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Abstract

Aims Acute decompensated heart failure (ADHF) presents with pulmonary congestion, which is caused by an increased pul-
monary arterial wedge pressure (PAWP). PAWP is strongly associated with prognosis, but its quantitative evaluation is often
difficult. Our prior work demonstrated that a deep learning approach based on chest radiographs can calculate estimated
PAWP (ePAWP) in patients with cardiovascular disease. Therefore, the present study aimed to assess the prognostic value
of ePAWP and compare it with other indices of haemodynamic congestion.
Methods and results We conducted a post hoc analysis of a single-centre, prospective, observational heart failure registry
and analysed data from 534 patients admitted for ADHF between January 2018 and December 2019. The deep learning ap-
proach was used to calculate ePAWP from chest radiographs at admission and discharge. Patients were divided into three
groups based on the ePAWP tertiles at discharge, as follows: first tertile group (ePAWP ≤ 11.2 mm Hg, n = 178), second tertile
group (11.2 < ePAWP < 13.5 mm Hg, n = 170), and third tertile group (ePAWP ≥ 13.5 mm Hg, n = 186). The third tertile group
had a higher prevalence of atrial fibrillation and lower systolic blood pressure at admission; a lower platelet count and higher
total bilirubin at both admission and discharge; and a higher left atrial diameter, peak early diastolic transmitral flow velocity,
right ventricular end-diastolic diameter, and maximal inferior vena cava diameter at discharge. During the median follow-up
period of 289 days, 223 (41.7%) patients reached the primary endpoint (a composite of all-cause mortality or rehospitalization
for heart failure). Kaplan–Meier analysis revealed a significantly higher composite event rate in the third tertile group (log-rank
test, P = 0.006). Even when adjusted for clinically relevant factors, a higher ePAWP at discharge and a smaller decrease in
ePAWP from admission to discharge were significantly associated with higher event rates [ePAWP at discharge: hazard ratio,
1.10; 95% confidence interval (CI), 1.02–1.19; P = 0.010; and size of ePAWP decrease: hazard ratio, 0.94; 95% CI, 0.89–0.99;
P = 0.038].
Conclusions Our study suggests that ePAWP calculated by a deep learning approach may be useful for identifying and mon-
itoring pulmonary congestion during hospitalization for ADHF.
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Introduction

Acute decompensated heart failure (ADHF) has high rates of
mortality and hospitalization and represents a major burden
for health care systems.1 Pulmonary congestion often

develops in ADHF because of increased pulmonary arterial
wedge pressure (PAWP).2 Among patients hospitalized for
heart failure (HF), a persistent high PAWP and residual pul-
monary congestion at discharge are strongly associated with
high mortality and readmission rates.2 Thus, alleviation of
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congestion is one of the most important therapeutic goals in
patients hospitalized for ADHF,3 and reliable detection and
monitoring of pulmonary congestion before discharge are im-
portant in these patients. Nevertheless, quantitative evalua-
tion of pulmonary congestion is usually difficult, and about
half of patients admitted for ADHF are reported to be
discharged with residual congestion.4

Chest radiography is a fast, simple, and classic method to
assess elevated PAWP and pulmonary congestion in HF,5 but
the interpretation of chest radiographs is subjective and
does not necessarily provide an accurate evaluation of
PAWP. Recently, the further development of artificial intelli-
gence has allowed deep learning to be applied to medical
images.6 Our prior work demonstrated that a deep learning
approach based on chest radiographs can calculate esti-
mated PAWP (ePAWP) in patients with cardiovascular dis-
eases who have undergone right heart catheterization.7

However, data are lacking on the prognostic relevance of
this deep learning approach in ADHF. We hypothesized that
our deep learning application based on chest radiographs
could be used to evaluate the severity of HF and predict ad-
verse clinical outcomes in patients with ADHF. Therefore,
this study aimed to assess the prognostic value of ePAWP
calculated by this deep learning approach and to compare
it with other indices of haemodynamic congestion in pa-
tients with ADHF.

