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Type 2 inflammation reduces SARS-CoV-2
replication in the airway epithelium in allergic
asthma through functional alteration of ciliated
epithelial cells
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Background: Despite well-known susceptibilities to other
respiratory viral infections, individuals with allergic asthma
have shown reduced susceptibility to severe coronavirus disease
2019 (COVID-19).
Objective: We sought to identify mechanisms whereby type 2
inflammation in the airway protects against severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) by using
bronchial airway epithelial cells (AECs) from aeroallergen-
sensitized children with asthma and healthy nonsensitized
children.
Methods: We measured SARS-CoV-2 replication and ACE2
protein and performed bulk and single-cell RNA sequencing of
ex vivo infected AEC samples with SARS-CoV-2 infection and
with or without IL-13 treatment.
Results: We observed that viral replication was lower in AECs
from children with allergic asthma than those from in healthy
nonsensitized children and that IL-13 treatment reduced viral
replication only in children with allergic asthma and not in
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healthy children. Lower viral transcript levels were associated
with a downregulation of functional pathways of the ciliated
epithelium related to differentiation as well as cilia and
axoneme production and function, rather than lower ACE2
expression or increases in goblet cells or mucus secretion
pathways. Moreover, single-cell RNA sequencing identified
specific subsets of relatively undifferentiated ciliated epithelium
(which are common in allergic asthma and highly responsive to
IL-13) that directly accounted for impaired viral replication.
Conclusion: Our results identify a novel mechanism of innate
protection against SARS-CoV-2 in allergic asthma that
provides important molecular and clinical insights during the
ongoing COVID-19 pandemic. (J Allergy Clin Immunol
2023;nnn:nnn-nnn.)

Key words: SARS-CoV-2, COVID-19, asthma, airway epithelial
cells, epithelium, IL-13, children

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2) has rapidly infected humans across the globe, causing one of
the most devastating pandemics in modern history, with 670
million confirmed cases and more than 6.7 million deaths
worldwide by January 2023.1 Although most cases of the result-
ing coronavirus disease 2019 (COVID-19) are mild, some cases
are severe and complicated by respiratory and multiorgan fail-
ure.2,3 As the pandemic has evolved, despite shifting risks with
the arrival of new variants and reduced morbidity and mortality
with the advent of vaccines and antiviral drugs, there has been
marked heterogeneity among individuals with regard to the risk
of infection with SARS-CoV-2 and/or severity of COVID-19 dis-
ease.4-6 Reported mortality rates have been as low as 0.2% and as
high as 27% depending on patient age and underlyingmedical co-
morbidities,7 which have been identified as the main risk factors
for more severe COVID-19.2,5,8-13 Identifying mechanisms that
explain disease heterogeneity with SARS-CoV-2 infection, in
particular, those that may provide protection, has been a goal
throughout the pandemic and can inform efforts to develop ther-
apeutic interventions to prevent and treat COVID-19.

Higher airway viral loads14-18 and deficient antiviral interferon
responses have been convincingly demonstrated to be associated
with more severe disease9-11,13; however, the mechanisms of
innate protection from SARS-CoV-2 remain poorly understood.
Despite their well-known susceptibilities to other common respi-
ratory viruses, especially human rhinoviruses,19 patients with res-
piratory allergy and allergic asthma, surprisingly, have shown
reduced susceptibility to severe COVID-19.20-25 These allergic
1
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diseases are characterized by chronic type 2 inflammation in the
airways, driven in part through elevated expression of, and
response to, IL-13.26 The hypothesized mechanisms by which
type 2 inflammation may be protective against SARS-CoV-2
have included observed lower angiotensin-converting enzyme 2
(ACE2) expression in airway epithelium27-29 and greater airway
mucus production,30 but prior studies have demonstrated that
these factors cannot fully account for impaired viral entry or repli-
cation in airway epithelial cells (AECs) treated with IL-13.31,32

We sought to identify the mechanism(s) by which type 2
inflammation in the airway protects against SARS-CoV-2
infection. We used primary bronchial AECs from well-
characterized aeroallergen-sensitized children with asthma
(hereafter referred to as allergic asthma) and healthy non-
sensitized children. AECs were differentiated ex vivo at an air-
liquid interface (ALI) to generate organotypic cultures. Cultures
were treated without or with IL-13 starting 1 week before
SARS-CoV-2 infection and then infected with SARS-CoV-2.
We measured SARS-CoV-2 replication and ACE2 protein
expression and performed bulk and single-cell RNA sequencing
(sc-RNAseq) of samples. Using combined bulk and single-cell
transcriptomics, we investigated whether IL-13 induced type 2
inflammation would decrease SARS-CoV-2 replication, and if
so, by what mechanisms.
METHODS

ALI culture of bronchial AECs
Bronchial AECs from healthy nonsensitized children (n5 17) and children

with allergic asthma (n5 15) aged 6 to 18 years (Tables I and II) were obtained

from subjects while under general anesthesia; the cells were obtained by using

4-mm Harrell unsheathed bronchoscope cytology brushes (ConMed, Utica,

NY). As we and others have described33,34 an unprotected brush was inserted

through an endotracheal tube, advanced until resistance was felt, and rubbed

against the airway surface for 2 seconds. Cells were then seeded onto T-25

cell culture flasks precoated with type I collagen and proliferated under sub-

merged culture conditions, as we have previously described.33 AECs from

children were obtained and utilized in these experiments under studies no.

12490 and no. 00002603 approved by the Seattle Children’s Hospital institu-

tional review board. Parents of subjects provided written consent and children

older than 7 years provided assent. Passage 3 AECswere differentiated ex vivo
for 21 days at an ALI on 12-well collagen-coated Corning plates with perme-

able transwells in PneumaCult ALI media (Stemcell Technologies, Vancou-

ver, British Columbia, Canada) at 37�C in an atmosphere of 5% CO2, as we

have previously described, producing an organotypic differentiated epithelial

culture with mucociliary morphology.33,35-37

In a biologic safety level 3 (BSL3) facility, AEC cultures were infectedwith

SARS-CoV-2 (USA-WA1/2020) at a multiplicity of infection (MOI) of 0.5.

