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Abstract: Although we have made remarkable achievements in cancer awareness and medical
technology, there are still tremendous increases in cancer incidence and mortality. However, most
anti-tumor strategies, including immunotherapy, show low efficiency in clinical application. More
and more evidence suggest that this low efficacy may be closely related to the immunosuppression of
the tumor microenvironment (TME). The TME plays a significant role in tumorigenesis, development,
and metastasis. Therefore, it is necessary to regulate the TME during antitumor therapy. Several
strategies are developing to regulate the TME as inhibiting tumor angiogenesis, reversing tumor
associated macrophage (TAM) phenotype, removing T cell immunosuppression, and so on. Among
them, nanotechnology shows great potential for delivering regulators into TME, which further
enhance the antitumor therapy efficacy. Properly designed nanomaterials can carry regulators and/or
therapeutic agents to eligible locations or cells to trigger specific immune response and further kill
tumor cells. Specifically, the designed nanoparticles could not only directly reverse the primary TME
immunosuppression, but also induce effective systemic immune response, which would prevent
niche formation before metastasis and inhibit tumor recurrence. In this review, we summarized the
development of nanoparticles (NPs) for anti-cancer therapy, TME regulation, and tumor metastasis
inhibition. We also discussed the prospect and potential of nanocarriers for cancer therapy.
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1. Introduction

The data from the International Agency for Research on Cancer show that cancer is a
major disease with the highest morbidity and mortality worldwide [1]. Common clinical
anti-cancer treatments, such as radiotherapy, chemotherapy, surgery, and other targeted
cancer treatments, have many shortcomings including multiple complications, high rate
of recurrence and metastasis, off-target effect, easy drug resistance, and serious toxicity,
which greatly reduce the patients’ quality of life [2–5]. Cancer immunotherapy is emerging
as the fifth anti-cancer treatment strategy. The treatment activates the host immune system
for recognizing and destroying cancer cells in an antigen-specific manner [6]. In recent
years, some immunotherapy, such as the programmed cell death protein 1(PD-1), cytotoxic
T lymphocyte-associated protein 4 (CTLA-4), and the chimeric antigen receptors T cells
(CAR-T), have achieved promising clinical therapeutic effects in cancer. However, overall
treatment response rates still remain low (<20%), which is far below expectations if cancer
types are taken into account as a whole [7–9].

Increasing evidence indicates that the complexity of TME results in poor treatment
effectiveness of cancer immunotherapy, chemotherapy, and targeted therapy [10–12]. The
immunosuppressive microenvironment supports the occurrence and development of the

J. Funct. Biomater. 2023, 14, 136. https://doi.org/10.3390/jfb14030136 https://www.mdpi.com/journal/jfb

https://doi.org/10.3390/jfb14030136
https://doi.org/10.3390/jfb14030136
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jfb
https://www.mdpi.com
https://orcid.org/0000-0002-4421-0128
https://doi.org/10.3390/jfb14030136
https://www.mdpi.com/journal/jfb
https://www.mdpi.com/article/10.3390/jfb14030136?type=check_update&version=1


J. Funct. Biomater. 2023, 14, 136 2 of 26

tumor, which leads to immune escape of tumor cells [13]. The tumor microenvironment
(TME) includes diverse immunosuppressive factors, such as incapacitated immunostimula-
tory cells (e.g., dendritic cells (DCs), T helper (Th) cells, cytotoxic T lymphocytes (CTLs),
M1-like tumor-associated macrophages (M1-like TAMs), natural killer (NK) cells), acti-
vated immunosuppressive cells (e.g., myeloid-derived suppressor cells (MDSCs), M2-like
tumor-associated macrophages (M2-like TAMs), regulatory T cells (Treg), cancer-associated
fibroblasts (CAFs), the tumor vasculature, extracellular matrix (ECM), hypoxia, and low
pH [14–18]. The above immunosuppressive factors contribute to a variety of mechanisms
for tumor therapy inhibition in tumor-associated macrophages (TAMs), which further
promote the occurrence and development of cancer [19,20]. Therefore, it is necessary for
improving anti-cancer treatment through regulation of TME immunosuppression.

Nanomaterials are widely employed for anti-tumor treatment and TME regulation [21–23].
The nanomaterials with modulators such as multifunctional platforms can effectively elimi-
nate the primary cancer, inhibit the distal metastasis, and prevent cancer recurrence [22,24–26].
Nanomaterials mainly regulate TME through the following four mechanisms: (i). Promote
the immunogenicity of cancer antigens [27–31]; (ii). Activate disabled immune cells [32–36];
(iii). Reverse immunosuppressive cells [14,37–40]; (iv). Improve TME microenvironment
(for hypoxia, low pH, vasculature, etc.) [41–44]. The application of nanomaterials in unilateral
cancer treatment (e.g., chemotherapy, immunotherapy) has been reviewed [12,45–47]. In this
paper, we highlight the various types of nanoparticles and their applications as antitu-
mor agents and in regulating the TME. In addition, the clinical application outlook and
challenges of these nanoparticles are also discussed.

2. The Nanocarriers for Cancer Targeting Therapy

Nanocarriers for cancer therapy can be classified into many types, including inorganic
nanoparticles (inorganic NPs), liposome, polymer NPs, biomimetic NPs, and natural NPs
(Table 1). They have achieved good treatment effects by stimulating different anticancer
mechanisms through delivering of delivery of various therapeutic agents in vivo. Some of
them have entered different clinical phases and even been approved as effective drugs by
the US Food and Drug Administration (FDA). Most are based on liposome and polymer
nanocarriers, and some metal nanocarriers are also approved for imaging diagnosis in
clinical practice.

Table 1. Development and clinical studies of various types of representative nanocarriers for
cancer therapy.

Type Nanomaterial and Drug Cancer and Method Efficacy Clinical Stage and Ref.

Inorganic NPs

Gold and PS CRC, Breast
PTT

Effective delivery and enhances PS’
phototoxicity Preclinical [48,49]

Gold and siRNA GBM
Gene therapy

Reduced tumor-associated Bcl2
protein expression Phase 0 [50]

Silver and Chinese herb
extracts

GBM
Undefined Inhibiting blood vessel formation Preclinical [51]

Silver and longan peel
powder Lung Chemotherapy

Down-regulated NF-κB and
up-regulated Bcl2, caspase-3 and

survival rate of mice.
Preclinical [52]

Silica and 5-ALA, ZnPc Skin, Liver
PDT

Enhances PS’ phototoxicity,
endolysosomal escape Preclinical [53,54]

Lipid NPs

Phospholipid, cholesterol
and

Doxil, carboplatin,
paclitaxel

Kaposi’s Sarcoma,
ovarian, breast
chemotherapy

Inhibit DNA synthesis and induce
apoptosis Phase 1, phase 3 [55–57]

Phospholipid, Rg3-based
liposomes and
Ceramide, PTX

HCC, breast
immunotherapy

↓ROS and M2-TAM, ↑M1-TAM and
CD8+T; ↓MDSCs, TME remodeling Preclinical [58]
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Table 1. Cont.

