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Abstract: In Wolfram syndrome (WFS), due to the loss of wolframin function, there is increased ER
stress and, as a result, progressive neurodegenerative disorders, accompanied by insulin-dependent
diabetes. The aim of the study was to evaluate the oral microbiome and metabolome in WFS patients
compared with patients with type 1 diabetes mellitus (T1DM) and controls. The buccal and gingival
samples were collected from 12 WFS patients, 29 HbA1c-matched T1DM patients (p = 0.23), and
17 healthy individuals matched by age (p = 0.09) and gender (p = 0.91). The abundance of oral
microbiota components was obtained by Illumina sequencing the 16S rRNA gene, and metabolite
levels were measured by gas chromatography–mass spectrometry. Streptococcus (22.2%), Veillonella
(12.1%), and Haemophilus (10.8%) were the most common bacteria in the WFS patients, while compar-
isons between groups showed significantly higher abundance of Olsenella, Dialister, Staphylococcus,
Campylobacter, and Actinomyces in the WFS group (p < 0.001). An ROC curve (AUC = 0.861) was con-
structed for the three metabolites that best discriminated WFS from T1DM and controls (acetic acid,
benzoic acid, and lactic acid). Selected oral microorganisms and metabolites that distinguish WFS
patients from T1DM patients and healthy individuals may suggest their possible role in modulating
neurodegeneration and serve as potential biomarkers and indicators of future therapeutic strategies.

Keywords: Wolfram syndrome; neurodegeneration; gingival samples; oral microbiome; metabolomics

1. Introduction

Wolfram syndrome (WFS; DIDMOAD syndrome, OMIM#222300) is a rare (1:770,000)
autosomal recessively inherited disease with the presence of pathogenic variants in the
WFS1 gene, in which the life expectancy of patients is approximately 30–40 years. The
criteria for the clinical diagnosis of WFS are the coexistence of insulin-dependent diabetes
mellitus with optic nerve atrophy accompanied by diabetes insipidus and deafness. Other
symptoms include neurological, urodynamic, and endocrine disorders [1–3]. In WFS the
clinical manifestation of diabetes mellitus occurs early, usually at the age of 4–7 years and is
the first symptom of the syndrome. It is a non-autoimmune form of insulin-dependent dia-
betes mellitus resulting from selective pancreatic β-cells loss and impaired insulin secretion.
However, the essence of Wolfram syndrome is the progressive neurodegeneration accom-
panying diabetes, which leads to multiple disorders and, consequently, to the premature
death of the patient [4,5]. WFS is characterized by a deficiency of wolframin located in the
membrane of the endoplasmic reticulum (ER), whose loss of function leads to an increase
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in ER stress and apoptosis of many target cells. This results in clinical events present
in patients including progressive visual impairment based on optic atrophy, progressive
hearing impairment, neurogenic bladder, and neurological disorders [1,6]. Interestingly,
despite the well-known and documented genetic background of WFS, there are indications
that epigenetic and environmental factors also influence the clinical manifestation and
course of the syndrome. It is worth mentioning the different phenotype and course of the
disease observed within the same families and in patients carrying the same causative
variants [7], which may suggest the influence of different infections or pathogens. Moreover,
new research indicates that WFS patients show a unique metabolic fingerprinting in serum,
distinguishing them from patients with type 1 diabetes mellitus (T1DM) and serum levels
of sphinganine derivative appear to be a marker of ongoing neurodegeneration in WFS
patients [8].

Furthermore, recent reports on Alzheimer’s disease (AD)—as a model neurodegen-
erative disease—highlight the role of periodontal status and the involvement of specific
bacteria in the induction and progression of neurodegeneration. These reports indicate
that once the protective barrier of the host’s oral tissues is broken, bacteria migrate and
contribute in different ways to the pathologies observed in AD [9,10]. On the other hand, it
is well known that periodontal disease is a risk factor for cardiovascular disease, diabetes,
and other chronic diseases [11]. Moreover, new findings have shown interactions between
specific bacterial species and genes identified in genome-wide association studies (GWAS)
as responsible for the development of these diseases. Thus, these data suggest important
genetic-environmental interactions between the presence of oral bacteria and a specific
genetic predisposition to neurodegeneration or changes in gene expression in conditions
where periodontal disease is a contributing factor [12,13]. Furthermore, the identification
by GWAS of polymorphisms associated with various environmental factors may, as in AD,
encourage the development of diagnostic and therapeutic strategies [14].