SARS-CoV-2 replication was assessed by quantitative PCR (qPCR) 96 hours

post infection. ACE2 expression was assessed by qPCR, and protein

abundance was assessed in AEC lysates by ELISA in parallel uninfected

AEC cultures. In additional experiments, cultures of AECs from children with

allergic asthma were exposed to IL-13 (10 ng/mL), with each medium change

starting 1 week before and throughout SARS-CoV-2 infection.31,38,39 To

determine the impact of IL-13 alone onACE2 protein abundance in uninfected

cultures, cultures of AECs from patients with allergic asthma (n 5 10) and

healthy donors (n5 10) were exposed to IL-13 (10 ng/mL) for 1 week before

exposure to UV-inactivated SARS-CoV-2.40

At 96 hours post infection with SARS-CoV-2, RNAwas isolated from cells

by using Trizol and protein was isolated from cell lysates with radio-

immunoprecipitation assay buffer (Sigma-Aldrich, St Louis, Mo) containing

Triton X100 1% and SDS 0.1%, methods that we have demonstrated to fully

inactivate SARS-CoV-2. Expression of ACE2, glyceraldehyde-3-phosphate

dehydrogenase (GAPDH), hypoxanthine-guanine phosphoryltransferase

(HPRT), and peptidylprolyl isomerase A (PPIA) were measured by qPCR us-

ing Taqman probes (Thermo Fisher Scientific, Waltham, Mass). To measure

SARS-CoV-2 replication in AEC cultures we used the Genesig Coronavirus

Strain 2019-nCoVAdvanced PCRKit (Primerdesign, Chandler’s Ford, United

Kingdom), with duplicate assays of harvested RNA from each SARS-CoV-2–

infected AEC experimental condition. The viral copy number used in analyses

of each experimental condition was the mean of duplicate assays from each

experimental condition.

To extract protein from the cell layer of SARS-CoV-2–infected AEC

cultures, medium was first removed from the basolateral chamber of the

transwells. Next, 100 mL of cold PBS was added to the apical surface of cul-

tures and 1mLwas added to the basolateral chamber of cultures as awash step.

Then, 50mL of radioimmunoprecipitation assay buffer for protein extraction

ready-to-use-solution (Sigma-Aldrich, product no. R0278) containing Triton

X100 1% and SDS 0.1%was added to the apical surface of the AECs and incu-

bated for 15 minutes on ice. A pipet tip was then used to gently scratch each

apical well in a crosshatch pattern to loosen theAECs from the transwellmem-

brane. Material was collected and centrifuged at 10,000 rpm at 48C for 10 mi-

nutes, after which isolated protein was collected. ACE2 protein concentrations

were measured in cell layer lysates via ELISA (R&D Systems, Minneapolis,

Minn), with protein concentrations normalized to total protein levels in the

lysate (bicinchoninic acid protein assay [Sigma-Aldrich]).

qPCR gene expression and protein levels are presented as means plus or

minus the SD when data were normally distributed and as medians with

interquartile ranges if 1 or more groups were not normally distributed. To

determine whether data were normally distributed, the Kolmogorov-Smirnov

test was used (a5 0.05). ACE2 qPCR relative expression was standardized by

using GAPDH as a nonregulated reference gene. Additional analyses of ACE2

expression were also conducted by using HPRT and PPIA as reference genes.

GenEx, version 5.0.1, was used to quantify gene expression from qPCRnormal-

ized to GAPDH (MultiD Analyses AB, G€oteborg, Sweden) based on methods

described by Pfaffl.41 Data on at least 1 group or condition in each experiment

analyzed were determined to be nonnormally distributed; therefore, nonpara-

metric tests were used for the analyses. To compare gene expression data and

distributions of protein concentrations in cell lysates between paired groups,

the Wilcoxon matched-pairs signed rank test was used. For unpaired data the

Mann-Whitney test was used for analyses. For experiments with 3 or more con-

ditions, the Kruskal-Wallis 1-way ANOVA on ranks test was used, and post hoc

comparisons between pairs of subject groupsweremade by using theDunnmul-

tiple comparisons test (significance level set atP <.05). Correlations were deter-

mined by using the Spearman’s rank correlation coefficient. Data were analyzed

by using Prism 9.0 software (GraphPad Software, Inc, San Diego, Calif.). Sta-

tistical significance was set at P less than .05.



TABLE II. Samples used for each condition across assays

Sample

From patient with allergic asthma From healthy donor

qPCR Protein Bulk RNA-seq scRNA-seq qPCR Protein Bulk RNA-seq scRNA-seq

Uninfected 15 15 N/A N/A 17 17 N/A N/A

SARS-CoV-2 alone 15 15 9 2 17 17 5 2

IL-13 alone N/A 10 N/A N/A N/A 10 N/A N/A

SARS-CoV-2 1 IL-13 N/A N/A 9 2 N/A N/A 5 2

N/A, Not available.

TABLE I. AEC donor characteristics

Characteristic

Donors with allergic

asthma (n 5 15)

Healthy nonsensitized

donors (n 5 17)

Age (y), mean 6 SD 10.2 6 3.6 11.3 6 2.4

Female sex, no. (%) 8 (53%) 9 (53%)

Serum IgE level, mean 6 SD 193 6 229 91 6 150

Positive for >_2 aeroallergens according to allergen-specific IgE, no. (%) 9 (60%) 0 (0%)

Positive for >_3 aeroallergens according to allergen-specific IgE, no. (%) 5 (33%) 0 (0%)

FENO level (ppb), mean 6 SD) 18.4 6 12.9 8.8 6 2.1

FEV1 % predicted, mean 6 SD 99.6 6 9.8 102.2 611.6

FEV1/FVC ratio, mean 6 SD 0.84 6 0.07 0.88 6 0.05

History of severe asthma exacerbation, no. (%) 12 (80%) 0 (0%)