Methods

Study population

The present study was a post hoc analysis of a single-centre,
prospective, observational cohort registry, the SAKURA HF
REGISTRY-2 (UMIN 000043852). This registry enrolled consec-
utive patients with ADHF admitted to Nihon University
Itabashi Hospital, Tokyo, Japan, who agreed to be followed
for the collection of outcome data, as previously described.8

The diagnosis of ADHF was based on the Framingham
criteria.9 All patients provided written informed consent. To
evaluate potential prognostic factors, demographic, labora-
tory, and echocardiographic data were obtained at admission
and discharge. We included consecutive patients enrolled in
the registry between January 2018 and December 2019. A to-
tal of 684 patients were screened, but we excluded 50 pa-
tients who died during hospitalization, 93 whose prognosis
could not be determined, and 7 with missing chest radio-
graphs at admission or discharge. Thus, we analysed data
from 534 patients.

The study complied with the principles of the Declaration
of Helsinki. The use of patient information was approved by
the Nihon University Itabashi Hospital Ethics Committee
(RK-180612-2).

Deep learning approach for estimated pulmonary
arterial wedge pressure

For this study, we used the previously developed ePAWP
deep learning model based on chest radiographs.7 Briefly,
we constructed a regression convolutional neural network
(CNN) based on the VGG16 model, one of the popular models
for transfer learning.10 Digital Imaging and Communications
in Medicine images of the chest radiographs were trans-
formed to images with a size of 256 × 256 pixels. After anal-
ysis by the CNN based on VGG16, the convoluted images
were transitioned to a global average pooling (GAP) layer.
We set the identity function as the activation function of
the output layer to estimate PAWP as a numeric value. Fur-
thermore, we used the GAP layer to create a regression acti-
vation map to visualize how our deep learning model esti-
mated PAWP. The model was trained by cross-validating
748 data and was tested in 188 data. In the test data, the
ePAWP generated by the deep learning model was signifi-
cantly correlated with PAWP obtained by right heart cathe-
terization (r = 0.62, P < 0.001). The details of the model
structures are shown in Figure 1.

We calculated ePAWP with the deep learning model by
using the chest radiographs performed at admission and dis-
charge and divided patients into three groups based on the
ePAWP tertiles at discharge. In addition, we calculated the de-
crease in ePAWP by subtracting the ePAWP at discharge from
that at admission. We also calculated the cardiothoracic ratio
(CTR) for the assessment of cardiac chamber size from the
chest radiographs performed at discharge. At admission, 296
(55.4%) chest radiographs were obtained in anteroposterior
view, and 238 (44.6%) were in posteroanterior view. At
discharge, 153 (28.7%) chest radiographs were obtained
in anteroposterior view, and 381 (71.3%) were in
posteroanterior view.

Laboratory tests and echocardiography

Routine laboratory data were collected at admission and dis-
charge. Echocardiography was performed before discharge
by experienced sonographers according to the American Soci-
ety of Echocardiography guidelines.11 Left ventricular (LV) di-
astolic diameter and left atrial diameter were measured in
the parasternal long-axis view, and LV ejection fraction (LVEF)
was measured with the modified Simpson method or the
Teichholz method. The right ventricular end-diastolic diame-
ter (RVDd) was measured at the basal ventricular level of
the right ventricle in end diastole. LV diastolic function was
measured as the ratio of early transmitral flow velocity to mi-
tral annular velocity (E/e′), which was calculated by
transmitral Doppler flow and tissue Doppler imaging. The tri-
cuspid regurgitation pressure gradient (TRPG) was measured
by continuous-wave Doppler imaging. The severity of valvular
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regurgitation was graded by using colour flow Doppler im-
ages. The diameter of the inferior vena cava (IVC) was mea-
sured from the subcostal view.

Follow-up and clinical outcomes

Patients were prospectively followed up until death or De-
cember 2020. The primary endpoint was the composite of
all-cause mortality or rehospitalization for HF.

Statistical analysis

Continuous variables are presented as medians [interquartile
range (IQR)], and categorical variables as numbers (percent-
ages). Statistical differences between continuous variables
were compared by a one-way analysis of variance followed
by the post hoc Tukey–Kramer test or the Kruskal–Wallis test
followed by the Steel–Dwass test. Comparisons of the ePAWP
values at admission and discharge were performed with the
paired t-test. Categorical variables were compared with the
χ2 test with Bonferroni correction. The Kaplan–Meier method
was used to analyse patient survival, and the log-rank test
was used to compare group differences. Correlations
between variables were evaluated based on Pearson’s

correlation coefficients. Univariate Cox proportional hazards
analyses were performed to evaluate the association be-
tween ePAWP at discharge, ePAWP decrease, and event inci-
dences. Hazard ratios with 95% confidence intervals (CIs)
were calculated.