The inadequacy of microbiological methods in the identification of different types of
bacteria and the increasing availability of new methods for the detection of the bacterial
genome have forced attempts to make wider use of the latter. In recent years, due to the
development of the latest high-throughput sequencing techniques such as next-generation
sequencing (NGS), bacterial metagenomic studies have become cheaper and more accessi-
ble. Very often, classical microbiological tests can give false-negative results because some
microorganisms may not be able to grow under given laboratory conditions and/or in the
presence of other bacterial species. These methodological difficulties can be eliminated
with bacterial genome studies. As a result, most of the currently known bacterial species
can be characterized both quantitatively and qualitatively [15–18].

The aim of this study was to evaluate the bacterial genome in gingival and buccal
fluid samples of patients with Wolfram syndrome in comparison with patients with type
1 diabetes without neurodegeneration and healthy subjects, with subsequent metabolomic
analysis of the gingival crevicular fluid (GCF).

2. Results

A total of 5,221,745 reads attributed to bacteria were obtained. The average number of
reads assigned to a bacterial type per sample was 82884. On average, 12.8% of reads per
sample were not assigned to any bacterial type. Among the bacterial genera identified by
the NGS method, Streptococcus (22.2%), Veillonella (12.1%), and Haemophilus (10.8%) were
the most common in the study group of the WFS patients, followed by Prevotella (8.6%) and
Neisseria (1.8%), while Streptococcus was the most common in the control group, accounting
for up to 39.3%. The following types occurred in the control group: Haemophilus (18.1%),
Prevotella (5%), and Neisseria and Veilonella (4.1% each, respectively). In the comparison
group of patients with T1DM, the most commonly identified bacterial type was Streptococcus
(30.8%), Haemophilus (10.3%), and Veilonella (8%), followed by Neisseria (6.8%) and Prevotella
(5%) (Figure 1).
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Figure 1. Taxonomic composition of community at bacteria genus level. WFS—Wolfram syndrome;
HS—healthy subjects; T1DM—Type 1 diabetes mellitus.

Figure 2 shows the complete identification of the bacterial genera present in all study
groups, which enabled their clustering (Figure 2).

The overall core microbiome analysis is presented in Supplementary Figure S1. Samples
from the study, comparison, and control groups differed significantly in all five measures
of alpha diversity analysis used: Chaol (p = 0.0199), ACE (p = 0.0423), Simpson (p < 0.0001),
Fisher (p = 0.0004), and Shannon (p < 0.0001) (Figure 3, Supplementary Table S1).

An analysis of beta diversity also indicated a statistically significant difference between
the study, comparison, and control groups (p < 0.001) (Figure 4).

Next, the most important bacteria identified in the microbiome data analysis were
assessed using a univariate analysis method (Supplementary Table S2). Comparisons were
made between groups for the five most statistically significant bacterial genera identified:
Olsenella, Dialister, Staphylococcus, Campylobacter, and Actinomyces, indicating a significantly
higher abundance value in the WFS study group compared with the control and comparison
groups (Figure 5A–E) (p < 0.001; p < 0.001; p < 0.001; p < 0.001; and p < 0.001, respectively).
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Figure 3. Boxplot showing the overall measure of alpha-diversity in the groups studied using the
Shannon method at the bacterial genus level. WFS—Wolfram syndrome; HS—healthy subjects;
T1DM—Type 1 diabetes mellitus. The black dot indicates the average value. Statistical significance
was evaluated by ANOVA F-value: 12.038; p-value < 0.0001.
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Figure 5. Boxplots comparing abundance for the groups studied for selected bacterial genera:
(A). Olsenella; (B). Dialister; (C). Staphylococcus; (D). Campylobacter; and (E). Actinomyces.
WFS—Wolfram syndrome; HS—healthy subjects; T1DM—Type 1 diabetes mellitus. Significant
differences in abundance of bacteria genera among the three groups were identified using ANOVA;
p < 0.001 in all presented bacteria.
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Moreover, after processing the GC-MS data, 120 metabolic signals were detected for
all comparisons. Signal clustering and filtering processes yielded a total of 56 metabolites,
of which a group of 25 metabolites could be annotated. CV values (for QC samples) were
calculated. Based on the results, it was confirmed that the CV values for 13 metabolites
were below 30% (Table 1).