FENO, Fraction of exhaled nitric oxide; FVC, forced vital capacity.
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Bulk RNA-seq sample preparation, sequencing,

processing, and analysis
For bulk RNA sequencing (RNA-seq), bronchial AECs from a subset of the

healthy nonsensitized children (n5 5) and children with allergic asthma (n5
9) were differentiated ex vivo at an ALI to generate organotypic cultures by the

samemethods as alreadymentioned. Cultures were stimulated without or with

IL-13 (10 ng/mL), with each medium change starting 1 week before and

throughout SARS-CoV-2 infection. In a BSL3 facility, AEC cultures were in-

fected with SARS-CoV-2 (USA-WA1/2020) at an MOI of 0.5. RNAwas iso-

lated fromAECs by using Trizol with the PureLink RNAMini Kit (Invitrogen

ThermoFisher) and Phasemaker Tubes (Invitrogen ThermoFisher) and then

eluted into RNAse-freewater. Total RNAwas used to construct libraries by us-

ing the SMART-Seq v4Ultra Low Input RNAKit for Sequencing (Takara, San

Jose, Calif), with reverse transcription followed by PCR amplification to

generate full-length amplified cDNA. Sequencing libraries were constructed

by using the NexteraXTDNA sample preparation kit with unique dual indexes

(Illumina, San Diego, Calif) to generate Illumina-compatible barcoded li-

braries. Libraries were pooled and quantified using a Qubit Fluorometer

(Thermo Fisher Scientific, Waltham, Mass). Sequencing of pooled libraries

was carried out on a NextSeq 2000 sequencer (Illumina) with paired-end

53-base reads, using NextSeq P2 and NextSeq P3 sequencing kits (Illumina)

with a target depth of 5 million reads per sample. Base calls were processed

to FASTQs on BaseSpace (Illumina), and a base call quality-trimming step

was applied to remove low-confidence base calls from the ends of reads. Sam-

ples were sequenced in 2 batches by using repeated samples across batches to

allow assessment for batch effects. Resulting bcl files were deconvoluted and

converted to fastq format using Casava from Illumina. Fastq files were aligned

to the Ensembl version of the human genome (GRCh38, Ensembl 91) by using

STAR (version 2.4.2a). HTSeq-count (version 0.4.1) was used to generate

gene counts with mode as ‘‘intersection (nonempty)’’ and minimum alignment

quality set to 20 and otherwise set to default parameters. Quality metrics were

compiled from PICAR (version 1.134), FASTQC (version 0.11.3), Samtools

(version 1.2), and HTSeq-count (version 0.4.1). For quality control, samples

that had human aligned counts greater than 1 million mapped reads and a me-

dian coefficient of variation coverage less than 0.9 were kept. Genes were

filtered to include those that had a trimmed mean of M value normalization

count of at least 1 in at least 10% of samples and further filtered for only pro-

tein coding genes. Normalized counts were transformed to log2 counts per
million mapped reads along with observations level weights by using voom-

WithQualityWeights from the limma R package (version 3.5.1). We did not

observe any noticeable batch effect assessed using principal component anal-

ysis, so for replicate samples, the replicate with the highest aligned counts was

included for the analysis and other replicates were removed. The final data set

included 28 samples composed of 14,019 genes. Differentially expressed

genes (DEGs) were identified by using the limmaR package42 by linear mixed

effects model, ;stimulation 1 (1|donor). For plotting purposes, log2 fold

change (log2FC) values of more than 8 were truncated to log2FC 5 8.

Gene ontology (GO) and pathway enrichment analyses were performed by us-

ing the enrichR R package (version 3.0).43
scRNA-seq sample preparation, sequencing,

processing, and analysis
For scRNA-seq, bronchial AECs from a subset of the healthy nonsensitized

children (n 5 2) and children with allergic asthma (n 5 2) were differentiated

ex vivoat anALI togenerate organotypic cultures by the samemethods as already

mentioned. Cultures were stimulated without or with IL-13 (10 ng/mL), with

eachmedium change starting 1week before and throughout SARS-CoV-2 infec-

tion. In a BSL3 facility, AEC cultures were infected with SARS-CoV-2 (USA-

WA1/2020) at anMOI of 0.5. To dissociate the differentiated AECALI cultures

into single cells, the apical surfaceof the transwellwaswashed twicewith0.5mL

of PBS (Gibco, Billings, Mont), after which 300 mL of TrypLE Express (Gibco,

12604-013) warmed to 378C was added to the apical surface and 600 mL was

added to the basolateral chamber. The wells were incubated for 10 minutes at

378C, after which 200mL ofMinimumEssentialMedium, SpinnerModification

(SMEM) (Quality Biological, VWR, Gaithersburg, Md) was added to the apical

surface and gently pipetted 10 times by using a wide-orifice P1000 tip (Rainin,

Oakland, Calif). The cell suspension was transferred to a 50-mL conic tube con-

taining 10mL of 378CSMEM. The transwell was rinsedwith 500mL of PBS by

using wide-orifice tips, and the rinse was added to the cell suspension. The cells

were mixed by pipetting 20 times with a 5 mL serological pipet set to slow and

then centrifuged at 250 g for 5 minutes with brake and acceleration set to slow.

Next, the cell pellet was resuspended in 1 mL of TrypLE Express and incubated

for 5minutes at 378C. Then, the cell suspensionwas dilutedwith 5mL of SMEM

andcentrifugedat250g for5minuteswithbrakeand acceleration set to slow.The

cell pellet was resuspendedwith 1mLof 1%BSA (Sigma-Aldrich, A7906-50G)
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in PBS by using awide-orificeP1000 and gently pipetted 30 timesmaximum.An

additional 2 mL of 1% BSA in PBS was added and mixed gently with a 5 mL

serological pipet set to slow. The cell suspensionwas then filtered in a 2-step pro-

cess, first using a 30-mm filter (pluriSelect, El Cajon, Calif) with a wide-orifice

P1000 tip and then with a 40-mm Flowmi Cell Strainer (SP Bel-Art, Wayne,

NJ). The 103 Genomics (Pleasanton, Calif) Chromium Next GEM Single

Cell 3ʹ Reagent Kit v 3.1 was used to partition AECs into nanoliter-scale Gel

Beads-in-EMulsion (GEMs). GEMs were generated by combining barcoded

single-cell 3ʹ version 3.1 gel beads, master mix with 103 cell multiplexing oligo

labeled cells, and partitioning oil onto a 103 Chromium Chip G. Incubation of

the GEMs produced barcoded, full-length cDNA from polyadenylated mRNA

and barcoded DNA from the Cell Multiplexing Oligo Feature Barcode.

