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Abstract
The current artificial intelligence (AI) models are still insufficient in multi-disease diagnosis for real-world data, which 
always present a long-tail distribution. To tackle this issue, a long-tail public dataset, “ChestX-ray14,” which involved 
fourteen (14) disease labels, was randomly divided into the train, validation, and test sets with ratios of 0.7, 0.1, and 0.2. 
Two pretrained state-of-the-art networks, EfficientNet-b5 and CoAtNet-0-rw, were chosen as the backbones. After the fully-
connected layer, a final layer of 14 sigmoid activation units was added to output each disease’s diagnosis. To achieve better 
adaptive learning, a novel loss (Lours) was designed, which coalesced reweighting and tail sample focus. For comparison, 
a pretrained ResNet50 network with weighted binary cross-entropy loss (LWBCE) was used as a baseline, which showed the 
best performance in a previous study. The overall and individual areas under the receiver operating curve (AUROC) for 
each disease label were evaluated and compared among different models. Group-score-weighted class activation mapping 
(Group-CAM) is applied for visual interpretations. As a result, the pretrained CoAtNet-0-rw + Lours showed the best overall 
AUROC of 0.842, significantly higher than ResNet50 + LWBCE (AUROC: 0.811, p = 0.037). Group-CAM presented that the 
model could pay the proper attention to lesions for most disease labels (e.g., atelectasis, edema, effusion) but wrong attention 
for the other labels, such as pneumothorax; meanwhile, mislabeling of the dataset was found. Overall, this study presented 
an advanced AI diagnostic model achieving a significant improvement in the multi-disease diagnosis of chest X-rays, par-
ticularly in real-world data with challenging long-tail distributions.
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Introduction

Chest X-ray is still the most commonly used modality for the 
diagnosis of various thoracic diseases. It is economical and 
inexpensive, and the equipment is easy to install. Specifi-
cally, chest X-ray is an excellent choice to be widely applied 

in developing or resource-poor areas of the world, where 
radiology services are highly insufficient. Since the global 
coronavirus disease-19 (COVID-19) outbreak in 2020, chest 
X-ray has become a critical imaging application for disease 
screening worldwide [1]. However, with the surge in chest 
X-rays during the pandemic, there was a massive increase 
in imaging data, dramatically overloading frontier radiolo-
gists. Driven by this medical demand, many artificial intel-
ligence (AI) diagnostic models, such as convolutional neural 
networks (CNNs), have been established, which played an 
essential role in combatting the pandemic [2–4]. They pre-
sented good performances in COVID-19 detection, which 
are even comparable with radiologists [2–4].

However, these AI-based diagnostic models generally 
have two shortcomings in clinical practice: 1. Lack of inde-
pendent multi-label classification capabilities. Although 
most AI models perform well in the diagnosis of a single 
disease or lesion (e.g., pneumonia or not, with or without 
lung nodule), real-world imaging diagnosis is usually a 
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multi-label classification task, or so-called “One Check, 
Many Findings” [5, 6]. Coexisting diseases are more com-
mon in real-world scenarios; for example, a typical chest 
X-ray can reveal more than one disease (e.g., pulmonary 
infiltration, cardiomegaly). However, multi-disease diagno-
sis of chest X-rays can be a challenging task for AI models 
due to the more complex patterns that may be present in 
the images. Therefore, some solutions can be considered: 
(1) Combination of multiple pre-trained models for single-
disease diagnosis, which is mostly applied by many AI plat-
forms to achieve an apocryphal multi-disease diagnosis, 
demanding obviously increased computing resources; (2) 
establishment of an independent multi-label AI diagnostic 
model by applying state-of-the-art deep learning methods 
which can effectively reduce computing consumption and 
accelerate the diagnosis speed. 2. Multi-label long-tail dis-
tribution issue. The real-world image samples usually pre-
sent a long-tailed distribution. Typical negative samples (no 
findings) constitute the majority of the head category; in 
contrast, most disease samples fall into the tail categories 
and can only be collected in a small amount [7–9]. This 
imbalance makes the model training seriously overfit the 
negative samples and ignores the disease features in posi-
tive samples, leading to useless training. Moreover, because 
this data imbalance varies among different labels, it further 
increases the difficulty of accurate classification. That’s 
why the manual data inclusion or sharing of tailed data to 
ensure the intra- and inter-class balances is mainly applied 
in radiological model training [5, 9–11]. However, while a 
balanced distribution of disease classes may be beneficial for 
model training, it may not accurately reflect real-world data 
distribution and compromise the model's generalization to 
subpopulations [6, 12].