Type Nanomaterial and Drug Cancer and Method Efficacy Clinical Stage and Ref.

Polymeric NPs

HPMA, PLGA, PEG-PLA,
and

DOX, paclitaxel,
camptotheci-n

CRC, breast, pancreatic,
NSCLCs, ovarian

chemotherapy
Inhibit DNA synthesis and induce

apoptosis Phase 1 to 3 [59–62]

Folate-PEG-Chems,
GalNAc, PEG-b-PCL,

PCL-b-PPEEA and
Daunorubici-n, siRNA

Leukemia tumor, liver,
Pancreatic

Chemotherapy,
Gene therapy

Enhanced the endocytosis of cells
in vitro and in vivo,

hepatocyte-specific gene delivery
Preclinical [63–66]

Hybrid NPs

Albumin and
Paclitaxel

NSCLCs
Chemotherapy

Increase drug solubility, improve
bioavailability, and promote

absorption of drugs by cancer cells
FDA approved [67]

PEG, polyglutamic acid,
mPEG and D,L-PLA and
Camptothecin, paclitaxel

NSCLCs
Chemotherapy

Increase drug solubility, improve
bioavailability, and promote

absorption of drugs by cancer cells
Phase 0 to 2 [68–70]

SPIONs, PNIPAAm-MAA
and DOX

Lung cancer
Chemotherapy, imaging

pH-dependent manner,
time-dependent manner Preclinical [71]

Biomimetic NPs

DC, tumor antigen, and
sunitinib

GBM, melanoma,
prostate,

immunotherapy +
radiochemotherapy,
immunotherapy +

chemotherapy

Activate T-cells’ immune response FDA approve [72,73]

Neutrophil, RBC, Platelets
and

Celastrol, tumor antigen,
CpG, R848

Pancreatic cancer,
melanoma

chemotherapy,
immunotherapy

Targeting tumor site, prevent liver
metastasis of tumor, improve the

survival rate of tumor bearing mice,
activate immune response

Preclinical [14,74–78]

Natural NPs

Platelets and
PD-L1

Melanomas,
breast cancer,

immunotherapy

Delivery of anti-PDL1 to the surgical
bed and target CTCs, reduce the risk

of cancer regrowth and metastatic
spread

Preclinical [79–82]

Macrophages
Chemical drugs

breast, GBM
chemotherapy

Targeted to cancer cells,
inhibit tumor invasion Preclinical [83,84]

Exosomes mi-RNA,
chemical drugs, proteins

GBM, breast, ovarian
cancer

Gene therapy,
chemotherapy,

immunotherapy

Activate T cell response,
inhibit tumor growth Preclinical [85–89]

NPs: nanoparticles; PTT: photothermal therapy; PS: photosensitizer drug; PDT: photodynamic therapy;
ROS: reactive oxygen species; HCC: Hepatocellular cancer; PTX: paclitaxel; CRC: colorectal cancer; NSCLCs: non-
small cell lung cancers; SPIONs: Supermagnetic iron oxide nanoparticles; PNIPAAm-MAA: radical polymerization
of methacrylic acid (MAA) and N-isopropylacrylamide (NIPAAm); GBM: glioblastoma.

2.1. Inorganic NPs

The inorganic nanoparticles include gold NPs, silver NPs, and silica NPs, etc., and
among them, gold nanoparticles were the first used for anti-tumor therapy [48,49,90,91].
However, despite concerns for the unavoidable biological safety in vivo, most gold/silver
nanoparticles are approved for imaging and diagnosis of cancer in clinical application [92,93].
The biological toxicity of AuNP/Silver NP mainly depends on their physical properties
and surface chemical toxicity [94]. In recent years, green surface modification was applied
for their biosafety improvement (Figure 1) [48,49,95]. For example, Pandey’s team designed
gold nanocages coating with a poly(ethylene glycol) monolayer. The photosensitizer was
noncovalently encapsulated in the gold nanocages. These gold nanocages achieved drug
accumulation in the tumor site and significantly inhibited the tumor growth with almost no
toxicity and phenotypical changes in mice [48]. Park’s team synthesized silver core/shell
nanoparticles modified with polyethylene glycol bovine serum albumin (BSA), which has a
high indocyanine green (ICG) loading efficiency. The NPs could accumulate at the tumor
site. After laser irradiation, the tumor surface temperature rose to 50 °C (required for
light ablation), the melanoma growth was successfully inhibited, and no obvious systemic
toxicity was observed [96]. Previously, a variety of medicinal plant extracts were used to
synthesize stable gold or silver NPs with multiple functions as antioxidant, antibacterial,
anti-tumor, catalytic, and other biological activities [97–103]. This might be an effective
strategy to promote approval of metal NPs for clinical tumor treatment in the future.
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Figure 1. The inorganic nanoparticles (include gold NPs, silver NPs, and silica NPs) were designed
for anti-tumor treatment via photodynamic, photothermal, and chemotherapy.

The application of mesoporous silica nanoparticles (MSNPs) in the biological field suc-
cessfully demonstrated its advantages of good biocompatibility, high specific surface area and
pore volume, allowing large drug loading, and easy chemical modification [104–106]. Kumar’s
team fabricated folate or N-acetylglucosamine functionalized mesoporous silica NPs encap-
sulating doxorubicin (DOX-FA-MSNPs or DOX-NAG-MSNPs) for targeted breast cancer
therapy [107]. These NPs greatly enhanced the cellular internalization and drug cytotox-
icity, which showed little toxicity to normal cells. Engineered MSNPs have widely been
employed for cancer drug delivery or imaging. In these systems, many types of molecules
and therapeutic agents could be loaded into the nano porous structure or connected onto
the surface using different linkers. In any case, controllable diameter, porosity, structure, or
chemical composition were combined with selectable properties (e.g., pH, optical, thermal,
optical, or magnetic stimulation) for molecular recognition and targeting treatment.