FollowingGEMgeneration, the gel beadswere dissolved, releasing primers con-

taining Illumina TruSeq Read 1 (read 1 sequencing primer), 103 Barcode,

unique molecular identifier, and poly(dT) sequence or primers containing an

Illumina Nextera Read 1 (read 1 sequencing primer), 103 Barcode, unique

molecular identifier, and Capture Sequence 1 or 2, thereby generating cDNA

from poly-adenylated mRNA and DNA from Cell Multiplexing Oligo Feature

Barcode simultaneously from the same single cell inside theGEM.After incuba-

tion, the GEMs were broken and pooled fractions were recovered. Silane mag-

netic beads were used to purify the cell barcoded products from the

post–GEM reverse transcription reactionmixture. The cell barcoded cDNAmol-

ecules were amplified via PCR to generate sufficient mass for library

constructions. Size selectionwas used to separate the amplified cDNAmolecules

for 3ʹ Gene Expression and Cell Multiplexing library construction. Single-cell

gene expression libraries were then constructed by using the 3’ version 3.1 Chro-

mium Next GEM Single Cell Kit (103 Genomics). Libraries were pooled and

treated with Illumina Free Adapter Blocking Reagent (Illumina) to block free

adapters and reduce index hopping. Sequencing of pooled libraries was carried

out on a NextSeq 2000 sequencer (Illumina) with use of NextSeq P3 flowcells

(Illumina).

scRNA-seq (103) data set preprocessing including cell demultiplexing and

alignment were performed by using the Cell Ranger Single-Cell Software

Suite (version 6.1.1, 103 Genomics, Inc). We prepared a custom reference

genome with human reference genome (GRCh38, Ensembl 91) and SARS-

CoV-2 genome (National Center for Biotechnology Information Refseq iden-

tifier NC_045512.2) as an additional chromosome and used it for alignment.

First, we removed genes expressed in fewer than 4 cells. Next, we removed

cells with fewer than 100 genes detected or cells with more than 20% mito-

chondrial reads. Further, to remove possible doublet cells, we removed cells

with more than 2500 genes detected. Counts data were normalized to

10,000 reads per cell, after which samples were integrated by using a stepwise

canonical correlation analysis (CCA) approach on 20 components and 2,000

variable genes. After integration, principal component analysis was run on in-

tegrated data from the samples of AECs from individuals with allergic asthma

by using the first 30 principal components, followed by Uniform Manifold

Approximation and Projection (UMAP) with 20 components and clustering

with a resolution of 0.3 and 20 components to identify distinct cell clusters.

Cluster-specific markers for each cluster were identified by using the FindAll-

Markers function, and cell types were manually annotated by assessing the

expression of cluster-specific markers to known cell type markers.44-49 Cells

from the healthy nonsensitized donors were then mapped to the identified

cell clusters from the allergic asthmaUMAP by utilizing the Seurat mapQuery

function; this approach assigned cells from the healthy control samples to the

cells with the greatest transcriptional similarity in the allergic asthma UMAP

space. All these analyses were performed in the Seurat R package (version

4.1.0) and R (version 4.1.2).
RESULTS

SARS-CoV-2 replication in AECs from healthy

nonsensitized children and children with allergic

asthma
In the first phase of this study, we compared SARS-CoV-2

replication andACE2 gene and protein expression in primary bron-
chial AECs from children with allergic asthma (n 5 15) and
healthy nonsensitized children (n 5 17) (Tables I and II). SARS-
CoV-2 replication was assessed by qPCR at 96 hours post infec-
tion. In parallel uninfected AEC cultures, ACE2 gene expression
was assessed by qPCR and ACE2 protein abundance was assessed
in AEC lysates by ELISA.We observed that SARS-CoV-2 replica-
tion was significantly lower in cultures of cells from children with
allergic asthma than in cultures of AECs from healthy nonsensi-
tized children (median viral copy 5 3 104 vs 3.8 3 105

[P5 .04]) (Fig 1, A). In uninfected cultures,ACE2 gene expression
was similar between the cultures from children with allergic
asthma and those from healthy nonsensitized children (see Fig
E1 in the Online Repository at www.jacionline.org); ACE2 protein
abundancewas not significantly different but trended toward lower
in AECs from children with allergic asthma than in AECs from
healthy nonsensitized children (median ACE2 protein 3.4 ng/mL
vs 4.5 ng/mL [P5 .06]) (Fig 1, B). Among the primary AEC cul-
tures from healthy children we observed a significant correlation
between SARS-CoV-2 levels in infected cultures and the ACE2
protein abundance in the parallel uninfected cultures (Spearman
r 5 0.66; P 5 .005 [see Fig E2 in the Online Repository at
www.jacionline.org]), whereas in the cultures of AECs from chil-
dren with allergic asthma we did not observe a significant correla-
tion between SARS-CoV-2 copy number and ACE2 protein
abundance (Spearman r5 0.18; P5 .52 [see Fig E2 in the Online
Repository at www.jacionline.org]).
Effect of IL-13 stimulation on ACE2 and SARS-CoV-2

replication in AECs from healthy nonsensitized

children and children with allergic asthma
In the second phase of this study, we observed that in