We compared the prognostic value of ePAWP with the
Meta-Analysis Global Group in Chronic Heart Failure
(MAGGIC) risk score, one of the established risk stratification
scores in patients with ADHF. The MAGGIC risk score was cal-
culated on the basis of 13 clinically relevant factors that can
affect risk [age, sex, body mass index (BMI), systolic blood
pressure, LVEF, creatinine level, current smoking, type 2 dia-
betes, chronic obstructive pulmonary disease, New York Heart
Association class, duration of HF > 18 months, beta-blocker
use, and angiotensin-converting enzyme inhibitor use].12

We performed a multivariable analysis by constructing
four multivariate models, as follows: In Model 1, we adjusted
for the effects of clinically relevant factors that can affect risk,
including age, sex, log N-terminal pro-brain natriuretic pep-
tide at discharge, hypertension, type 2 diabetes, haemoglobin
at discharge, and estimated glomerular filtration rate at dis-
charge; in Model 2, for LV function variables (LVEF, LV
end-diastolic diameter, left atrial diameter, and E/e′); in
Model 3, for right ventricular function variables (RVDd, TRPG,
and maximal IVC diameter); in Model 4, for the MAGGIC risk
score; and in Model 5, for CTR.

Figure 1 Structure of the regression convolutional neural network. The model is based on the VGG16 model. ePAWP, estimated pulmonary arterial
wedge pressure; GAP, global average pooling; RAM, regression activation map.
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All statistical analyses were performed with JMP 16.2 (SAS
Institute, Cary, NC, USA). For all analyses, a P value of <0.05
was considered statistically significant.

Results

Patient characteristics

The clinical characteristics of the study patients are presented
in Tables 1 and 2. In our cohort, the median age is 77 (IQR,
68–84), 62.1% of patients are male, 146 (27.3%) patients
had ischaemic heart disease, and 249 (46.6%) patients had
atrial fibrillation. The median value of LVEF is 48 (IQR, 34–
61) %, and 208 (39.3%) patients had moderate or severe mi-
tral regurgitation (MR). The median value of ePAWP at dis-
charge was 12.3 (IQR, 10.6–14.5) mm Hg. The ePAWP tertiles
at discharge were 11.2 and 13.5 mm Hg, so we used these
values to divide patients into three groups, as follows: first
tertile group (ePAWP ≤ 11.2 mm Hg, n = 178), second tertile
group (11.2 < ePAWP < 13.5 mm Hg, n = 170), and third
tertile group (ePAWP ≥ 13.5 mm Hg, n = 186). Patients in
the third tertile group, that is, the one with the highest
ePAWP, had a higher prevalence of atrial fibrillation and
lower systolic blood pressure at admission; lower platelet
count and higher total bilirubin at both admission and dis-
charge; higher CTR at discharge; and higher left atrial diame-
ter, peak early diastolic E, RVDd, and maximal IVC diameter at
discharge (all P < 0.05). This group also had higher ePAWP at
admission and a smaller decrease in ePAWP from admission
to discharge (all P < 0.05) (Table 1). Furthermore, the
prevalence of moderate or severe MR and tricuspid regurgi-
tation (TR) was significantly higher in the third tertile group
(Table 2). We also investigated the correlation between
ePAWP and echocardiographic parameters (E/A, E/e′, and
maximal IVC diameter). ePAWP was significantly and posi-
tively correlated with E/A (r = 0.19, P < 0.001), E/e′
(r = 0.12, P = 0.005), and maximal IVC diameter (r = 026,
P < 0.001).

Changes in estimated pulmonary arterial wedge
pressure during hospitalization

Among the total 534 patients, the median values of ePAWP at
admission and discharge were 17.6 (IQR, 14.8–12.3) mm Hg
and 12.3 (IQR, 10.6–14.5) mm Hg, respectively. The ePAWP
significantly decreased during hospitalization (P < 0.001;
Figure 2). Figure 3 shows the images from a representative
case at admission and discharge.Ta
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Clinical outcomes

During the median follow-up period of 289 days (IQR, 90–
390 days), 223 (41.7%) patients reached the primary end-
point (all-cause mortality, 31 patients; rehospitalization for
HF, 192 patients). The Kaplan–Meier analysis revealed a sig-

nificantly higher composite event rate in the third tertile
group (log-rank test, P = 0.006; Figure 4).