Table 1. List of metabolites included in the statistical analysis.

Metabolites RT
Library RT RI TI QI 1 QII 2 CV (%)

QCs HMDB Group of
Metabolites

Acetic acid - 5.8 596 75 117 45 25.4% HMDB00237 Carboxylic acids

Propanoic acid - 6.5 720 131 75 73 16.0% HMDB00042 Carboxylic acids

Lactic acid 6.851 6.6 732 117 147 73 17.2% HMDB00190 Alpha hydroxy acids
and derivatives

Glycolic acid 7.049 6.9 745 147 73 66 21.2% HMDB00115 Alpha hydroxy acids
and derivatives

Alanine 7.474 7.3 774 116 73 147 27.2% HMDB00161
Amino acids,
peptides, and

analogues

Acetic acid - 7.48 785 145 104 174 23.9% HMDB00532
Amino acids,
peptides, and

analogues

Valine 9.151 8.9 898 144 218 73 13.2% HMDB00883
Amino acids,
peptides, and

analogues

Glycerol-3-phophate 9.7 9.5 930 299 73 314 12.5% HMDB00126 Glycerophosphates

Benzoic acid 9.595 9.5 935 179 105 135 19.5% HMDB01870 Benzoic acids and
derivatives

Glycerol 9.941 9.8 950 205 147 73 29.7% HMDB00131
Carbohydrates and

carbohydrate
conjugates

Glycine 10.456 10.1 985 174 248 147 24.6% HMDB00123 Organic acids and
derivatives

Succinic acid 10.509 10.4 995 247 73 75 17.9% HMDB00254 Dicarboxylic acids
and derivatives

m-toluic acid 11.006 10.835 1020 193 119 149 17.7% HMDB62810 Benzoic acids and
derivatives

CV, coefficient of signal variation, RT, retention time; HMDB—Human Metabolome Database; TI, target ion;
QC, quality control; QI 1, first qualifier ion; QI 2, second qualifier ion; RI, retention index. All compounds reported
in the table are three methyls silylated (TMS).

Metabolite intensities were then compared between the studied groups. Consequently,
eight metabolites (p-value <0.05 * and <0.01 **) in all comparisons could be distinguished
and significant metabolites of GCF samples are shown in Figure 6. These metabolites
mainly belong to carboxylic acids, amino acids, and carbohydrates.

Statistically significant differences were observed in the intensity of six metabolites:
acetic acid (FC = 2.3), lactic acid (FC = 3.0), valine (FC = 3.5), benzoic acid (FC = 1.3), glycerol
(FC = 5.8), and succinic acid (FC = 3.4). This finding can distinguish WFS patients from
healthy subjects, while four metabolites (acetic acid, propionic acid, lactic acid, and benzoic
acid) can differentiate WFS from T1DM patients. The intensity of such metabolites as acetic
acid (FC = 2.1), lactic acid (FC = 2.5), and benzoic acid (FC = 1.4) were significantly higher
in WFS patients compared with both T1DM patients and healthy subjects (Figure 6).
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Figure 6. Levels of metabolites discriminating GCF samples of patients with WFS, T1DM, and
healthy controls. Significant differences in metabolite intensity among the three groups were iden-
tified using a non-parametric Kruskal–Wallis ANOVA (p < 0.05), followed by a Conover–Iman
post-hoc test (p < 0.05 *, <0.01 **). WFS—Wolfram syndrome; HS—healthy subjects; T1DM—Type
1 diabetes mellitus.