experiments wherein AECs from children with allergic asthma
(n 5 10) were treated without or with IL-13 (10 ng/mL), ACE2
protein abundance decreased by 3-fold (mean ACE2 protein of
2.8 ng/mL in untreated cultures versus 1.1 ng/mL in IL-13 treated
cultures [P 5 .006]) (Fig 1, D). Moreover, IL-13 stimulation
significantly reduced SARS-CoV-2 replication in infected cul-
tures from children with allergic asthma (median viral copy num-
ber of 6.4 3 104 in untreated AECs versus 1.9 3 104 in IL-13
treated AECs; P 5 .004) (Fig 1, C). When AECs from healthy
nonsensitized children (n 5 10) were treated with IL-13, ACE2
protein abundance decreased from a mean of 4.2 to 3 ng/mL
(P 5 .01, Fig 1, F); however, IL-13 stimulation did not reduce
SARS-CoV-2 replication in AECs from healthy nonsensitized
children (Fig 1, E).
Bulk transcriptomics data demonstrate that IL-13

stimulation reduces SARS-CoV-2 replication in

AECs from children with allergic asthma in parallel

with downregulation of ciliated epithelial cell

pathways
Next, we utilized bulk and single-cell transcriptomics ap-

proaches to identify potential mechanisms by which IL-13
stimulation reduces SARS-CoV-2 replication in the allergic
asthma airway epithelium. RNAwas isolated from AEC cultures
96 hours post infection for RNA-seq to comprehensively model
cellular responses to SARS-CoV-2 and IL-13 (n 5 9). We first
quantified viral load from bulk RNA-seq data by counting the
number of reads mapped to the SARS-CoV-2 genome normalized
to total unmapped human reads. Consistent with the qPCR results
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FIG 1. SARS-CoV-2 replication in AECs from healthy nonsensitized children and children with allergic

asthma and effect of IL-13 stimulation on ACE2 and SARS-CoV-2 replication. A, Boxplot showing SARS-

CoV-2 copy number measured by qPCR 96 hours after infection in bronchial AEC cultures from healthy

nonsensitized children (pink) and children with allergic asthma (light blue) (*P 5 .04). B, Boxplot showing

SARS-CoV-2 viral entry factor and ACE2 protein abundance in parallel uninfected AEC cultures from healthy

nonsensitized children (pink) and children with allergic asthma (light blue) (P 5 .06). C, Boxplot showing

viral copy number in cultures from children with allergic asthma infected with SARS-CoV-2 without and

with IL-13 (10 ng/mL) treatment (**P < .01). D, Boxplot showing ACE2 protein abundance in cultures from

children with allergic asthma infected with SARS-CoV-2 without and with IL-13 (10 ng/mL) treatment

(**P < .01). E, Boxplot showing viral copy number in cultures from healthy nonsensitized infected with

SARS-CoV-2 without and with IL-13 (10 ng/mL) treatment. F, Boxplot showing ACE2 protein abundance

in cultures from healthy nonsensitized infected with SARS-CoV-2 without and with IL-13 (10 ng/mL) treat-

ment (*P < .05).
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shown earlier in this article, IL-13 stimulation significantly
reduced viral load compared with unstimulated conditions in
allergic asthma (log2FC 5 –5.34; P 5 .03, Fig 2, A). Next, we
characterized the genes differentially expressed by IL-13 stimula-
tion after infection; in total, we identified 1756 differentially
expressed genes (absolute log2FC > 1; false discovery rate
[FDR]-adjusted P < .05) composed of 534 IL-13–upregulated
and 1222 IL-13–downregulated genes (Fig 2, B and see Table
E1 in the Online Repository at www.jacionline.org). Consistent
with the results from prior assays shown earlier in this article,
ACE2 expression was relatively decreased by IL-13 stimulation
(log2FC 5 –0.6; P 5 .014; FDR 5 0.056). Next, we aimed to
identify the genes likely mediating the reduction in SARS-CoV-
2 replication by IL-13 stimulation in AECs from children with
allergic asthma. We identified the genes with strong association
between viral load and expression across samples and filtered to
those genes differentially expressed by IL-13 stimulation.
A total of 473 genes demonstrated a positive association between
viral load and expression (Pearson correlation > 0.5) and a corre-
sponding robust downregulation by IL-13 stimulation (log2FC <

http://www.jacionline.org
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FIG 2. Bulk transcriptomics demonstrates that IL-13 stimulation reduces SARS-CoV-2 replication in AECs

from children with allergic asthma in parallel with downregulation of ciliated epithelial cell pathways. A,

Boxplot showing the viral load assessed by bulk mRNA sequencing in AECs from children with allergic

asthma stimulated without or with IL-13 and infected with SARS-CoV-2. Lines connecting the dots denote

samples from the same donor. B, Volcano plot showing the differentially upregulated and downregulated

genes by IL-13 stimulation. Significantly (FDR < 0.01) upregulated (log2FC > 1) and downregulated genes
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–1 and FDR < 0.001) (Fig 2, C and see Table E2 in the Online Re-
pository at www.jacionline.org). This gene set included multiple
airway ciliated epithelial cell–specific genes44,45 (Fig 2, C). For
example, PIFO, FOXJ1, and SNTN, which are well-established
ciliated cell marker genes, had strong positive associations with
viral load (Pearson correlation for PIFO 5 0.7; FOXJ1 5 0.67;
SNTN 5 0.67), and their expressions were decreased by IL-13
stimulation (log2FC for PIFO 5 –3.9; FOXJ1 5 –4.1; SNTN 5
–4.7) (Fig 2, D-F and see Fig E4 in the Online Repository at
www.jacionline.org). To understand the biologic functions repre-
sented by the 473 genes with this pattern, we performed GO and
pathway enrichment analysis, which showed that these genes spe-
cifically represent functions of ciliated epithelial cells and in
particular aspects of cilia axoneme assembly and movement,
microtubule bundle formation, and intracellular transport along
cilia (Fig 2, H). Conversely, 74 genes were negatively associated
with viral load (Pearson correlation < –0.5) and were robustly up-
regulated by IL-13 stimulation (log2FC > 1; FDR < 0.001). For
example, CYP27B1, a known gene in the keratinocyte differenti-
ation process, showed a strong negative association with viral
load (Pearson correlation5 –0.63) and its expression was upregu-
lated by IL-13 stimulation (log2FC5 2.8) (Fig 2,G). GO analysis
of these 74 genes showed enrichment for keratinocyte differenti-
ation pathways, response to lipids and cytokines, and ion transport
(Fig 2, I). In contrast, a targeted analysis of type I IFN response
genes using the MSigDB50 HALLMARK_INTERFERON_AL-
PHA_RESPONSE gene set showed modest differential expres-
sion with IL-13 but without a consistent relationship to viral
load (see Fig E4).
IL-13 stimulation decreases viral replication