Hence, utilizing a dataset that accurately represents the 
real-world distribution of diseases, even if it results in class 
imbalance and multi-disease diagnosis, could offer greater 
benefits. Suppose effective solutions can be found for the 
challenges of multi-label classification and long-tailed dis-
tribution; in that case, an optimal multi-label diagnostic 
model for chest X-rays can be established, enabling radi-
ologists to make more accurate diagnoses and improve 
examination efficiency globally. So far, most studies have 
focused on AI diagnosis with only 3 to 6 multi-label cat-
egories [7]. Although two previous studies explored multi-
label classification of 8 and 13 diseases, both presented 
limited performance of CNNs, with the lowest area under 
the receiver operating curve (AUROC) of only 0.6 [7, 8]. In 
this study, we aim to achieve a fourteen-disease classifica-
tion in a long-tail dataset of chest X-rays, which has rarely 
been attempted. In order to promote the AI diagnostic per-
formance with increased labels, we adopted three strategies: 
first, improve algorithms (e.g., self-attention, channel atten-
tion) to strengthen learning ability [13, 14]; second, choose 

or design an appropriate loss (e.g., reweighting, focal loss) 
to make the learning focus more on the tailed and hard sam-
ples [8, 15]; third, using various tricks to promote model 
convergence and prevent overfitting (e.g., transfer learning, 
data augmentation) [7, 16, 17].

Methods

Dataset

The enhanced-version ChestX-ray14 public dataset (Link: 
https://​www.​kaggle.​com/​datas​ets/​nih-​chest-​xrays/​data, 
National Institutes of Health Clinical Center, Bethesda, 
USA.) as a real-world dataset was used in our study because 
the ultimate goal of this study is to train a model that 
generalizes well to new, unseen data in real-world scenarios. 
This public dataset has undergone privacy-preserving 
preprocessing and holds a license of CC0 1.0 Universal 
(CC0 1.0) Public Domain Dedication, which waives 
copyright interest in scientific work and is dedicated to the 
worldwide public domain. This dataset contains 112,120 
consecutive frontal-view chest X-rays spanning from 1992 to 
2015. It includes 14 disease labels identified through using 
a variety of Natural Language Processing (NLP) techniques 
mining from related radiological reports. The spectrum of 
disease labels had the following: “infiltration”, “atelectasis”, 
“effusion”, “nodule”, “pneumothorax”, “mass”, 
“consolidation”, “pleural_thickening”, “cardiomegaly”, 
“emphysema”, “fibrosis”, “edema”, “pneumonia”, and 
“hernia”. The whole dataset included 60,361 negative chest 
X-rays (“No findings”); 20,796 images contain two or more 
disease labels (range: 2–9). The distribution of all disease 
labels presents apparent long-tail distribution, with disease 
proportions from 0.2% (label: hernia) to 17.7% (label: 
infiltration). We randomly divided the entire dataset into 
train, validation, and test sets with ratios of 0.7, 0.1, and 0.2 
for model training, validation, and testing, respectively. The 
details of the dataset are shown in Table 1.

Networks and Hyperparameters

Baseline

We chose ResNet50 with weighted binary cross-entropy 
loss (LWBCE) as the baseline, which showed the best per-
formance in the eight-label chest X-ray diagnosis in a 
previous study [8]. As one of the most used baselines in 
deep-learning studies, its main contribution is to address 
the degradation problem. By establishing a “shortcut 
connection,” or so-called “residual connection,” ResNet 
allows the original information of the superficial layers 

https://www.kaggle.com/datasets/nih-chest-xrays/data
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to be directly transmitted to the subsequent deeper layers, 
which eliminates the vanishing gradient issue owing to the 
excessive depth of the network. In addition, by introduc-
ing the Bottleneck structure, ResNet first performs dimen-
sionality reduction through 1 × 1 convolution, followed by 
a larger kernel convolution, in order to reduce the com-
putational consumption caused by the direct large-kernel 
convolution process [18]. The ResNet50 adopted in this 
study comprises 16 Bottleneck residual blocks (Fig. 1A). 

