabolize PAEs, but doesn’t 

appear to form PA (Wu et al., 2010). At present, the mechanism of PAE biodegradation 

pathways with Gordonia remains incomplete, which should require future research to clarify.

5.3. Phytoremediation

Phytoremediation uses plants/trees to remove contaminants from environmental media 

(Nguyen et al., 2020b, 2021). Therefore, it is considered a green and environmentally 

friendly treatment technology (Bui et al., 2017, 2019; Nguyen et al., 2020a). With 

phytoremediation, PAEs are removed through the uptake and translocation mechanisms by 

various plant species, e.g., Ipomoea aquatica, Chinese cabbage, and Medicago sativa (Cai et 

al., 2006, 2008b; Ren et al., 2020; Zhao et al., 2015). Ma et al. (2012) conducted field-scale 

phytoremediation experiments of PAEs using alfalfa (Medicago sativa) and achieved 80% 

removal of siX PAEs. Maize cultivar was reported to remove up to ~88% DEHP after 40 

days (Li et al., 2014). Similarly, Mo et al. (2009) showed that the bioconcentration factor 

of uptake of PAEs by vegetables (Brassica chinensis var. parachinensis, Ipomoea aquatica) 

varied from <0.0001–0.61.

The mechanisms of phytoremediation of PAEs are proposed in Fig. 5. Many plants 

adsorb PAEs and reduce their toXicity through mechanisms like rhizobacteria degradation, 

phytostabilization, phytoextraction, and phytovolatilization (Li et al., 2014). Other plants 

convert PAEs to monophthalates through detoXification with the help of microbial 

communities residing in the root nodules (Antoniadis et al., 2017). In the stem and 

leaf, phytostabilization and phytoextraction are the main removal mechanisms, in which 

extraction and transformation occur (Liao et al., 2019). Garden lettuce (Lactuca sativa L. var. 
longifolia) showed significant DBP absorption, in which high concentrations were found in 

the stem, root, and leaf (Liao et al., 2019). Leaves and stems were reported to accumulate 

DEHP better than roots (Cai et al., 2015). Ren et al. (2020) reported that DnBP could be 

taken by roots and shoots of alfalfa (Medicago sativa). The results also indicated that DnBP 

accumulated mainly in roots and adsorption to root epidermis and was the primary uptake 

mechanism. Further, DnBP could be converted to MnBP and PA through de-esterification 

followed by accumulation in cell components and organelles. The contaminants were 

gradually transferred to soluble components, and finally removed through phytoextraction.

6. Recommendations for future research

Composting process is robust and efficient for the remediation of PAE-contaminated soil. 

Further, combining composting with other technologies, e.g., bioaugmentation (inoculation 
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of bacterial strains), could enhance the removal efficiency and thus reduce the total treatment 

cost. However, knowledge gaps remain and future research is needed.

• Contaminated soil often contains a high number of contaminants, e. g., heavy 

metals and persistent organic compounds (e.g., pesticides, polycyclic aromatic 

hydrocarbons, petroleum hydrocarbons) with varying concentrations and forms 

(Tran et al., 2022b). Therefore, future research should address the removal of 

PAEs under the impacts of co-existing contaminants and other inorganic/organic 

chemicals in soil.

• The physicochemical properties of soil (e.g., texture, particle size, soil organic 

matter (SOM), ion exchange capacity) play important roles in PAE degradation. 

Yet, they are only addressed in a few studies so future research should pay more 

attention to these properties.

• The microbial community is key to effective PAE biodegradation. The structure 

and dynamics of the bacterial community in composting degradation of 

PAEs have been presented and well discussed. Thus, in the future, the 

bio-physicochemical properties of important PAE-degrading strains should be 

evaluated to establish the optimal conditions for composting remediation of 

PAEs in soil.

• Metagenomic sequencing is an effective tool to gain a comprehensive 

understanding of microbial communities. It should be widely applied during 

composting to identify and evaluate PAE biodegrading bacterial strains, 

especially anaerobic strains.

• The role of anaerobic bacteria is very limited in PAE biodegradation, and 

information on the anaerobic degradation pathways remains incomplete. Studies 

clarifying this should be conducted.

• Emissions of volatile organic compounds (VOCs) and the discharge of leachate 

reduce the number of materials in the composting miXture. Therefore, future 

research should perform the calculation of mass balance to evaluate the removal 

efficiency.

• Combining composting with other technologies is very promising in terms of 

enhancing removal efficiency and speeding up the degradation. However, the 

upscaling and economic feasibility of this idea should be further evaluated.

• As a green technology, biocatalysis is widely known for its robustness and 

effectiveness in degrading emerging organic pollutants through enzyme catalysis. 

In spite of this, there are still limitations associated with the combination of 

composting and biocatalysts. Therefore, combining these techniques in future 

studies will contribute to the full filling of knowledge gaps in this area.

7. Conclusions

PAE contamination in soil is one of the most concerning global environmental issues. 

Composting is a promising green and environmentally friendly PAE-degradation technology 
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(removal efficiency 25%–100%). Aerobic composting shows a higher biodegradation rate 

efficiency than anaerobic composting. In PAE biodegradation pathways, long alkyl chains 

are converted into short chains as by-products and other non-toxic products via microbial 

activity, including de-esterification, beta-oxidation, and trans-esterification. High-throughput 

sequencing provided insight into the structure and characteristics of microbial communities 

during the composting process. During the PAE biodegradation, the richness and diversity 

are significantly changed, and bacteria are key players in PAE degradation since their 

specific enzymes (e.g., hydrolase, esterase, catechol 1,2 dioxygenase, and protocatechute 

3,4 dioxygenase) accelerate the degradation. Notably, green technologies including biochar 

adsorption, bioaugmentation (inoculation of bacterial strains like Rhodococcus sp. and 

Gordonia sp.), and phytoremediation have shown their effectiveness in PAE degradation. 

Combining composting with these technologies, clarifying the roles of each bacterial strain, 

and assessing the upscaling and economic feasibility is welcomed in the future research.
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HIGH LIGHTS

• PAE-contaminated soil is an environmental concern worldwide.

• Composting is robust and effective for the remediation of PAE-contaminated 

soil.

• The richness and diversity of the microbial community changed during 

composting.

• Bacteria with their specific enzymes play key roles in PAE degradation.

• Green technologies can be integrated into composting for enhanced PAE 

removal.
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Fig. 1. 
Growth in several publications of bioremediation of phthalates in soil and that of 

bioremediation of phthalates in soil using composting from 2010 to 2020.
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Fig. 2. 
Main sources of PAEs in contaminated soils.
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Fig. 3. 
The situation of PAE-contaminated soil worldwide.
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Fig. 4. 
Proposed (a) primary and (b) secondary pathways for PAE biodegradation under aerobic and 

anaerobic conditions. Adapted from (Benjamin et al., 2015; Liang et al., 2008).
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Fig. 5. 
Proposed mechanism of phytoremediation of PAE-contaminated soil.
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