2.2. Lipid Nanocarriers

Liposomes (LPs) are composed of monolayer/multilayer amphiphilic membranes of
natural or synthetic lipids [108]. LPs can load hydrophilic drugs in the water core and
hydrophobic agents in the lipid bilayer, which makes them flexible and excellent delivery
vehicles [109]. LPs are one of the earliest nanoplatforms used in drug delivery systems to
carry various active ingredients for cancer treatment. Some liposomal formulations have
been approved for clinical trial [57,62,109]. Currently, some LPs loading doxorubicin and
paclitaxel which show better treatment for metastatic ovarian cancer and breast cancer in
clinical practice have been approved by the FDA [110]. The liposomal nanocarriers could
also improve the bioavailability and pharmacodynamics of drugs with poor solubility;
however, the lower stability and uncontrollable drug release behavior in vivo affected
their wide applications in clinical practice. Some targeting molecular modified liposomal
nanocarriers have been designed for precise anti-cancer therapy (Figure 2) [111–118]. For
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example, Li’s team described a liposome carrier, namely folate (FA) modified liposome
(FA-LP) NPs, which could co-deliver erastin and (metallothionein 1D) MT1DP to the cancer
location. These LPs could sensitize erastin-induced ferroptosis, decrease cell GSH level,
and increase lipid reactive oxygen species (ROS), synergistically inhibiting lung cancer cell
growth [117]. The dual targeting strategy might also contribute to promoting LPs’ ability
to target tumor cells. Octreotide-modified magnetic liposomes (OMlips) were used for
oleanolic acid (OA) loading to form OA-Olips. The LPs exhibited better antitumor effect
with little biotoxicity [116]. This kind of targeted molecule and magnetic field-mediated
dual-targeted nano-carrier shows great clinical application potential. It was well known
that drug resistance at tumor sites are a great obstacle in tumor therapy [112]. It was
reported that direct targeting mitochondria is an effective strategy that has been developed
in recent years [112,113,118]. Hu’s team developed liposomes with mitochondria target
ability for doxorubicin loading from a berberine derivative, which not only increased the
drug distribution in tumor, but also achieved better treatment efficiency in tumor-bearing
mice with drug resistance [111].
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In conclusion, although LP nano carriers have been widely studied because of their
broad application prospects, they still have limitations including high cost, poor stability
in vivo, weak organelle targeting capacity, and easy elimination by phagocytes [112,119–121].
Therefore, the development of more accurately targeted and stable liposomes still requires
continuous efforts.

2.3. Polymer Nanocarriers

Polymer nanocarriers are widely used in anti-tumor’s agent delivery because of their
excellent properties, such as biodegradability, biocompatibility, colloidal stability, low in-
flammation and immunogenicity, small size, and functionalized surface [122]. However,
the polymer nanocarriers still remained uncontrolled in bioavailability and drug release at
the tumor site. More and more polymer nanocarriers with the capacity of targeting and
stimuli-response were designed for cancer therapy [123–127]. Enhanced permeability and
retention (EPR), ligand receptor, polypeptide-mediated tumor targeting and pH, enzyme,
hypoxia, and light-response are often considered in the design of nanocarriers (Figure 3).
For example, He’s group designed a method to target tumor sites and pH-responsive poly-
mer nano micelles with zwitterionic segments, employed for doxorubicin (DOX) trapping
in the hydrophobic layer. The nano micelles showed smaller sizes and high stability in the
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system circulation and continued to release drugs in the low pH environment via EPR effect-
mediated tumor targeting [124,125]. In addition, Hou’s team designed a dual-responsive
polymeric nanoparticles, using triethylamine (TEA) as an acid binder; hexachlorocyclic-
triphosphonitrile (HCCP) derived cysteine derivatives (CysM) oligomer was polymerized
with DOX. Nanoparticles can target the tumor site via the EPR effect and respond to pH and
glutathione for releasing an anti-cancer agent. The NPs show the stability of long circulation
in blood circulation, but the response to low pH acidic environment in TME makes the
drug release rapidly [128]. In addition, a polymeric indoleamine-(2,3)-dioxygenase (IDO)
inhibitor based on the poly(ethylene glycol)-b-poly(L-tyrosine-co-1-methyl-D-tryptophan)
copolymer (PEG-b-P(Tyr-co-1-MT)) was developed for facile trident cancer immunother-
apy [129]. The polymeric IDO inhibitor was modified by Cyclo (Arg–Gly–Asp–D–Tyr–Lys)
peptide (cRGD), which can bind to αvβ3 intergrin for targeting tumor cells. Moreover, the
polymeric IDO inhibitor can delay the metabolism of l-tryptophan (TRP) to L-kynurenine
(KYN) in cancer cells due to the degradation of enzyme responses. In melanoma-bearing
mice, DOX in drug-loaded nanoparticles significantly increased matured DCs, CD8+ T cells,
IFN-γ, and TNF-α, while reducing Treg cells and downregulating PD-L1 expression; this
resulted in the improvement of the TME, suppression of tumor, and prolongation of the
survival rate.
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Previously, in order to improve the reaction rate and make the drug completely released to
the target site, the dual response nanocarriers have been developed to respond to the combination
of two signals (e.g., pH/temperature, pH/redox, and photo/temperature) [129–132]. Therefore,
these novel double response nanocarriers have been proved to be anti-cancer drug delivery
platforms that can be used for drug control release and targeting of tumor sites, which has
a very favorable prospect for the treatment of solid tumors.

2.4. Hybrid Nanocarriers

Single-material nano delivery systems are limited to further research and clinical
anti-tumor applications due to their inevitable defects, such as low biosafety of inorganic
nanoparticles, high cost of liposome nanoparticles, poor targeting, and low bioavailabil-
ity of polymer nanoparticles [92,93,120,121,125,126]. To solve these problems, a hybrid
nanocarrier was developed for delivering anti-tumor therapeutic agents. The nano hybrid
system is a nanocarrier that combines organic or inorganic nanomaterials and biological
macromolecules into a single composite material (Figure 4). The combination of different
nanomaterials can not only make the hybrid nanocarriers show better biosafety and more stable
targeting, but also improve the delivery efficiency and bioavailability of drugs [133–136]. There
have many reports about the use of hybrid NPs in cancer detection and treatment. There
are some hybrid NPs for clinical diagnosis of cancer, including hybrid magnetic silicon
dioxide NPs [137] and hybrid supermagnetic iron oxide NPs (SPIONS) [138–141]. Some
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hybrid NPs are used for cancer treatment, such as lipid coated polymers [142,143] and
hybrid NPs coupled with genes [144].
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One of the reasons why inorganic nanoparticles are mainly used in clinical diagnosis
and imaging, but cannot be used in cancer treatment, is due to the lack of surface active
groups and difficult surface modification, leading to poor targeting and serious liver toxic-
ity [48,90,91]. However, photothermal effects are a major advantage of inorganic nanoparti-
cles for cancer therapy, while the easy surface modification is the advantage of liposomes
or polymer NPs. Therefore, combining the advantages of the two to construct hybrid
nanocarriers can not only improve the targeting ability of nanocarriers, but also increase
the anti-tumor effect of drugs. For example, Elhabak’ team developed a trastuzumab (TZB)
surface modified poly(lactic-co-glycolic) acid (PLGA), circulating NPs that co-encapsulated
magnolol (Mag) and gold NPs [139]. The optimized NPs have small particle sizes and
high encapsulation efficiency. The surface modified NPs with TZB can target breast cancer
due to the over expression of human epidermal growth factor-2 (HER2). The gold NPs
and DOX encapsulated in PLGA NPs and DOX showed their photothermal effects and
cytotoxicity, respectively, resulting in the multifunctional anti-breast cancer effect.