At the end of the Bottleneck blocks, the output underwent 
average pooling and flattening; then, the results passed 
through a fully connected layer (FC) to calculate the diag-
nosis probability. For the multi-label classifications in our 
datasets, a final layer of 14 sigmoid activation units was 
added to output the predicted probability of each disease. 
To improve the learning in long-tail datasets, LWBCE was 
applied following the recommendations from the previous 
study in the same dataset [8].

Table 1   Summary of the dataset

*0 label indicates “no findings”

Train set 
(70%)
(count/total, %)

Validation set 
(10%)
(count/total, %)

Test set 
(20%)
(count/total, %)

Total
(count/total, %)

Labels
  Infiltration 13,915/78,484

(17.7%)
1929/11,211
(17.2%)

4050/22,425
(18.1%)

19,894/112,120
(17.7%)

  Atelectasis 81,06/78,484
(10.3%)

1133/11,211
(10.1%)

2320/22,425
(10.3%)

11,559/112,120
(10.3%)

  Effusion 9401/78,484
(12.0%)

1315/11,211
(11.7%)

2601/22,425
(11.6%)

13,317/11,2120
(11.9%)

  Nodule 4392/78,484
(5.6%)

635/11,211
(5.7%)

1304/22,425
(5.8%)

6331/11,2120
(5.6%)

  Pneumothorax 3730/78,484
(4.8%)

520/11,211
(4.6%)

1052/22,425
(4.7%)

5302/112,120
(4.7%)

  Mass 4016/78,484
(5.1%)

563/11,211
(5.0%)

1203/22,425
(5.4%)

5782/112,120
(5.2%)

  Consolidation 3244/78,484
(4.1%)

480/11,211
(4.3%)

943/22,425
(4.2%)

4667/112,120
(4.2%)

  Pleural_Thickening 2380/78,484
(3.0%)

339/11,211
(3.0%)

666/22,425
(3.0%)

3385/112,120
(3.0%)

  Cardiomegaly 1897/78,484
(2.4%)

277/11,211
(2.5%)

602/22,425
(2.7%)

2776/112,120
(2.5%)

  Emphysema 1781/78,484
(2.3%)

266/11,211
(2.4%)

469/22,425
(2.1%)

2516/112,120
(2.2%)

  Fibrosis 1204/78,484
(1.5%)

186/11,211
(1.7%)

296/22,425
(1.3%)

1686/112,120
(1.5%)

  Edema 1623/78,484
(2.1%)

244/11,211
(2.2%)

436/22,425
(1.9%)

2303/112,120
(2.1%)

  Pneumonia 997/78,484
(1.3%)

128/11,211
(1.1%)

306/22,425
(1.4%)

1431/112,120
(1.3%)

  Hernia 163/78,484
(0.2%)

28/11,211
(0.2%)

36/22,425
(0.2%)

227/112,120
(0.2%)

Count of multi-labels 
in each image

  0 label* 42,197/78,484
(53.8%)

6055/11,211
(54.0%)

12,109/22,425
(54.0%)

60,361/11,2120
(53.8%)

  1 label 21,768/78,484
(27.7%)

3103/11,211
(27.7%)

6092/22,425
(27.2%)

30,963/112,120
(27.6%)

  2 labels 9993/78,484
(12.7%)

1427/11,211
(12.7%)

2886/22,425
(12.9%)

14,306/112,120
(12.8%)

  3 labels 3361/78,484
(4.3%)

469/11,211
(4.2%)

1026/22,425
(4.6%)

4856/112,120
(4.3%)

  ≥ 4 labels 1165/78,484
(1.5%)

157/11,211
(1.4%)

312/22,425
(1.4%)