Ability of estimated pulmonary arterial wedge
pressure to predict adverse events

The univariate Cox proportional hazards regression analysis
showed that both higher ePAWP at discharge and a smaller
decrease in ePAWP were significantly associated with the risk
of composite events (Supporting Information, Table S1). In
addition, the following factors were also significantly associ-
ated with the risk of composite events: higher age, MAGGIC
risk score, CTR, blood urea nitrogen, log (N-terminal
pro-brain natriuretic peptide), left atrial diameter, E/e′, and
TRPG; lower BMI, haemoglobin, platelet count, aspartate
aminotransferase, and sodium; and the presence of hyper-
tension, atrial fibrillation, or ischaemic aetiology. Even after
adjusting for clinically relevant factors, both higher ePAWP
at discharge and smaller decrease in ePAWP were signifi-
cantly associated with higher event rates (ePAWP at dis-
charge: hazard ratio, 1.10; 95% CI, 1.02–1.19; P = 0.010;
and change in ePAWP: hazard ratio, 0.94; 95% CI, 0.89–
0.99; P = 0.038; Table 3). The association between higher
ePAWP and higher risk of composite events also remained
significant in multivariate analysis, even after adjusting for
factors related to left and right ventricular function and the
conventional HF risk score, that is, the MAGGIC risk score
(Table 3).

Table 2 Echocardiographic data of patients stratified according to the tertiles of estimated pulmonary arterial wedge pressure at
discharge

Item
All patients
(N = 534)

First tertile group
(ePAWP ≤ 11.2 mm Hg)

(n = 178)

Second tertile group
(11.2 < ePAWP < 13.5 mm Hg)

(n = 170)

Third tertile group
(ePAWP ≥ 13.5 mm Hg)

(n = 186) P value

Echocardiographic variables at discharge
LVDd, mm 52 (46–59) 50 (44–56) 53 (47–59)* 53 (46–62)* 0.005
LVEF, % 48 (34–61) 49 (39–61) 47 (33–61) 47 (32–61) 0.29
LAD, mm 45 (40–50) 42 (36–46) 45 (41–50)* 48 (42–53)*† <0.001
E, cm/s 86 (66–105) 78 (57–95) 88 (68–106)* 89 (70–09)* <0.001
E/e′ ratio 13.9 (10.6–17.9) 13.4 (9.9–17.4) 14.4 (11.7–17.8) 14.0 (10.6–18.7) 0.24
RVDd, mm 32 (27–37) 30 (26–35) 32 (27–37) 34 (28–40)*† <0.001
Moderate or
severe MR, n (%)

208 (39.3) 53 (29.9) 76 (44.7)* 79 (43.6)* 0.006

Moderate or
severe TR, n (%)

157 (29.7) 37 (20.9) 41 (24.1) 79 (43.6)*† <0.001

TRPG, mm Hg 27 (20–34) 26 (19–32) 25 (19–33) 28 (21–37) 0.07
Maximal IVC
diameter, mm

15 (12–19) 14 (12–18) 15 (12–19) 17 (14–22)*† <0.001

E, peak early diastolic transmitral flow velocity; e′, peak early diastolic mean mitral annular velocity; ePAWP, estimated pulmonary arterial
wedge pressure; IVC, inferior vena cava; LAD, left atrial diameter; LVDd, left ventricular end-diastolic diameter; LVEF, left ventricular
ejection fraction; MR, mitral regurgitation; RVDd, right ventricular end-diastolic diameter; TR, tricuspid regurgitation; TRPG, tricuspid
regurgitation pressure gradient.
Values are shown as median (interquartile range) unless otherwise indicated. For multiple comparisons, analysis of variance was used for
symmetrical continuous variables, the Kruskal–Wallis test was used for asymmetric continuous variables, and the χ2 test was used for
categorical variables. All pairwise comparisons were performed with the Tukey–Kramer test for symmetrical continuous variables, the
Steel–Dwass test for asymmetric continuous variables, and the χ2 test with Bonferroni correction for categorical variables.
*P < 0.05 vs. first tertile group.
†P < 0.05 vs. second tertile group.