In addition, to assess the potential of significant metabolites as WFS predictors, ROC
curves were constructed using the relative metabolite contents of the studied groups
(Figure 7A). Multivariate (AUC = 0.861) (Figure 7B) and individual ROC curves (Figure 7C)
were constructed for the three metabolites showing the best discriminatory power (acetic
acid, benzoic acid, and lactic acid).
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3. Discussion

For the first time, the bacterial genome from the gingival and buccal fluid of patients
with WFS syndrome was evaluated and compared with results from patients with isolated
insulin-dependent diabetes and healthy individuals. Moreover, the metabolites present
in the GCF of WFS patients were also evaluated and compared with a group of T1DM
patients and healthy subjects. The present results confirmed that the most frequently
represented oral bacteria in WFS patients were those of the Streptococcus, Haemophilus, and
Veillonella genera. In addition, a significant diversity of bacterial types was observed both
within the study groups and between the analyzed patient groups. Olsenella, Dialister,
Staphylococcus, Campylobacter, and Actinomyces bacteria in samples from WFS patients were
found to be more abundant than those identified in alpha diversity in patients with T1DM
and in healthy subjects. Interestingly, the bacterial genera found as most common in the
present study were also described as predominant in the saliva of pediatric patients with
type 1 diabetes [19]. In addition, other studies have found an association between the
presence of oral bacteria and the degree of metabolic control of diabetes as measured by
HbA1c [20,21]. Significant positive correlations were also observed between HbA1c values
and both phylogenetic alpha- (richness) and beta-diversity (compositional variation) of
the oral microbiota in gingival samples from children with type 1 diabetes [21]. It is worth
noting that in our research, the study group and the comparison group with T1DM were
matched both in relation to the metabolic control of diabetes (HbA1c) and the treatment
administered (insulin therapy and levothyroxine), which seems to eliminate the influence
of these factors on the results obtained. Many studies highlight the two-way relationship
between diabetes and periodontitis, indicating that oral and periodontal health should be
promoted as an integral part of diabetes care [22,23]. However, it seems that the patho-
logical mechanisms are more complex. It is worth noting that those bacterial genera that
most differentiated WFS patients from other groups studied are not typical for diabetic
patients. Some of them are specific for periodontal disease, although such disorders were
not found in WFS patients in the present study. Thus, it is worth mentioning that periodon-
titis is a chronic disease, which precedes gingivitis [12]. It has already been recognized that
complex interactions between immune response mediators and the bacterial biofilm lead
to the progression of these conditions. Dysbiosis disrupts the host response so that most
tissue damage is caused by an uncontrolled increase in local inflammation. It results in an
increased flow of nutrient-rich GCF and bleeding, causing anaerobic microorganisms to
grow in an oxygen-deprived area. It can promote the growth of bacteria residing in the
gingival crevice, such as Porphyromonas gingivalis. However, the extent to which biofilm ac-
cumulation promotes periodontitis is determined by genetic, epigenetic and environmental
factors, leading to specific consequences in individuals [12,24–26]. Interestingly, these sug-
gestions of genetic-environmental interactions between P. gingivalis bacteria and changes in
gene expression have already been confirmed in studies on Alzheimer’s disease [13] and
even therapeutic options have been found to reduce the bacterial load in the brain [27,28].
However, in the present study, P. gingivalis was not found, while several other bacterial
genera, including abundant Gram-negative bacteria, were identified as differentiating WFS
patients from other study groups. It is important when considering that both other oral
pathogenic bacteria and gut microbiota may also be involved in various types of human
neurogenesis [14,29,30]. Then, the present study selected the metabolites in GCF such as
lactic acid, benzoic acid, and acetic acid, the intensities of which were significantly higher in
WFS patients compared with both T1DM and healthy subjects. To date, lactic acid levels in
the blood of some WFS patients were found to be elevated and increased after exercise [31].
This phenomena may be of particular interest considering both the primary and secondary
mitochondrial dysfunction present in this syndrome [31,32]. Interestingly, the role of lactic
acid derivatives as signaling molecules in the brain with possible neuroprotective effects is
increasingly being pointed out [33], as is the possibility of using lactic acid bacteria in an
animal model of Alzheimer’s disease [34]. Furthermore, the neuroprotective properties of
benzoic and acetic acid derivatives have also prompted preclinical trials of their therapeutic
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use in various neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS)
or multiple sclerosis (MS) [35,36], and even applications in DM-induced and Parkinson’s
disease (PD)-related neurodegeneration [37]. It should be noted that the results of metabolic
studies can be applied not only in the search for markers of observed disorders, but also as
therapeutic strategies.