1634/112,120
(1.5%)
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Study Networks

To enhance the accuracy of multi-disease diagnosis, state-
of-the-art (SOTA) deep learning networks can be utilized, 
incorporating various loss functions and activation functions 
that address the class imbalance and enhance the interpret-
ability of the models. These networks, such as EffecientNet 
and CoAtNet, consistently integrate channel attention or 
Transformer modules to improve their ability to automati-
cally learn the intricate features of image data [19–22]. The 
channel attention and Transformer modules allow the net-
work to concentrate on the crucial parts of an input image 
(such as the lungs and mediastinum) and effectively capture 
complex relationships among different elements, making 
them particularly beneficial for multi-disease diagnosis in 
chest X-rays. These SOTA networks have shown excep-
tional performance in various visual tasks, demonstrating 
their potential in the field. In this study, we aimed to utilize 
representative SOTA CNN and CNN + Transformer hybrid 
architecture networks, including EfficientNet and CoAtNet, 
which have been widely used for natural image classification 
tasks in recent years, as our study models [19–22]. These 
networks have been chosen for their demonstrated efficacy 
and advanced representation learning abilities, which are 
crucial in achieving improved multi-disease diagnosis in 
chest X-rays. Additionally, these networks can be fine-tuned 
for specific tasks by adjusting the last layers of the network 
to accommodate the target data, reducing the requirement for 

extensive reimplementation. To ensure that the parameters 
between the models are similar, we choose EfficientNet-
b5 and CoAtNet-0-rw as our backbones with lightweight 
designs. The same final layer of 14 sigmoid activation units 
was added for the multi-label classifications. The architec-
tures of these two networks are elucidated below:

EfficientNet‑b5  EfficientNet has been one of the most suc-
cessful CNNs in recent years [17]. It showed a crushing 
performance on ImageNet with a spectacular reduction in 
computing consumption when compared with previous 
CNNs. Overall, EfficientNet greatly balances the network 
depth, width, and resolution, leading to an essential break-
through. In addition to the same residual connection as 
ResNet, another major contribution of EfficientNet is the 
joint application of depth-wise separable convolution and 
the channel attention mechanism named squeeze and exci-
tation (SE) [14, 23]. Without adding too much computa-
tion, the depth-wise separable convolution provides a 
larger number of input and output channels benefiting more 
feature information extraction [23]. It first increases the 
number of channels through 1 × 1 convolution; then, the 
large-kernel convolution is separably performed on each 
channel, forming the output with the same channel count; 
finally, the number of channels is reduced to the input size 
by another 1 × 1 convolution operation, creating an 
“Inverted Bottleneck” structure. Compared with the con-
ventional convolution operation, the computing 

Fig. 1   Schematic diagram of the diagnostic networks in this study. A ResNet50; B EfficientNet-b5; C CoAtNet-0-rw
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consumption is only 1

Nkernelcount

+
1

D2

kernalsize

 of the former. As 

channel attention, SE helps exploit contextual information 
among different channels [14]. First, the global spatial 
information is squeezed into a channel descriptor by using 
the global average pooling; then, after two FC layers with 
a following sigmoid activation, channel-wise dependencies 
as a scalar are fully captured; finally, channel-wise multi-
plication is performed between the scalar and the feature 
map. Equations (1)–(3) of SE are as follows:

where H, W indicates the height and width of the feature 
map; � is the sigmoid function; W2�

(

W1z
)

 suggests the out-
put after two FC layers with the intermediate ReLU acti-
vation marked as � . The depthwise separable convolution 
and SE make up a module named MBConV [14, 23]. The 
EfficientNet-b6 used in this study has a total of 39 MBConV 
modules. Like ResNet50, the final output passed through a 
sigmoid activation layer to obtain the multi-label diagnosis 
probability (Fig. 1B).