Figure 2 In-hospital change in estimated PAWP in 534 patients with
acute decompensated heart failure. Estimated PAWP was significantly
lower at discharge than at admission. PAWP, pulmonary arterial wedge
pressure.
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Figure 4 Kaplan–Meier curves of event-free survival in 534 patients stratified according to the tertile of ePAWP at discharge. CI, confidence interval;
ePAWP, estimated pulmonary arterial wedge pressure; HR, hazard ratio.

Table 3 Cox proportional hazards regression analysis to assess the effect of both estimated pulmonary arterial wedge pressure at
discharge and the decrease in estimated pulmonary arterial wedge pressure on composite risk

Variables

ePAWP at discharge (per 1 mm Hg increase) ePAWP decrease (per 1 mm Hg change)

Hazard ratio 95% CI P Hazard ratio 95% CI P

Model 1 1.10 1.02–1.19 0.010 0.94 0.89–0.99 0.038
Model 2 1.06 1.01–1.11 0.011 0.98 0.95–1.01 0.30
Model 3 1.07 1.02–1.12 0.002 0.99 0.96–10.2 0.68
Model 4 1.07 1.03–1.12 <0.001 0.97 0.95–1.00 0.10
Model 5 1.07 1.02–1.12 0.003 0.98 0.95–1.00 0.21

CI, confidence interval; ePAWP, estimated pulmonary arterial wedge pressure.
The primary endpoint was defined as all-cause mortality and rehospitalization for heart failure. Model 1: adjusted for age, sex, and clin-
ically relevant factors (log N-terminal pro-brain natriuretic peptide, haemoglobin, and estimated glomerular filtration rate at discharge;
hypertension; and type 2 diabetes). Model 2: adjusted for age, sex, and left ventricular function variables (left ventricular ejection fraction,
left ventricular end-diastolic diameter, left atrial diameter, and E/e′). Model 3: adjusted for age, sex, and right ventricular function variables
(right ventricular end-diastolic diameter, tricuspid regurgitation pressure gradient, and maximal inferior vena cava diameter). Model 4:
adjusted for Meta-Analysis Global Group in Chronic Heart Failure risk score. Model 5: adjusted for age, sex, and cardiothoracic ratio.

Figure 3 Images from a 44-year-old man with acute decompensated heart failure. Estimation of PAWP from chest radiograph images at admission (A)
and discharge (B). The regression activation map shows that, at admission, the deep learning model focused on pulmonary congestion; the estimated
PAWP at admission was 19.1 mm Hg (A). At discharge, deep learning focused on the left side of the cardiac area, and the estimated PAWP was
10.7 mm Hg (B). NT-proBNP, N-terminal pro-brain natriuretic peptide; PAWP, pulmonary arterial wedge pressure.
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Combination of estimated pulmonary arterial
wedge pressure and conventional heart failure
risk score for risk stratification

Although MAGGIC risk score showed a significant associa-
tion with composite events (hazard ratio, 1.08; 95% CI,
1.05–1.10; P < 0.001), higher ePAWP remained associated
with a higher risk of composite events even after adjust-
ment for MAGGIC risk score (hazard ratio, 1.07; 95% CI,
1.03–1.12; P < 0.001). To evaluate the incremental prog-
nostic value of ePAWP and MAGGIC risk score, we stratified
patients into four groups by using the higher ePAWP tertile
at discharge (i.e. 13.5 mm Hg) as the cutoff for high and
low ePAWP and the median MAGGIC risk score (i.e. 26)
for high and low MAGGIC risk score. The combined ePAWP
and MAGGIC risk score subgroups had significantly different
probabilities of composite events (log-rank test, P < 0.001;
Figure 5). In particular, in the high MAGGIC risk score sub-
groups, the subgroup with high ePAWP had a significantly
higher rate of composite events than the subgroup with
low ePAWP (log-rank test, P = 0.028).