Our study has several limitations. The size of the study group was determined by the
low frequency of Wolfram syndrome in the Caucasian population. It would also have been
appropriate to expand the control group to include a larger number of healthy, gender- and
age-matched individuals. Moreover, in the prevalence analysis of different types of bacteria,
there were data without assigned values that refer to unidentified bacteria, which may be
related to the collection of biological material for testing. In addition, to define markers
of neurodegeneration progression, it would be possible to conduct studies at several time
points. Taking this into account, the results obtained are preliminary.

In conclusion, the genome-wide determination of the oral bacterial microflora of the
patients with Wolfram syndrome and a comparison with the results of patients with type
1 diabetes to eliminate the influence of diabetes itself and with healthy subjects, allowed
the identification of specific oral bacteria in these patients, which may make it possible in
the future to determine their role in modulating the neurodegeneration process. However,
further studies are needed to define the role of metabolites selected from the GCF as
potential biomarkers or therapeutics targeting disorder suppression.

4. Materials and Methods
4.1. Patients

The study protocol was approved by the University Bioethics Committee at the Med-
ical University in Lodz, Poland (RNN/191/19/KE). Patients and/or their parents gave
written informed consent for participation in the study.

The study group included 12 patients with genetically confirmed WFS, as previously
described [8], while the control group consisted of 17 age- (p = 0.09) and sex-matched
(p = 0.91) healthy individuals. The control group included lean people without a clinical
diagnosis of diabetes and other chronic diseases, including neurodegenerative diseases.
The comparison group included 29 patients with T1DM diagnosed according to the WHO
classification, matched for HbA1c level (p = 0.23) [38]. All T1DM patients had a minimum
of 2 types of autoantibodies, confirming the autoimmune form of diabetes. All patients
in the study (WFS patients) and comparison group (patients with T1DM) were treated
with subcutaneous insulin therapy. The most common disease coexisting with T1DM is
Hashimoto’s disease, which occurred in 7/29 of our patients. No other comorbidities
were found in the comparison group. Furthermore, hypothyroidism was diagnosed in
3/12 patients with WFS. All these patients were treated with levothyroxine.

No patient in the study, reference, or control group was diagnosed with periodontal
disease. All were from the Caucasian population. Use of oral antibiotics and hormonal
contraceptives in the past 2 months, smoking, and pregnancy were taken as exclusion
criteria. Detailed characteristics of the individuals studied are shown in Table 2.

In patients in the study, comparison (with T1DM), and control groups, samples of fluid
from the buccal mucosa and buccal gingival margin of the first lower permanent molar
were collected non-invasively during a routine intraoral dental examination performed
by two experienced dentists. It was preceded by correct tooth brushing according to the
instructions received. Each patient brushed their teeth for 2 min with an Oral B Genius
9000 electric toothbrush with pulsating and oscillating-rotating motions, equipped with a
pressure sensor, in Daily Clean mode with disposable Cross Action tips. It was connected
via Bluetooth to the Oral B app for checking the brushing process.

Samples for molecular analysis were collected into sterile screw-cap vials and then
stored at −20 ◦C until further analysis. GCF samples for metabolomic analysis were
obtained using sterile PERIOPAPERTM absorbent strips (Oraflow Inc., New York, NY,
USA), which were inserted for 30 s into the bottom of the periodontal pocket. Each strip



Int. J. Mol. Sci. 2023, 24, 5596 10 of 14

was then placed in an Eppendorf tube with 2% formic acid and frozen at −80 ◦C for
further analysis.