CoAtNet‑0‑rw  Although CNN is still the predominant net-
work in computer vision, Transformer has shown a powerful 
performance potential since its birth [6]. Compared with 
CNN, Transformer’s most significant advantage is its larger 
parameter capacity and global receptive field. On large-scale 
datasets, Transformer can also achieve the SOTA perfor-
mance, even better than CNN [21, 22]. However, in datasets 
with limited sample sizes, such as various medical imag-
ing datasets, CNN still presented a better performance than 
Transformer owing to its powerful inductive bias capacity 
[19, 24]. CoAtNet was designed with a CNN + Transformer 
hybrid architecture that integrates the benefits of local 
and global receptive fields [19, 21] to combine the advan-
tages of EfficientNet, Transformer, and ResNet. It involves 
MBConV modules, self-attention, and residual connections. 

(1)squeeze operation ∶ z =
1

H ×W

∑H

i=1

∑W

j=1
F(i, j)

(2)excitation operation ∶ s = �(W2�
(

W1z
)

)

(3)scaling operation ∶ z̃ = zs

In addition, to better merge CNN and Transformer, the net-
work integrates static convolution kernel parameters in origi-
nal self-attention equations, also known as relative-attention, 
achieving three advantages: translation invariance, adaptive 
input weighting, and global receptive field [19]. The equa-
tion of relative-attention (4) is as follows:

where G indicates the global spatial space. (i, j) suggests the 
position pair. w is a trainable scaler that retrieves all wi−j 
static convolutional kernels for all (i, j) pairs by calculat-
ing the pairwise dot product attention. The CoAtNet-0-rw 
used in this study is a lightweight network with 5 MBConV 
modules and 9 Transformer modules. After passing through 
a sigmoid-activation layer, the multi-label diagnosis prob-
abilities are exported (Fig. 1C).

Other hyperparameter settings kept the same (Table 2), 
including: a batch size of 150 [130 in EfficientNet-b5 owing 
to the graphics processing unit (GPU) memory limitation), 
100 training epochs, an optimizer of Adam, a learning rate 
(lr) of 5.0e-05. All models were trained on the same cloud 
GPU platform (gpuhub.com/home). The hardware configu-
ration includes: Nvidia 3090 24G GPU*4, a 60-core Intel(R) 
Xeon(R) Platinum 8358P central processing unit (CPU), and 
360G random access memory (RAM). The training process 
was carried out using PyTorch distributed parallel comput-
ing. All codes have been released on the link: https://​github.​
com/​Kiwis​Fragg​le/​CoAtN​et_​NIH.

Loss

This study intended to use two loss strategies (Fig. 2) for the 
backpropagation:

Weighted Binary Cross‑Entropy Loss

In the multi-label classification task of our datasets, LWBCE 
was feasible to adjust the long-tail distribution to “rebalance” 
and to promote the learning of the tailed data [8]. Besides, it 
holds flexibility when facing different long-tail distributions 

(4)yi =
�

j�G

exp(xT
i
xj + w)

∑

k�G exp(x
T
i
xk + wk)

xj

Table 2   Comparisons of 
different models in our study

FLOPs floating-point operations, lr learning rate
* Reduced batch size owing to the GPU memory limitation

Models Params FLOPs Resolution
(C*H*W)

Batch size Epochs Optimizer lr

ResNet-50 26 M 4112 M 1*244*244 150 100 Adam 5.0e − 05
EfficientNet-b5 30 M 2413 M 1*244*244 130* 100 Adam 5.0e − 05
CoAtNet-0-rw 27 M 4215 M 1*244*244 150 100 Adam 5.0e − 05

https://github.com/KiwisFraggle/CoAtNet_NIH
https://github.com/KiwisFraggle/CoAtNet_NIH
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among various labels. Therefore, the corresponding rebal-
ancing weights should be adjusted for each label to obtain an 
optimal multi-label diagnosis effect [8]. The specific formula 
of LWBCE (7–9) is as follows:

where ypos and ppos indicate the positive label and posi-
tive prediction probability calculated from the sigmoid  
of the output zi , respectively; wpos,c was the weight cal-
culated by the positive sample count over the negative  
sample count; c and i indicate the label class and sample 
sequence, respectively.