Lipid–polymer hybrid NPs are core shell nanoparticle structures comprising polymer
cores and lipid/lipid polyethylene glycol (PEG) shells; these hybrids combine physical
stability of polymeric nanoparticles and biocompatibility of liposomes. The development
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of lipid–polymer hybrid NPs broke the limits of single drug delivery and single function
design for anticancer therapy. It not only delivers genetic materials, vaccines, and diagnostic
imaging agents, but also deliver dual-drugs and targeting design [64]. Fraix et al. reported
a lipid–polymer hybrid NP that delivers nitric oxide (NO) and DOX under visible light
control [145]. They designed the hybrid nanosystem with DOX entrapped in the PLGA core
and a NO photodonor (NOPD) in the phospholipid shell to avoid their mutual interaction.
The release of NO inhibits the efflux transporters mostly responsible for DOX cellular
extrusion, increasing DOX uptake by cells, and thus enhancing its antitumor activity.

In conclusion, combining multimodal components in a single hybrid NP allows the
structural and functional properties of the resulting NPs to be adjusted in the desired way.
The hybrid NPs can enhance their anti-tumor functional properties, and have advantages
such as lower cost, simple preparation, good biological safety, precise targeting, controlled
drug release, and environmentally responsive drug release, making them more suitable for
clinical application.

2.5. Biomimetic and Natural Nanocarriers

Nanoparticles (NPs) are becoming more and more common in anti-tumor drug deliv-
ery research because they have significant advantages in anti-tumor efficacy and system
safety compared with current clinical treatment and diagnosis models [67,69,106]. How-
ever, due to its non-specific interaction with phagocytes in vivo during delivery, its clinical
application is unsatisfactory [14,25,146]. The retention of NPs by reticuloendothelial system
in blood circulation is one of the main obstacles that almost all platforms must overcome.
In order to reduce the non-specific interception of NPs, the addition of specific-targeted
modification can achieve targeted delivery of NPs, enabling drugs to accumulate at specific
sites, which is also an effective strategy to improve drug efficacy of anti-tumor agents.
Therefore, biomimetic nanocarriers or natural nanocarriers, an emerging nanotechnology,
were previously developed [147–150]. As the basic unit of biology, cells have a wide range
of functions, including the ability to interact with the surrounding environment. They
can decrease nonspecific interactions while increase specific targeting (Figure 5) [150–154].
Since 2011, cell membrane coating technology has been developed, for example, in coating
the whole red blood cell (RBC) membrane on the surface of NPs [155]. They reported a natu-
ral bionic method of particle functionalization, which endows NPs with the function of long
cycle delivery by wrapping natural RBC on the surface of biodegradable polymeric NPs.
The in vivo results showed that the erythrocyte-mimicking NPs revealed superior circula-
tion than particles without RBC. In 2018, by coating a cancer cell membrane (CCM) on the
surface of SPIO@DOX-ICG (superparamagnetic iron oxide @DOX-ICG) nanoparticles, the
researchers designed a bio-inspired biomimetic nano system that combines chemotherapy,
hyperthermia, and radiation to achieve precise cancer treatment [156]. CCM retains tumor
adhesion molecules and surface antigens, making the nano system have tumor homing
ability and high biocompatibility. Nano systems can target tumor sites and achieve syner-
gistic anti-cancer effects after systematic administration, without systemic toxic and side
effects. Research reported that macrophage, neutrophils, T-cell, platelets, and cancer can all
be used as biomimetic materials for coating nanoparticles, which play different targeting
delivery and anti-tumor functions [155–159]. Extracellular vehicles (EVs) are also a very
safe bionic carrier for drug targeting delivery which can pass through various obstacles
without any side effects [158,160,161]. In 2019, Zhu’s team confirmed the anti-glioblastoma
(GBM) effect of embryonic stem cells (ESCs) exosome. They then prepared cRGD-modified
and paclitaxel (PTX)-loaded ESC-exosomes [162]. The in vitro/in vivo results showed that
natural nanocarriers significantly improve the anti-tumor effects of PTX in GBM via an
enhanced targeting rate.
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In conclusion, biomimetic NPs are a new type of nanocarrier combining the advan-
tages of natural and artificial nanomaterials. Nanoparticles wrapped in cell membranes
essentially mimic the characteristics of source cells, giving them a wide range of functions
such as long circulation and disease related targeting. Over time, the effectiveness of the
cell membrane coating method will undoubtedly expand; there is an inestimable potential
for future anti-tumor clinical applications.

3. Nanocarriers for TME Regulation and Cancer Therapy

The TME is a highly complex environment that surrounds tumors [163]. More and
more evidence shows that TME plays an essential role in controlling tumor occurrence,
metastasis, and drug resistance [14,18,72,164].

The tumor microenvironment includes the tissue and cellular population surrounding
the tumor cells, such as immune cells, endothelial cells, fibroblasts, neurons, and others.
These tissues and cellular populations interact with tumor cells, forming a network of
cell-to-cell and cell-to-matrix interactions, known as the tumor microenvironment [165]. At
the same time, the pH value, the degree of oxygen enrichment, and the redox condition in
the tumor site are significantly different from the normal tissue site due to the influence of
tumor cell proliferation. The abnormal cell survival conditions further inhibit the activity
of immune cells in the tumor site and promote the proliferation and migration of tumor
cells [166].

The complexity of TME limits anti-tumor treatment [12,167–169]. Therefore, over-
coming TME barriers is essential for the deep delivery of therapeutic drugs and treatment
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effects. Regulating or reprogramming immunosuppressive TME plays important role in
cancer therapy.