Comparison of prognostic value between
estimated pulmonary arterial wedge pressure
and cardiothoracic ratio

CTR was significantly correlated with ePAWP (r = 0.47,
P < 0.001; Supporting Information, Figure S1), and univariate
analysis revealed that CTR was significantly associated with

the risk of composite events (hazard ratio, 1.03; 95% CI,
1.01–1.05; P < 0.001; Supporting Information, Table S1).
Even after adjustment for age and sex, CTR remained associ-
ated with the risk of composite events (hazard ratio, 1.02;
95% CI, 1.00–1.04; P = 0.01). However, when ePAWP was in-
cluded in the adjustment, CTR did not remain associated with
the clinical outcomes (hazard ratio, 1.00; 95% CI, 0.98–1.03;
P = 0.50); in contrast, ePAWP remained associated with the
risk of composite events (hazard ratio, 1.07; 95% CI, 1.02–
1.12; P = 0.003; Table 3).

Discussion

Major findings

The present study investigated the clinical and prognostic
value of ePAWP in patients with ADHF by using a deep learn-
ing approach based on chest radiographs. The study has three
major findings. First, ePAWP at discharge is associated with
the severity of HF assessed by echocardiography. The third
tertile group had a larger left atrium, higher E wave, more se-
vere MR, larger IVC diameter, and more severe TR, suggesting
that patients with higher ePAWP have higher left atrial and
right atrial pressure. Furthermore, ePAWP was significantly
and positively correlated with E/A, E/e′, and maximal IVC di-
ameter. Second, ePAWP at discharge is strongly associated
with adverse clinical outcomes, including all-cause mortality
and rehospitalization for HF. In addition, ePAWP at discharge
shows an incremental prognostic value when combined with

Figure 5 Probabilities of composite events in 534 patients with acute decompensated heart failure. Patients were divided into four groups by using
the higher ePAWP tertile at discharge (13.5 mm Hg) as the cutoff for high and low ePAWP and the median MAGGIC risk score (26) as the cutoff for high
and low MAGGIC score. CI, confidence interval; ePAWP, estimated pulmonary arterial wedge pressure; HR, hazard ratio; MAGGIC, Meta-Analysis
Global Group in Chronic Heart Failure.
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a conventional HF risk score. Last, ePAWP is significantly
lower at discharge than at admission, and a smaller decrease
is associated with adverse clinical outcomes. Our findings
suggest that ePAWP obtained by a deep learning approach
can be used as a reliable indicator of residual pulmonary con-
gestion, which reflects the severity of HF, and can markedly
improve risk stratification at discharge in patients hospital-
ized for ADHF.

Pulmonary congestion and acute decompensated
heart failure

In patients with developing ADHF, elevated PAWP leads to
pulmonary congestion. Although HF treatment may alleviate
clinical congestion, pulmonary congestion may persist and
not be adequately resolved during hospitalization. About half
of patients admitted for ADHF are reported to be discharged
with residual congestion,4 and residual pulmonary congestion
at discharge is a significant prognostic marker in patients
hospitalized with HF.13 Although assessment of pulmonary
congestion is crucial for the management of HF, quantitative
assessment is often difficult.

Artificial intelligence and chest radiographs

Chest radiography is a simple and useful tool for screening
pulmonary congestion and elevated PAWP. However, it has
some limitations, such as a large interobserver variability.
With the development of artificial intelligence and deep
learning in recent years, interest has grown in using these
technologies to evaluate chest radiographs in patients with
HF. Previous clinical studies revealed that by analysing chest
radiograph images of patients with HF, a CNN model can
identify elevated pulmonary pressure in patients with pulmo-
nary hypertension and elevated PAWP.14,15 These results
demonstrate that deep learning models can be trained to es-
timate elevated left-sided heart pressure from chest radio-
graph images. In our previous study, we applied regression
CNN to quantitatively estimate PAWP by deep learning from
chest radiographs in patients with cardiovascular disease.7

Our findings showed the potential usefulness of this ap-
proach because the PAWP estimated by the model from
chest radiograph image data correlated with the actual PAWP
measured by right heart catheterization.7 However, we did
not investigate the clinical significance of this method.