Our Designed Loss

Considering the lack of hard-sample classification capac-
ity, we designed a novel reweighted loss in the base of 
LWBCE , by additionally joining an exponential decay factor 
of easy negative samples and a nonlinear shifting prob-
ability for reducing the contribution of negative samples, 
which probably makes the training focusing on not only 
the positive but hard samples [8, 15, 25]. Our loss keeps 
the capacity to make accurate individual adjustments for 

(5)
LWBCE = −

∑m

c=1
(
∑n

i=1
wpos,cypos,iln(ppos,i)

−
∑n

i=1

(

1 − ypos,i
)

��(1 − ppos,i))

(6)wpos,c =
Positive sample count

Negative sample count

(7)ppos,i = �(zi)

each label distribution with different imbalance levels. The 
specific formula (8–12) is as follows:

Similar to LWBCE, ppos,i indicates the prediction probabil-
ity calculated by sigmoid of output zi , and wpos,c is the weight 
calculated by the negative sample count over the positive 
sample count. � is the balanced coefficient to adjust the ini-
tial balance at the start of the training, which was set as 
0.2 in our study; �− is an exponential modulating factor on 
negative samples, which was set as 4.0; a pshift value of 0.05 
was set as the nonlinear shifting probability.

Other Training Tricks

In previous attempts, we encountered the issue of non-
convergence in model training, which was also met in an 
earlier study [8]. To address this issue and strengthen the 
model’s robustness, we applied several additional tricks. 
First, previous studies suggested that transfer learning 

(8)Lours = L+ + L−

(9)L+ = −
∑m

c=1

∑n

i=1
�wpos,c(1 − ppos,i)ln(ppos,i)

(10)
L− = −

∑m

c=1

∑n

i=1
max

(

ppos,i − pshift , 0
)�
ln[1 − max

(

ppos,i − pshift , 0
)

]

(11)wpos,c =
Negative sample count

Positive sample count

(12)ppos,i = �(zi)

Fig. 2   The impact of long-tail data distribution on classification and 
the proposed solution for this study. A For the tail sample (yellow 
dots), it is difficult for the model to learn the valid classification when 
using classic binary cross-entropy loss. B L

WBCE
 increases the weight 

of tail samples and reduces the weight of head samples (blue dots) 

through reweighting, which can effectively enhance the learning of 
tailed categories. C Our design loss ( L

ours
 ) simultaneously increases 

the weight of tailed data and reduces the contribution of easy head 
samples, which may help to improve the classification ability of the 
model when training on a long-tail dataset
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with joint data augmentation could improve model accu-
racy and generalization for multi-label classification tasks 
[7, 8]. Therefore, we employed the pre-trained weights 
obtained from ImageNet training as the initialization. Sec-
ond, we adopted an autoaugment policy, which involves 
an optimal augmentation strategy established from forced 
learning [17]. This policy compiles 25 augmentations, 
including random rotation, shear, sharpness, etc. It can 
significantly improve the model accuracy and decrease 
the error rate in various datasets [17]. Moreover, random 
horizontal flip and patch erasing are additionally applied. 
Third, we use a learning rate scheduler, OneCycleLR, 
consisting of 20 epochs spent increasing the lr like a war-
mup and following 80 epochs with the cosine decay. It 
can prevent a trap at a local minimum in the training pro-
cess [26]. Fourth, the parameter weight decay and drop-
out before the final FC layer was additionally applied to 
inhibit overfitting in training with a λ value of 0.01 and a 
dropout probability of 0.5 [27, 28]. At last, the Exponen-
tial Moving Average (EMA) was performed with a decay 
value of 0.9997 to improve the accuracy and robustness of 
the model [29]. Automatic mixed precision training was 
applied to reduce memory consumption and accelerate the 
training process [30].