Previously, nanomaterials with TME as a target have been widely employed for an-
ticancer drugs delivery to directly regulate the TME, which have achieved promising
results [12,164,168]. There are certain ways to reprogram the TME through nanoparticles,
such as (i) NPs for destroying extracellular matrix (ECM); (ii) NPs for activating immunos-
timulatory cells; and (iii) NPs for regulating immunosuppressive factors (Figure 6). In
addition, the tumor microenvironment can be improved by adjusting the pH value, oxygen
content, and redox environment of the tumor site.
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3.1. Nanocarriers for Regulating ECM

The extracellular matrix (ECM) of TME is a network of collagen and hyaluronic acid
which contains tumor growth factors, anti-inflammatory cytokines, and the tumor vascular
system [170–172]. In solid tumors, the ECM is considered as a protective chamber that
provides a safe environment for the occurrence and development of malignant tumors.
Integrin, which transmits information with ECM to inhibit some immune cells and fibrob-
last’s function, is highly expressed on tumor cells and vascular endothelial cells [173,174].
Furthermore, the dense ECM forms an environment with high-pressure, greatly reducing
the deep penetration and diffusion of anti-cancer drugs to weaken the anti-cancer treatment
effect [175,176]. Destroying the ECM is a first effective strategy to diminish the barriers of
TME (Figure 6) [167,168,172,177,178].

In order to overcome the barrier from ECM, two kinds of nanoparticles were used to
destroy the tumor protective effect of ECM: (i) directly destroy the composition of ECM
by using collagen nanoparticles; (ii) downregulate the substance expression in the ECM
by using enzyme-carrying nanoparticles. For example, Zhou’s team reported NPs with
the capacity of degrading hyaluronic acid; they loaded recombinant human hyaluronidase
PH20 (rHuPH20) on the surface of PLGA-PEG NPs, and then, modified it with relatively
low-density PEG layer to reduce rHuPH20 exposure and prevent it from being removed
by macrophages [179]. The facile surface modification reduced TAF activity (an important
component of tumor ECM synthesis and remodeling), increased the accumulation of these
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NPs in 4T1-bearing mice, and inhibited the development of invasive 4T1 tumors at low
doses. In addition, matrix enzymes (such as hyaluronidase), matrix metalloproteinase
(MMPs), especially matrix metalloproteinase-2 (MMP2), and matrix metalloproteinase-9
(MMP9) have been modified in NPs to destroy the structure of ECM [180–182]. Ji’s team
assembled the amphiphilic peptide of MMP-2 reaction and phospholipid to construct
MMP-2 reactive peptide hybrid-liposome (MRPL) [182]. The pirfenidone (PFD) loaded
MRPL can precisely release PFD at the site of the pancreatic tumor and down-regulate
the various elements of the ECM by taking advantage of the MMP-2-rich pathological
environment. As a result, gemcitabine is more able to penetrate and diffuse into tumor
tissues, improving its ability to cure pancreatic cancers. Visibly, modification of NPs with
related proteases that destroy ECM components can improve the diffusion of drug-loaded
nanocarriers in tumors [173,178]. This is essential for the targeted delivery and release
of anti-tumor drugs which may have better anti-tumor effects in combination with other
strategies to improve the TME.

3.2. Nanocarriers for Activating Immunostimulatory Cells

Due to the complexity of the TME, the cloaking and mutation of tumor antigens lead to
immune escape, resulting in immunostimulatory cells losing anti-tumor functions [83,166].
Previously, by using nanoparticles in combination with cancer vaccines, exogenous antigens,
immunogenic cell death (ICD) inducers, and immune checkpoint regulators, antigen-
presenting cells (antigen presenting cells (APCs), such as dendritic cells (DCs)) and T cell
activity can be regulated to improve the local anti-tumor immunity of the TME (Figure 6).
Therefore, activating immunostimulatory cells is the second effective strategy to reprogram
the TME.

For activating DCs. Nanoparticles can deliver some tumor treatment drugs to tumor
cells, causing the ICD effect of tumor cells, realizing tumor cells apoptosis, and transform-
ing tumor cells into anti-tumor vaccines [183]. When ICD occurs in tumor cells, dead tumor
cells calreticulin (CRT) will be exposed to the cell surface. At the same time, adenosine
triphosphate (ATP) and high mobility group protein B1 (HMGB1) will be secreted and
released. They will act on DCs and activate the antigen presentation function, thus acti-
vating the anti-tumor T cell response [163,184]. ICD-inducers include mitoxantrone and
anthracyclines, oxaliplatin, UVC irradiation, radiotherapy, shikonin, bortezomib, cardiac
glycosides (CGs), photodynamic therapy (PDT) with hypericin, and so on [185]. Recently,
we prepared a biomimetic PLGA-based nanoparticle (NP) to co-encapsulate plumbagin
and dihydrotanshinone (IPLB and DIH) [184]. This NP induced an ICD effect of liver
cancer cells, activating DCs and T cells’ immune responses, and generating anti-liver cancer
chemo-immunotherapeutic effects by remodeling the TME.

For activating T cells. Nanoparticles coated with PD-1/PD-L1-targeted ligands have
become a new drug delivery system which can improve the drug delivery effect, enhance
the immune response, and reduce the side effects of tumor treatment [186–188]. The
nanoparticle-loading anti- PD-1/PD-L1 can effectively enhance the function of T cells.
Consequently, the anti-tumor T cells immune response in TME will be activated. Zhang’s
team reported that an engineered cell nano vesicle (NVs) presents PD-1 receptors on its
membrane, breaking the PD-1/PD-L1 immunosuppressive axis and enhancing anti-tumor
T cell immune responses [187]. In addition, indoleamine 2,3-dioxygenase inhibitors were
loaded into PD-1 NVs, synergistically destroying the immune tolerance environment in
TME. Importantly, PD-1 NVs significantly increase the infiltration of the CD8+ tumor,
infiltrating lymphocytes (TILs) and directly driving the tumor killing response of CTL.

In conclusion, immunostimulatory cells such as DCs are one key step to activate an
anti-tumor immune response; they can present tumor-associate antigen to CTL and secrete
cytokines to activate CD4+ T or NKs. Therefore, activating immunostimulatory cells is
important for enhancing the immune response of the TME.
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3.3. Nanocarriers for Decreasing/Regulating Immunosuppressive Factors

The immunosuppressive tumor microenvironment is mainly composed of the complex
interaction between immune-tolerance cells (e.g., M2-like TAMs, CAFs, MDSCs, Treg, etc.)
and immunosuppressive factors (e.g., TGF-β, VEGF, IL-10,IL-4, HIF-α, etc.) with other
cells or non-cells. Immune-tolerance cells and immunosuppressive molecules can promote
tumor growth by promoting the formation of ECM and angiogenesis. The failure of
immune cells (TAMs and Treg) also seriously affects the development of tumor treatment
strategies. Therefore, nano therapies to overcome the immune tolerance of the TME is the
third effective strategy to reprogram the TME (Figure 6).