Prognostic value of estimated pulmonary arterial
wedge pressure calculated by deep learning

In the present study, we tested the prognostic ability
of this deep learning model to predict adverse clinical

outcomes in ADHF. The relationship between ePAWP and
echocardiographic parameters showed that higher ePAWP is
associated with parameters of not only left atrial but also
right atrial pressure. This finding is reasonable because right
atrial pressure can be affected by post-pulmonary hyperten-
sion caused by elevated left atrial pressure and volume
status. These data suggest that ePAWP at discharge reflects
the comprehensive severity of HF. In the present study,
ePAWP at discharge was strongly associated with adverse
clinical outcomes, including all-cause mortality and rehospi-
talization for HF, and even after adjusting for echocardio-
graphic parameters, it was significantly associated with
clinical outcomes. Our study also revealed that ePAWP at dis-
charge provides additional prognostic value when combined
with the MAGGIC risk score, a well-established comprehen-
sive HF risk score. Patients with a high MAGGIC risk score
and a high ePAWP had the highest risk of poor outcomes,
whereas those with a low MAGGIC risk score and a low
ePAWP had significantly better clinical outcomes. In particu-
lar, ePAWP could predict the differential prognosis in patients
with a high MAGGIC risk score. Thus, ePAWP may be useful
for further risk stratification in patients at high risk according
to conventional HF risk scores and may be able to better
identify patients at high risk of rehospitalization for HF.

Comparison of prognostic relevance between
estimated pulmonary arterial wedge pressure
and cardiothoracic ratio

CTR is a widely used method to evaluate cardiac chamber
size, and concordant with PAWP. In the present study, CTR
was associated with adverse events in univariate analysis
but did not remain a significant predictor for worse clinical
outcomes in a multivariate model including ePAWP. Further-
more, ePAWP showed predictive value beyond CTR. The po-
tential reason for these results is that the deep learning
model assesses not only cardiac size but also pulmonary con-
gestion to estimate PAWP. Dash et al. reported that CTR, al-
veolar oedema, interstitial oedema, and left atrial size each
contributed independently to the prediction of PAWP in
chest radiographs.5 Therefore, CTR may not be sufficient to
assess the level of PAWP and the severity of HF. In the pres-
ent study, the regression activation map showed that the
deep learning approach assesses both pulmonary congestion
and cardiac size, and this may be the possible explanation for
our results.

Clinical implications

Chest radiography can be used as a simple, standardized, and
inexpensive diagnostic tool. The evaluation of PAWP by a deep
learning approach based on chest radiographs is objective and
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repeatable. Our results show the usefulness of this method as
a prognostic marker in patients hospitalized for ADHF. Further-
more, we consider that ePAWP can also be used to monitor
the severity of congestion and the therapeutic effect of HF
treatment during hospitalization. Our results show that
ePAWP is significantly lower at discharge than at admission
and that a smaller decrease is associated with adverse clinical
outcomes. These data suggest that ePAWP can detect im-
provement of pulmonary congestion with diuretic therapy
and that less improvement of ePAWP may be a marker for
poor clinical prognosis after discharge. We believe that this
study represents an important step towards applying a deep
learning approach in the clinical assessment of acute and
chronic pulmonary congestion in HF.

Limitations

The present study has several limitations. First, it was a
single-centre study with only a moderate sample size. Sec-
ond, the study population was limited to patients with ADHF,
so the study did not evaluate whether this method can be ap-
plied to patients with chronic HF being treated in outpatient
clinics. Third, we focused mainly on the evaluation of pulmo-
nary congestion at discharge and excluded patients who died
during hospitalization, so the association between ePAWP at
admission and in-hospital mortality is unclear. Last, different
approaches in performing chest radiography (anteroposterior
view and posteroanterior view) may have affected the re-
sults. In our population, 55% of chest radiographs were ob-
tained in anteroposterior view at admission, whereas 71%
of chest radiographs were obtained in posteroanterior view
at discharge. Our deep learning model can calculate ePAWP
from both views, but we cannot prove that the deep learning
model calculates precisely equal values. A multi-centre study
with a larger sample size is needed to validate our findings.
Nevertheless, we believe that this study provides novel in-
sights into the application of artificial intelligence and deep
learning in HF management.

Conclusions

Our study suggests that ePAWP calculated by a deep learning
approach may be a useful tool to identify high-risk patients
with HF and to monitor pulmonary congestion in patients
hospitalized for ADHF.
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