through specific effects on clusters of relatively

undifferentiated ciliated epithelial cells common in

AECs from children with allergic asthma
Next, we performed scRNA-seq on cultures of AECs from

children with allergic asthma to understand how individual cell
type–specific responses reduce SARS-CoV-2 replication with IL-
13 stimulation. scRNA-seq libraries were generated from 2
donors with allergic asthma treated with or without IL-13 and
then infected with SARS-CoV-2 by using the same methods as
described earlier in this article. These yielded 37,828 individual
cells for analysis after filtering and quality control (Fig 3 and see
Fig E5 in the Online Repository at www.jacionline.org). Clus-
tering analysis identified 15 cell clusters, which we annotated
by using cell type–specific markers for known airway cell types
(log2FC > –1) are denoted by blue and red color points,

highlighted. C, Scatter plot showing the association be

expression. The x-axis represents the change in expres

sents the correlation to viral load. The color of the po

expression [–log10(adjusted P [adj.P])]. Genes significan

correlated with viral load (Pearson correlation coefficien
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significant association of viral load and expression (scat
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age of genes, and the intensity of color denotes statistic

for the 74 genes showing negative association between

stimulation. The size of each dot denotes the percentag

tical significance as –log10(adj.P).
(Fig 3, A and see Fig E5). This analysis revealed major epithelial
cell types: basal cells (clusters C2 and C5), mitotic basal cells
(cluster C9), developing secretory cells (C0), club cells (cluster
C1), goblet cells (clusters C3 and C10), ciliated cells (clusters
C4, C6, C8, and C13), deuterosomal cells (cluster C12), and ion-
ocytes (cluster C11). In addition, we identified a cell cluster char-
acterized primarily by high expression of interferon-stimulated
genes (cluster C7). To measure the viral load on a per-cell basis,
we mapped reads to the SARS-CoV-2 genome and quantified
viral load as the number of SARS-CoV-2 reads normalized to
the total unmapped human reads. We compared the differences
in viral load as a ratio of viral load in IL-13–stimulated samples
to that in unstimulated samples within each cell cluster and
observed that IL-13 stimulation decreased SARS-CoV-2 replica-
tion across all cell populations, albeit to strikingly variable de-
grees of magnitude (Fig 3, B and C). The largest reductions in
viral load occurred in 3 of the 4 ciliated cell clusters (ie, C4,
C8, and C13) and also in the deuterosomal cells (C12), which
are ciliated cell precursors (log2FC 5 –1.89 to –2.26). Interest-
ingly, in contrast, the other ciliated cell cluster, C6, showed the
least reduction in viral load among all of the clusters
(log2FC 5 –0.35). We focused on identifying differences in
expression among these ciliated cell clusters and their responses
to IL-13 that account for these large differences in reduction in
SARS-CoV-2 replication. We discovered that C4, C8, C13, and
C12 had significantly lower expression of ciliated cell–specific
marker genes than of C6 (Fig E5) and further that these marker
genes were significantly decreased by IL-13 (see Fig E6 in the
Online Repository at www.jacionline.org). The expression levels
of many ciliated cell marker genes were correlated with viral load
specifically in these clusters (Fig 3,D and see Table E2) but not in
cluster C6. For example, PIFO was significantly downregulated
by IL-13 and was correlated with viral load in C4 and C8 (Pearson
correlations C45 0.26 and C85 0.35) but not in cluster C6 (Pear-
son correlation 5 0.085) (Fig 3, E). A similar observation was
true for FOXJ1 (Pearson correlations C4 5 0.47 and C8 5
0.32) and several other ciliary cell marker genes (Fig 3, E). Over-
all, we observed that many ciliated cell–specific genes were
downregulated by IL-13 and had stronger correlations with viral
load in clusters C4, C8, C13, and C12 than in C6. Furthermore, the
majority of genes that were strongly associated with viral levels
on a per-cluster basis were in these clusters rather than in cluster
C6 (Fig 3,D and F). Additionally, 333 genes were associated with
viral load on a per-cell basis among these ciliated cell clusters;
these genes were significantly overlapping with the 473 genes
previously identified in the bulk RNA-seq analysis already
described (P < 1.0e–16; hypergeometric test) (Fig 3, G) and
respectively. Select top-ranked genes by log2FC are

tween viral load and IL-13–induced differential gene
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FIG 3. IL-13 stimulation decreases viral replication through specific effects on clusters of relatively

undifferentiated ciliated epithelial cells common in AECs from children with allergic asthma. A, UMAP clus-

tering and visualization of scRNA-seq data from AECs from 2 children with allergic asthma stimulated with

or without IL-13 and infected with SARS-CoV-2. Cell clusters are labeled based on highly expressed marker

genes of airway epithelial cell types. B and C, Cell type–specific differences in viral load are presented as the

ratio of viral load in the IL-13–stimulated condition to that in the unstimulated condition on a log2 scale

shown in each cell cluster on the UMAP (B) and summary of the magnitude of change in viral load due

to IL-13 stimulation in each cluster (C). D, Boxplot showing the distribution of single-cell–level correlations

between viral load and expression of cell cluster genes; the numbers of significant genes with a Pearson

correlation greater than 0.25 are noted. E, Dot plot showing the degree of differential expression in the

IL-13–stimulated condition versus in the unstimulated condition and the correlation to viral load for ciliated

cell marker genes in 3 ciliated cell clusters (C4, C8, and C13 represent relatively undifferentiated ciliated cell

clusters, whereas C6 represents the terminally differentiated multiciliated cell cluster). F, Venn diagram

showing the overlap of genes correlated with viral load within 3 ciliated cell clusters. G, Venn diagram

showing the overlap of genes positively associated with viral load from bulk RNA-seq data and cell

cluster–specific genes positively associated with viral load from scRNA-seq data.
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were similarly enriched for many of the same ciliated epithelial
cell functions, including cilium assembly, axoneme assembly
and movement, and intracellular transport along cilia (see Fig
E6). Thus, although globally showing an expression pattern of
ciliated cells, ciliated cell clusters C4, C8, and C13 demonstrated
overall lower expression of genes of ciliary function than C6 did
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FIG 4. IL-13 stimulation has a variable effect on SARS-CoV-2 replication in healthy nonsensitized children.