For regulating immunosuppressive macrophages. Macrophages within the tumor,
also known as TAMs, are a critical regulator of the immunosuppressive TME for im-
mune escape and tumor development [189]. The majority of TAMs present M2 phenotype
and produce immunosuppressive factors to support immunosuppressive cells [190,191].
In contrast to M2 TAMs, M1 generate immunostimulatory factors to activate immunos-
timulatory cells [192]. Thus, approaches used to polarize TAMs from M2 to M1 have
demonstrated great potential for reprogramming the immunosuppressive TME. Chen’s
team constructed a fibrin gel which encapsulated anti-CD47-loaded calcium carbonate
nanoparticles [193]. This nanogel can scavenge H+ in the TME, reversing M2-like TAMs to
the M1-like phenotype. The delivery anti-CD47 blocks the “don’t eat me” signal of cancer
cells, causing macrophages to engulf more cancer cells. Macrophages can also act as profes-
sional APCs, delivering tumor-associated antigens to T cells to initiate the anti-tumor effect
of CD4+ and CD8+ T cells. Shi’s team co-encapsulated photosensitizers indocyanine green
(ICG) and titanium dioxide (TiO2) with or without ammonium bicarbonate (NH4HCO3)
in mannose-modified PEGylated PLGA nanoparticles for the delivery of photosensitizers
to endosome/lysosome or cytoplasm of TAMs [194]. They successfully reprogrammed
M2-like TAMs to an anti-tumor M1-like phenotype using this NP, demonstrating superior
efficiency and efficacy over lipopolysaccharide stimulation. Reprogrammed TAMs lead
to changes in the tumor microenvironment, activation of their anti-tumor function, and
release cytokines that recruit more CTLs in the tumor tissues and guide T cells to produce
anti-tumor immune memory.

For regulating immunosuppressive MDSCs. The immunosuppression caused by
MDSCs in TME involves many aspects, which can suppress the function of TAMs, T cells,
and NK cells in the TME by producing immunosuppressive cytokines like VEGF, IL-10, and
TGF-β [195]. MDSCs can also produce peroxynitrite (PNT) to alter the chemokines of TME
to prevent the infiltration of T cells. The existence of MDSCs is one of the main reasons for
the formation of immunosuppressive TME [46]. Therefore, it is a new strategy of targeting
MDSCs to provide anti-tumor therapy. A targeted polymeric micellar nano delivery
system (SUNb PM) was constructed. Multi target receptor tyrosine kinase inhibitors
were encapsulated in it, cooperating with anti-cancer vaccine therapy to treat advanced
melanoma [38]. SUNb PM not only increased the infiltration of CTLs and reduced the
number of MDSCs and Treg in TME, but also increased the expression of Th1 type cytokines
IL-2 and IFN-γ and downregulated the components related to fibroblasts, collagen, and
blood vessels (e.g., CD31, α-SMA, and collagen).

For regulating immunosuppressive Treg cells. The CD4+ regulatory T (Treg) cells, as a
wide range regulators of gene expression, are critical to the recognition and function of im-
mune regulatory T cell subsets [196]. Tregs, through the activities of cell surface molecules
(e.g., Foxp3, CTLA-4, CD25, CD39, CD73, and TIGIT), secretion of cytokines (TGF-β, CCR4),
and immune molecules (granzyme, cyclic AMP, and IDO) create an immunosuppressive
TME [46,197]. Therefore, blocking the expression of functional molecules on Treg or reduc-
ing the number of Treg can reshape immunosuppressed TME. Ou’s team developed tLyp1
peptide conjugated hybrid nanoparticles that target Treg cells of TME [198]. The hybrid
nanoparticles presented good stability and effective targeting to Treg cells. By inhibiting
the phosphorylation of STAT3 and STAT5, they enhance the downregulation of imatinib on
Treg cells. Specifically, when combined with CTLA-4, the Treg cells were more reduced.
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Prolonged survival rate, inhibited tumor growth, and elevated CD8+ T cells infiltration
were also observed.

For regulating immunosuppressive CAF and other immunosuppressive factors. Many
other strategies have been conducted to reprogram the immunosuppressive TME through
inhibiting angiogenesis, CAF function, and soluble immunosuppressive factors (TGF-β,
CCL-2, and IL-6, VEGF). Cheng’s team reported a therapeutic peptide assembling nanopar-
ticle that can sequentially respond to dual stimuli in the tumor ECM for tumor-targeted
delivery and on-demand release of a short D-peptide antagonist of programmed cell
death-ligand 1 (D PPA-1) and an inhibitor of idoleamine 2, 3-dioxygenase (NLG919) [199].
By concurrent blockade of immune checkpoints and tryptophan metabolism, the nano-
formulation increased the level of tumor-infiltrated cytotoxic T cells and, in turn, effectively
inhibited melanoma growth. Hou’s team developed a nano lotion (NE) formula, target-
ing the delivery of anti-fibrosis drug fraxinellone (Frax) to CAFs as a method to reverse
immunosuppressive TME of melanoma [200]. After intravenous injection of Frax NE, sig-
nificant reductions of CAFs and interstitial deposition were observed. Immunostimulatory
cells (NK cells, CTLs) and factors (IFN-γ, TNF-α) were also increased. Immunosuppress
cells (regulatory B cells, MDSCs) and factors (TGF-β, CCL-2, and IL-6) were also decreased
in the TME. Cecchini’s team reported successful production of molecularly imprinted
polymer nanoparticles (nanoMIPs) against human vascular endothelial growth factor
(VEGF) [201]. The composite nanoparticles exhibited specific homing towards human
melanoma cell xenografts, overexpressing hVEGF in zebrafish embryos. This nanoMIP can
deliver anti-angiogenic drugs that inhibit the development of tumors.

In conclusion, the TME is a determining factor of the anticancer response and can
endow resistance to various anti-tumor therapies. In this context, nanomaterials have been
shown to alter populations of CAFs, TAMs, regulatory T cells, and MDSCs. Although
considerable progress has been made, in order to translate this strategy into clinical trials,
nanomaterial based TME modulation must overcome several limitations, including limited
tumor tissue penetration, tumor heterogeneity, and immunotoxicity. Combined treatment
with traditional treatment, such as surgery, chemotherapy, photodynamic, etc., may be an
effective strategy to solve these problems.