Table 2. Clinical characteristics of matched patients with WFS, T1DM, and healthy subjects.

WFS T1DM HS

N Mean ± SD
or % N Mean ± SD

or % N Mean ± SD
or %

Age (years) 12 23.5 ± 6.2 29 11.3 ± 3.4 17 26.8 ± 3.3

HbA1c (%) 12 7.6 ± 0.6 29 7.3 ± 0.8 17 N/A

Diabetes
duration
(years)

12 17.9 ± 6.5 29 5.0 ± 2.7 17 N/A

Gender (F/M) 12 8/4
(66.7%/33.3%) 29 14/15

(48.3%/51.7%) 17 11/6
(64.7%/35.3%)

WFS—Wolfram syndrome, T1DM—Type 1 diabetes mellitus, HS—healthy subjects; SD—standard deviation,
N/A—not applicable.

4.2. Molecular Analysis—DNA Isolation

Bacterial DNA was extracted from frozen gingival and buccal fluid samples using the
Maxwell® RSC Cultured Cells DNA Kit (Promega, catalogue number: AS1620, Madison,
WI, USA).

4.3. Library Preparation and Sequencing

Microbial community profiles were assessed by sequencing the 16S rRNA gene. The
first step was the amplification of V3 and V4 variable fragments of analyzed gene according
to the protocol recommended by Illumina (San Diego, CA, USA). Primers with overhang-
ing adapters compatible with Illumina indexes and sequencing adapters in paired-end
sequencing technique were used. Kappa HiFi polymerase (Roche, Mannheim, Germany)
was used to amplify fragment with an average 464 bp length. Next the specificity of ob-
tained products was evaluated in an agarose gel and then purified on AMPure XP magnetic
beads (Beckman Coulter, CA, USA). The indexing reactions were also carried out using the
Kappa HiFi polymerase (Roche, Mannheim, Germany) with the Nextera XT dual-index set
(Illumina, San Diego, CA, USA). The concentration of the obtained libraries was determined
using the Qubit 2.0 device (Thermo Fisher Scientific, Waltham, MA, USA) and pooled in
equal concentrations. The library thus prepared was sequenced on the Miseq platform
(Illumina, San Diego, CA, USA) using the kit (MiSeq Reagent Kit v3, 600 cycles).

4.4. NGS Data Processing

Obtained raw sequencing data (fastq files) from the Miseq device were uploaded to
the Galaxy web platform [39] and we used the public server at usegalaxy.org to analyse the
data. FASTQ format files were unified to Sanger FASTQ encoding with FASTQ Groomer
tool [40]. Paired end reads were first merged using FLASH tool [41], then the Trimmomatic
algorithm was used to remove adapters and low-quality reads (below Q20 value) [42].
Operational Taxonomic Units (OTUs) were assigned by the Kraken 2 algorithm with
Standard database [43] and next filtered by classification confidence score at 0.05 level.
OTU reads counts for each taxonomy level were extracted into tables and percentage
abundance of each identified bacterial taxa was calculated.

4.5. Data Analysis—Alpha and Beta Diversity

The compositional diversity of the microbiome in samples was analyzed at the genus
level on web Microbiome Analyst platform [44]. The Shannon, Chaol, ACE, Simpson, and
Fisher algorithm and the ANOVA test were used to determine the alpha diversity and
the statistical significance differences. In the case of beta-diversity, we used the Principle
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Coordinate Analysis (PCoA) method to visualize data while statistical significance was
tested by the PERMANOVA method.