A, Boxplot showing the differences in viral load between healthy nonsensitized children infected with

SARS-CoV-2 and those stimulated without or with IL-13. Lines connecting the dots denote samples from

the same donor. B, Volcano plot showing the differentially upregulated and downregulated genes by IL-

13 stimulation. Significantly (FDR < 0.01) upregulated (log2FC > 1) and downregulated genes (log2FC

< –1) are denoted by blue and red color points, respectively. Select top-ranked genes by log2FC are high-

lighted. C, Scatter plot showing the association between viral load and expression of genes. Each point de-

notes a gene, and the color of the point shows the statistical significance from differential expression

analysis in terms of –log10(adjusted P [adj.P]), and top-ranked genes are highlighted by larger point size

and a circle around the points. Select ciliary and type 2–specific genes are highlighted in the same way

as in Fig 2,C.D, Examples of select ciliatedmarker genes association between D viral load (difference in viral

load between IL-13–stimulated and unstimulated) and D expression (difference in expression between IL-

13–stimulated and unstimulated) in children with allergic asthma and healthy nonsensitized donors. E,

Annotation of cells from scRNA-seq data generated from healthy nonsensitized children by using cells

from children with allergic asthma as a reference to map cells onto the allergic asthma UMAP space. F

and G, Cell type–specific differences in viral load as the ratio of viral load in the IL-13–stimulated to that

in the unstimulated condition on a log2 scale are shown on the allergic asthma UMAP space (F) and

cluster-level summary on the heatmap (G).
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(Fig E5), and they were highly responsive to IL-13 in further
downregulating these genes and reducing viral replication. Taken
together, the data indicate that these clusters (C4, C8, and C13)
are relatively undifferentiated and/or transitional ciliated epithe-
lial cells when compared with C6, which are terminally differen-
tiated multiciliated cells.
IL-13 stimulation has a variable effect on SARS-

CoV-2 replication in healthy nonsensitized children
For comparison, we investigated the effect of IL-13 stimulation

on SARS-CoV-2 replication and bulk gene expression in AECs
from healthy nonsensitized children (n5 5). Interestingly, we did
not see a significant change in viral load after IL-13 stimulation
(P 5 .8); rather, there was a variable response among individuals
(Fig 4, A). IL-13 stimulation had a lesser effect on gene expression
in healthy nonsensitized than in childrenwith allergic asthma, with
relatively fewer differentially expressed genes (1179 differentially
expressed genes [553 genes upregulated and 626 genes downregu-
lated at an absolute log2FC > 1 and FDR < 0.05]) (Fig 4, B and see
Table E1). We still observed a correlation among ciliary cell gene
expression and viral load that is congruent with the observation in
the groupwith allergic asthma (438 genes overlappingwith the 473
genes from children with allergic asthma described earlier in this
article), but these genes were not significantly decreased in expres-
sion by IL-13 stimulation in the nonsensitized healthy group (Fig 4,
C and see Table E3 in the Online Repository at www.jacionline.
org). The reason for this was that these genes generally showed
larger and more consistent decreases with IL-13 stimulation in
children with allergic asthma than in healthy nonsensitized chil-
dren, resulting in larger and more significant effect sizes; this
was in contrast to many other canonical IL-13 response genes
(eg, POSTN and CLCA1) that showed similar changes in both
groups (see Fig E7 in the Online Repository at www.jacionline.
org). By examining the associations between the D expression
(IL-13–stimulated minus unstimulated) of these genes and the D
viral load, we demonstrated that the variable response of these
genes to IL-13 corresponded closely to the variable change in viral
load (Fig 4, D and see Fig E7).

Next, we examined the cell-specific responses from scRNA-
seq data generated from healthy nonsensitized children. To
compare cell populations directly between healthy nonsensitized
children and children with allergic asthma, we mapped and
annotated individual cells from the healthy nonsensitized children
to previously identified cell clusters from children with allergic
asthma by utilizing the Seurat mapQuery function. This approach
finds whether cells from the healthy nonsensitized children were
more similar to one cluster than to the others and thereby
superimposes these cells on the previously identified clusters
from children with allergic asthma. Consistent with the bulk
RNA-seq data, we observed only small and variable viral load
differences due to IL-13 stimulation in the cell clusters in AECs
from healthy nonsensitized donors (Fig 4, F and see Fig E8 in the
Online Repository at www.jacionline.org). Most notably, almost
all of the ciliated cells in healthy nonsensitized donors mapped
to cluster C6 (99.3%), the terminally differentiated multiciliated
cells (which had relatively minimal downregulation of ciliated
cell genes with IL-13 and which we had seen previously) did
not show a large drop in viral load with IL-13 in allergic asthma.
A small number (0.7%) mapped to C8, but none mapped to C4 or
C13 (Fig 4, E and see Table E4 in the Online Repository at www.
jacionline.org). This means that most of the ciliated cells in
healthy controls were more similar in gene expression to C6
(the terminally differentiated multiciliated cells) than to C4, C8,
or C13 (the undifferentiated and/or transitional ciliated epithelial
cells).
DISCUSSION
We have demonstrated that in organotypic AEC cultures,