3.4. Nanocarriers for Regulating Acidic Environment

The acidic environment in the tumor microenvironment has become a hot topic in
cancer biology research. Many studies have shown that tumor tissues generally have a
lower pH value compared to normal tissues [166]. This acidic environment may play a
crucial role in tumor growth and metastasis.

The metabolic processes of tumor cells can lead to the formation of an acidic envi-
ronment. For example, tumor cells often have a high rate of glycolysis, producing a large
amount of lactic acid and thus reducing the pH value of the surrounding tissue. In ad-
dition, the high metabolic rate of tumor cells also leads to increased carbonic anhydrase
activity, which accelerates the reaction between carbon dioxide and water to generate a
large amount of acidic metabolites [202].

The acidic environment can promote tumor cell proliferation and invasion. On the
one hand, a low pH value can promote the inhibition of cell apoptosis, thus, increasing
cell survival rate. On the other hand, the acidic environment can also promote tumor cell
migration and invasion, as the low pH value increases the protease activity on the cell
surface, promoting the interaction between cells and the extracellular matrix.

However, the acidic environment can also have a negative impact on tumor treatment.
Some studies have shown that a low pH value can weaken the effectiveness of treatment
methods such as radiotherapy and chemotherapy [203]. This is because the low pH value
reduces the effective concentration of drugs within the cell, thus decreasing the effectiveness
of treatment.

Therefore, exploring the effects of the acidic environment in the tumor microenviron-
ment on tumor growth and treatment has become a hot topic in the field of cancer research.
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By delving deeper into the metabolic processes of tumor cells and the mechanisms un-
derlying the formation of the acidic environment, it is hoped that more effective tumor
treatment strategies can be developed, thus improving the effectiveness and prognosis of
cancer treatment.

Nanocarriers can improve the acidic environment of tumor sites in multiple ways.
One method is to use nanomaterials with acidic degradation properties. In this way,
drugs can be released at the tumor site and gradually degrade over time, reducing local
acidity. Siriwallee et al. constructed a type of aminohepthamine cyanine based thermal
probe (I2-IR783-Mpip) to achieve photodynamic therapy with specific response to acidic
environment at tumor site [204]. Jingyi An et al. used OVA as a template to mineralize
calcium carbonate and used the acid degradation reaction of calcium carbonate to improve
the pH of tumor sites to enhance the effect of immunotherapy [165]. Som et al. believe that
it is impractical and non-selective to use alkaline fluid or proton pump inhibitor to improve
the acidic environment of tumors. Therefore, they prepared a series of calcium carbonate
nanoparticles with different particle sizes to achieve the function of regulating the acidity
of tumor sites [205].

Although nano-carriers have the potential to improve the acidic environment of tumor
sites, there are still many technical and safety challenges in their application. In the future,
further research and development are needed to give full play to the potential of nano-
carriers in tumor treatment.

3.5. Nanocarriers for Regulating Hypoxia and Redox Environment

The oxidative–reductive environment at the tumor site refers to the oxidative–reductive
state of cells within the tumor tissue; this is an important difference between tumor cells
and normal cells. In the tumor site, the cell metabolism rate is higher than that in normal
tissue, resulting in high metabolic activity and cell proliferation. At the same time, the
blood supply and vascular generation capacity in tumor tissue are relatively low, leading
to low oxygen tension and the formation of a hypoxic state [206]. Therefore, improving
the hypoxia condition at the tumor site can effectively inhibit tumor proliferation and
improve the treatment effect of chemotherapy, photothermal therapy, and other means.
High biocompatibility and oxygen solubility make hemoglobin (Hb) and perfluorocarbon
(PFC) effective oxygen transporters [207,208]. Tian et al. used hemoglobin nanoparticles
coated by cancer cell membrane to improve the hypoxic environment of tumor sites and
significantly enhance the chemotherapy effect of doxorubicin [209]. Song et al. constructed
a PEG-modified nanoparticle with tantalum oxide (TaOx) as the core and PFC as the
shell [210]. By taking advantage of the high oxygen load of PFC and the X-ray absorption
characteristics of TaOx, the improvement of the hypoxia environment at the tumor site and
the radiosensitivity of tumor treatment were achieved.

Hypoxia also results in a difference in the oxidative–reductive environment within the
tumor tissue compared to normal tissue. In tumor tissue, there are usually higher levels
of oxygen and nitrogen free radicals, which can trigger oxidative stress reactions [211].
These free radicals affect biological macromolecules such as proteins, lipids, and DNA
through oxidation–reduction reactions, leading to cell damage and death. In addition,
tumor cells typically exhibit higher concentrations of glutathione (GSH), the main reducing
ligand of a tumor site. The highest concentration of GSH is found in the cytoplasm of
tumors (2–10 mmol·L−1), which is substantially higher than its extracellular concentration
(2–20 µmol·L−1). The GSH concentration in tumor tissue is at least four times higher than
that in normal tissue.

The oxidative–reductive environment at the tumor site is of significant importance
for the development and treatment of tumors. The proliferation and escape of tumor cells
are often influenced by the oxidative–reductive environment. By regulating the oxidative–
reductive balance within tumor cells, tumor growth and metastasis can be inhibited. Shuang
Bai et al. prepared a star-liked polymer, β- CD-b-P (CPTGSH-co-CPTROS-co-OEGMA)
(CPGR), that can respond to both the high ROS environment and the high GSH environment
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at the tumor site. This polymer can realize the synergistic effect of chemotherapy [211].
Weikai Chen et al. have prepared an alginate gel that can use calcium ions at the tumor
site to self-crosslink. The gel includes protoporphyrin (PpIX) modified manese oxide
(MnO2) nanoparticles and buthionine-sulfoximine (BSO), where MnO2, as a catalyst, can
produce oxygen, while BSO inhibits GSH synthesis of cells, so as to improve the tumor
microenvironment. Xin Guan et al. prepared a flaky inorganic nanoparticle Nb2C, which
carried TiO2 and l-buthionine-sulfoximine to inhibit the synthesis of GSH in tumor cells,
affecting the microenvironment of the tumor [212].