4.6. Metabolite Extraction and Derivatization from the GCF Samples

Extraction of GCF metabolites was performed as described previously [45] with
some modification. To the samples were added 30 µL of O-methoxyamine hydrochlo-
ride (20 mg/mL) in pyridine. The vials were closed and vortexed vigorously for 2 min,
ultrasonicated for 5 min, and vortexed for 2 min. The vials were covered with aluminium
foil and incubated under darkness at room temperature for 16 h. After this time to each
sample was added 30 µL of BSTFA with 1% TMCS. The vials were closed and vortexed
for 2 min. The GC vials were placed into an oven for 1 h at 70 ◦C for silylation. Then
the samples were cooled for about 1 h at room temperature in the dark. A volume of
60 µL of heptane containing 5 ppm of methyl stearate (MS) was added to each sample
and vortexed for 2 min. Quality control (QC) samples were independently prepared by
pooling equal volumes of each sample and following the same extraction procedure applied
to the experimental samples. An analyte-free extraction blank and reagent blank were
also processed.

4.7. Untargeted GC–MS (Gas Chromatography–Mass Spectrometry) Data Analysis

Metabolic fingerprinting was performed using a GC system (series 7890B) equipped
with a 7693A auto-sampler and a Mass Selective Detector 7000D (Agilent Technologies,
Palo Alto, CA, USA). A volume of 1 µL of the derivatized sample with ISs was injected into
a DB–5MS capillary GC column (30 m × 0.25 mm × 0.25 µm) using helium as a carrier
gas at a constant gas flow of 1.0 mL/min. The injector temperature was set to 250 ◦C and
the split ratio to 1:10. The temperature gradient program started at 60 ◦C and was held for
1 min, followed by a subsequent increase in temperature to 320 ◦C at a rate of 10 ◦C/min.
The GC–MS transfer line, filament source, and quadrupole temperature were set to 280,
230, and 150 ◦C, respectively. The electron ionization source was set to 70 eV, and the mass
spectrometer was operated in the full scan mode, applying a mass range from m/z 50 to
600 at a scan rate of 1.38 scan/s.

4.8. Raw GC–MS Data Processing

The deconvolution and identification were performed using Mass Hunter Quantitative
Unknowns Analysis software (B.07.00, Agilent, Santa Clara, CA, USA), alignment with
Mass Profiler Professional software (version 13.0, Agilent, Santa Clara, CA, USA), and peak
integration using Mass Hunter Quantitative Analysis software (version B.07.00, Agilent,
Santa Clara, CA, USA). The identification was performed mainly based on the accurate
mass and product ion spectrum matching using the in-house library of authentic standards
as well as Fiehn’s and NIST 14 libraries.

In order to perform the differential analysis of the metabolomics data, the variables
were then filtered as described by Godzien et al. [46]. Missing values were replaced by
k–means nearest neighbour [47] using the in-house built scripts for MATLAB 7.10 R2010a
(MathWorks Inc., Natick, MA, USA).

Before the statistical analysis, clinical sample areas were normalized by IS abundance
to minimize the response variability coming from the instrument. Finally, data were filtered
based on the coefficient of signal variation (CV) in QC samples, considering values lower
than 30% as acceptable.

4.9. Visualization of Data and Statistical Analysis

Hierarchical Clustering and Heatmap for molecular analysis were performed using
Ward clustering algorithm and Euclidean distance method. Changes in raw abundances
between groups were presented using stacked-bar plots. A parametric test ANOVA was
used to demonstrate overall changes in the relative abundance of genera. Two-tailed
p values lower than 0.05 were deemed statistically significant. Above analysis was done on
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web Microbiome Analyst platform [44]. Categorical variables were presented as numbers
with corresponding percentages and means with standard deviations (SD), and continuous
variables as medians with interquartile range (25–75%).

Statistical analyses of metabolites were performed using MetaboAnalyst 5.0 software.
Non-parametric ANOVA Kruskal–Wallis test was used to determine if the metabolites
were statistically different between the three groups: WFS, T1DM, and healthy participants
(p < 0.05). When significance was observed, a post-hoc non-parametric Conover-Iman test
was applied for pairwise analyses (p < 0.05). This test was performed using the R software
environment (version 4.0.0, https://www.R-project.org/, accessed on 8 January 2022). In
addition, receiver operating characteristic (ROC) analysis was conducted for statistically
significant metabolites.
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