SARS-CoV-2 replication was lower in epithelium from children
with allergic asthma than healthy nonsensitized children. IL-13
stimulation further decreased viral replication in children with
allergic asthma, but interestingly, it had a variable effect in
healthy nonsensitized children. Bulk RNA-seq data demonstrated
that lower viral transcript levels were closely associated with a
downregulation of functional pathways of the ciliated epithelium,
as opposed to lower ACE2 expression or increases in goblet cell
counts or mucus secretion pathways. Furthermore, scRNA-seq
data demonstrated a congruent result and identified specific
subsets of relatively undifferentiated ciliated epithelial cells,
common in cultures from donors with allergic asthma and highly
responsive to IL-13, that show an impairment of viral replication.
Specifically, these cells showed relative decreases in the key
ciliary transcription factor FOXJ1 and corresponding downregu-
lation of axoneme assembly and intraciliary transport machinery
necessary for efficient viral replication,51,52 likely resulting in the
lower viral levels within these individual cells. AECs from
healthy nonsensitized children largely lacked these IL-13 respon-
sive undifferentiated ciliated epithelial cells. Congruently, we did
not observe a consistent decrease in viral replication in response
to IL-13 in healthy nonsensitized AECs; rather, viral load re-
mained closely associated with the relative expression of these
ciliary cell–specific genes. In contrast, terminally differentiated
multiciliated cells showed efficient viral replication. and their
cilia specific genes were less affected by IL-13.

In the airway epithelium, ACE2 is relatively specifically
localized to terminally differentiated multiciliated cells, which
are the primary targets for SARS-CoV-2 replication in the early
stages of disease; additionally, multiple studies have confirmed
that viral tropism is quite specific tomulticiliated cells.46,52-55 The
cilia on these cells contain the molecular components required for
SARS-CoV-2 entry, and it has been proposed that the cilia specif-
ically mediate both endocytosis and exocytosis of mature virions
within multiciliated cells, initiating and spreading infection.51

Although cilia are generally understood to provide a protective
role in the airways through their role in mucociliary clearance,
in the case of SARS-CoV-2, they are exploited to propagate infec-
tion. SARS-CoV-2 does not infect epithelial basal cells; in fact, it
is the renewal of differentiated multiciliated epithelial cells that
has been shown to be necessary to maintain SARS-CoV-2 replica-
tion.56 Ciliated cell death and ciliary dysfunction result during
SARS-CoV-2 infection, which is postulated to be due to cell dam-
age from the virus; however, a decrease in FOXJ1 also occurs, re-
sulting in a dedifferentiation of multiciliated cells.57 It has been
hypothesized that the dedifferentiation of multiciliated cells
may in fact serve as a protective host mechanism that prevents
viral particles from interacting with cilia58; however, whether
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downregulation of FOXJ1 is a pathologic effect of the virus or a
protective host response has remained unclear. Our data demon-
strate that a naturally occurring downregulation of FOXJ1 owing
to IL-13, and the associated functional alteration of ciliated
epithelial cells toward an undifferentiated state, impairs viral
replication. IL-13 has long been known to downregulate FOXJ1
and cause retraction of motile cilia,59 and in hamsters, IL-13 is
known to be upregulated in the respiratory tract with SARS-
CoV-2 infection,60 which is postulated as a protective response.
Our data indicate that the chronic effects of type 2 inflammation
in the airway of individuals with allergic asthma results in subsets
of ciliated epithelial cells that have lower FOXJ1 expression and
concomitant lower expression of key machinery of the cilia,
axoneme, and cytoskeleton of ciliated cells. Moreover, we
conclude that AECs from the airway in allergic asthma are highly
sensitive to the effects of IL-13 to significantly impair SARS-
CoV-2 replication. Although in the setting of allergic asthma
these cells likely contribute to airway dysfunction, they also repli-
cate SARS-CoV-2 less efficiently than do AECs from healthy
nonsensitized children. Although type 2 inflammation can
decrease interferon responses, this does not result in an increase
in SARS-CoV-2 replication, and this effect of IL-13 is superseded
by the identified effects on the ciliated epithelium that impair viral
replication. We conclude that paradoxically, this ‘‘adverse’’ effect
of type 2 inflammation on ciliated cells in the airway provides
innate protection against SARS-CoV-2. We hypothesize that
this innate cellular protection contributes significantly to the
counterintuitive clinical protection against severe COVID-19
observed in individuals with allergic asthma.

Our analyses were limited in sample size to a small group of
children with allergic asthma and healthy nonsensitized com-
parators. The high-quality data and large number of single-cell
transcriptomes provided ample power to identify this signal, but
they do limit our ability to generalize the relevance of our
results more broadly, for instance, to allergen sensitized in-
dividuals without asthma,61 to adults with allergic asthma, or to
children or adults with other asthma endotypes. Also, because
our results derive from cell culture experiments, we cannot
conclude the extent to which these effects of type 2 inflamma-
tion on SARS-CoV-2 would occur in vivo or the degree to which
they might affect clinical severity of COVID-19. Additionally,
because we did not examine uninfected epithelium, we cannot
conclude that specific cell clusters of transitional/undifferenti-
ated ciliated cells uniquely identified in allergic asthma already
exist in asthma epithelium or are generated in response to
SARS-CoV-2 infection specifically in asthma epithelium.
Furthermore, our data do not allow us to identify underlying
epigenetic or genetic features that mediate the observed differ-
ences in cellular expression whereby type 2 inflammation im-
pairs SARS-CoV-2 replication; nor do the data identify the
extent to which it is a feature of a chronic change in the epithe-
lium in allergic asthma or an immunologic feature of allergic
sensitization. Finally, it would be of significant value to contrast
our data to data on the effects of type 2 inflammation on other
respiratory viruses that drive more severe clinical disease in
allergic asthma, such as rhinoviruses. Nevertheless, we believe
that our data identify a highly significant and novel mechanism
of innate protection against SARS-CoV-2 in allergic asthma that
provides important molecular and clinical insights during the
ongoing COVID-19 pandemic.
Clinical implications: An important open question regarding
the protective effects of type2 inflammation against SARS-
CoV-2 infection with important mechanistic and clinical rele-
vance has been addressed.
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