Tumor cells need a large amount of oxygen and nutrients when they grow and divide,
but their blood supply is usually insufficient, resulting in hypoxia in tumor tissue accompa-
nied by an abnormal redox environment. Hypoxia and abnormal redox environment in
tumor site will increase the viability of tumor cells and limit the effect of traditional radio-
therapy and chemotherapy. Now, more and more advanced nanotechnology has provided
some innovative solutions to the problems of hypoxia and abnormal redox environment at
tumor sites. The tumor treatment scheme based on the above nanotechnology has broad
clinical prospects.

4. Conclusions and Outlook

Over the last few years, cancer targeting therapy based on nanotechnology has gained
tremendous attention. Cancer immunotherapy is especially expected to be a game changer
for modern cancer therapy. Cancer immunotherapy has made the biggest breakthroughs in
recent years, including therapies such as immunotherapy with CAR-T and PD-1/PD-L1
antibodies [9,32,188,213]. However, the patient response rates to such creative treatments
remain modest, resulting in several preclinical studies and clinical trials that have directed
more attention toward the immunosuppressive TME [9,186,214].

Abundant immunosuppressive mechanisms in tumors make it difficult to achieve
effective therapeutic effect by single therapy. The controlled release and multi-directional
carrier properties of targeted nano-platforms can comprehensively inhibit multiple immune
pathways, making cancer immunotherapy more effective. Nanomaterial-based modulation
of the TME has been studied for its potential to enhance the efficacy of cancer therapy. Nano-
materials that disrupt the ECM and/or tumor vasculature and increase blood perfusion
have been developed to increase the penetration and intracellular delivery of anticancer
agents. Nanomaterials that modulate DCs, CAFs, TAMs, Treg cells, or MDSCs have been
shown to alter the activities and populations of immune cells in the TME. However, the
immune-related adverse events from enhanced immune strategy occur frequently. In or-
der to promote the success of clinical transformation, it is necessary to comprehensively
evaluate the safety and immune side effects of nanotechnology.

In addition, nanocarriers interact with different molecules, cells, tissues, and organs as
they are transported through the body. Consequently, biological barriers in the body trap
most of these nanoparticles, making it extremely rare for them to reach the tumor site [215].
In order to obtain multifunctional drug delivery nanomaterials with stable groups, targeted
ligands, and bio-responsive linkers, complex modifications are required. However, this may
increase the obstacles to large-scale, causing repeatable production of nanomaterials and
unexpected side effects. Therefore, further investigation must be performed to maintain the
balance between the therapeutic benefit, the complexity of formulation preparation/scale-
up, and the risk of toxicity before nano-immunotherapy can be satisfactorily applied for
cancer patients.

The rational combination of various cancer targeting treatments based on nanotech-
nology will result in more efficient cancer inhibition and elimination. A combined therapy
strategy can inhibit the occurrence and development of tumor from multiple methods and
improve the efficiency of eliminating tumors. Therefore, during the design of a nanoma-
terial, the combination of multiple treatment methods should be considered. In addition,
the powerful advantage of ‘mimicking nature’ still overcomes many of the disadvantages
of traditional delivery nanoparticles and provides a more effective strategy for cancer
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treatment. The natural characteristics of cells, such as the enrichment of targeted proteins,
long-term circulation in the body, ability to pass through biological barriers, interactions
with other cells, and reduced tissue and cell toxicity, effectively protect the drug delivery
of nanoparticles and substantially improve the therapeutic effect. With the rapid develop-
ment of material science, nanotechnology, pharmacology, bioinformatics, and proteomics,
biomimetic nanomaterials are expected to change the current medical technology, overcome
many obstacles, and provide new horizons for targeted cancer combination therapy.

According to the research papers on nano-carriers and tumor therapy collected as
widely as possible in the past 10 years from 2011 to 2022, although the nano-carriers
developed so far have played an excellent role in tumor targeted therapy and tumor
microenvironment improvement, the application of nano-carriers still faces limitations
of biosafety and clinical technology. To fully exploit the potential of nano-carriers in the
treatment of tumors, additional research and development will be required in the future.
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Abbreviations
The list of abbreviations

Abbreviation Full Spelling

TME tumor microenvironment
TAM tumor associated macrophage
NPs nanoparticles
PD-1 programmed cell death protein 1
CTLA-4 cytotoxic T lymphocyte-associated protein 4
CAR-T chimeric antigen receptors T cells
DCs dendritic cells
Th T helper (Th) cells
CTLs cytotoxic T lymphocytes
NK natural killer cells
MDSCs myeloid-derived suppressor cells
Treg regulatory T cells
CAFs cancer-associated fibroblasts
ECM extracellular matrix
FDA US Food and Drug Administration
BSA bovine serum albumin
ICG indocyanine green
MSNPs mesoporous silica nanoparticles
DOX doxorubicin
FA folate
LPs liposomes
MT1DP metallothionein 1D
ROS reactive oxygen species
OMlips modified magnetic liposomes
OA oleanolic acid
EPR enhance permeability and retention
HCCP hexachlorocyclic-triphosphonitrile
CysM cysteine derivatives
IDO indoleamine-(2,3)-dioxygenase
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cRGD cyclo (Arg-Gly-Asp-D-Tyr-Lys) peptide
TRP l-tryptophan
KYN L-kynurenine
SPIONS supermagnetic iron oxide NPs
TZB trastuzumab
PLGA poly(lactic-co-glycolic acid
Mag magnolol
HER2 human epidermal growth factor-2
NOPD NO photodonor
RBC red blood cell
CCM cancer cell membrane
EVs extracellular vehicles
GBM anti-glioblastoma
ESCs embryonic stem cells
PTX paclitaxel
ECM extracellular matrix
rHuPH20 recombinant human hyaluronidase PH20
HA hyaluronidase
MMPs matrix metalloproteinase
MRPL MMP-2 reactive peptide hybrid-liposome
PFD pirfenidone
APCs antigen presenting cells
ICD immunogenic cell death
CRT dead tumor cells calreticulin
ATP adenosine triphosphate
HMGB1 high mobility group protein B1
CGs cardiac glycosides
PDT Photodynamic therapy
IPLB plumbagin
DIH dihydrotanshinone
NVs nano vesicle
TILs tumor infiltrating lymphocytes
PNT peroxynitrite
SUNb PM polymeric micellar nano delivery system
DPPA-1 programmed cell death-ligand 1
NLG91 idoleamine 2, 3-dioxygenase
NE nano lotion
Frax fraxinellone
VEGF human vascular endothelial growth factor
Hb hemoglobin
PFC perfluorocarbon
GSH glutathione
CPGR β- CD-b-P (CPTGSH-co-CPTROS-co-OEGMA)
PpIX protoporphyrin
BSO buthionine-sulfoximine
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