Performance Evaluations and Statistical Analysis

The statistical analysis was conducted using IBM SPSS Statis-
tics Software (version 26, IBM, New York, USA). Quantita-
tive data were presented as mean ± standard error with a 95% 
confidence interval. Because the dataset is highly imbalanced, 
the epoch with the increased accuracy can be achieved simply 
by identifying samples as the head class (“No findings”), even 
when the loss persistently elevates. Thus, determining the best 
model in this study does not rely on maximizing classifica-
tion accuracy but on minimizing the loss in the validation 
set. This model selection strategy can also overcome overfit-
ting [31]. To compare the performance of different models, 
we evaluated the overall and individual AUROC, accuracy, 
macro precision, macro recall, and macro F1-score, which 
were compared between different models or labels using 
repeated measures Analysis Of Variance (ANOVA) tests and 
AUROC comparison analysis with Bonferroni adjustments 
[7, 8]. Besides, to explore whether there is any relationship 
between the classification capacity of the model and posi-
tive sample size, the Pearson correlation tests were performed 
involving AUROC and positive sample ratio. A two-tailed p 
value less than 0.05 was considered statistically significant.

Lesion Localization and Visual Interpretations

When the model training is completed, we select the model 
with the highest overall AUROC value; then, we use the 

group-score-weighted class activation mapping (Group-CAM) 
to localize the lesions and help visual interpretations. Com-
pared with the commonly used randomized input sampling 
for explanation (RISE) or gradient-weighted class activation 
mapping (Grad-CAM), Group-CAM is more convincing and 
less noisy [32].

Results

Comparisons of AUROCs among different models were 
summarized in Table  3. After adding multiple tricks as 
mentioned above, ResNet50 + LWBCE showed a significantly 
higher AUROC on multi-label classification than the result 
in a previous study (p = 0.006); in particular, the AUROC of 
the “Mass” label increased from the reported 0.561 to 0.819 
[8]. Second, both SOTA networks, including CoAtNet-0-rw 
and EfficientNet-b5, presented higher overall AUROCs than 
ResNet50 (0.826/0.822 vs. 0.811, respectively) when using the 
same LWBCE, but without significant differences. After apply-
ing Lours, both CoAtNet-0-rw and EfficientNet-b5 achieved 
significantly higher AUROCs than ResNet50 + LWBCE and 
ResNet50 + Lours (p ≤ 0.037, each), while CoAtNet-0-rw + Lours 
presented the highest overall AUROC of 0.842. However, dif-
ferent losses rarely affected the performance of ResNet50, 
unlike the cases of CoAtNet-0-rw and EfficientNet-b5. In addi-
tion, the AUROC didn’t show any significant correlations with 
the positive sample ratio of the label, no matter which model 
was applied (p > 0.05).

In addition, CoAtNet-0-rw + Lours shows the highest over-
all accuracy (0.257), macro precision (0.57), macro recall 
(0.76), and macro F1-score (0.57) when compared with 
other models. Similar to the comparison results of AUROCs 
among different models, the macro F1-score of CoAtNet-
0-rw + Lours was significantly higher than ResNet50 + LWBCE 
and ResNet50 + Lours (p = 0.010 and 0.002, respectively). 
Besides, the macro F1-scores of EfficientNet-b5 + Lours and 
CoAtNet-0-rw + LWBCE were also significantly higher than 
baseline ResNet50 + LWBCE (p = 0.041 and 0.002, respec-
tively). The details are summarized in Table 4.

Furthermore, although CoAtNet-0-rw + Lours showed the 
best overall performance, the AUROC differed significantly 
among different disease labels, from 0.705 to 0.890 (Fig. 3), 
with significant differences among part of labels such as 
emphysema vs. edema (0.939 vs. 0.912, p < 0.001) and cardi-
omegaly vs. effusion (0.914 vs. 0.889, p < 0.001) (Table 5). 
Further heatmap visualization of the model showed that, 
for most disease labels (e.g., atelectasis, edema, effusion), 
the network could pay close attention to the corresponding 
areas of the lesions and make an accurate diagnosis (Fig. 4). 
However, in some cases, such as pneumothorax, the model 
did not focus on the lesion areas but on the drainage catheter 
that was used to treat the disease (Fig. 5). Meanwhile, we 
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also noticed that some disease labels in the ChestX-ray14 
dataset were inaccurate (Fig. 5).

Discussion

In this study, we challenged a 14-label AI diagnosis task in 
a real-world long-tail dataset. To enhance the AI model’s 
performance, we applied SOTA backbones, a customized 
loss function (Lours), and several techniques, such as trans-
fer learning and joint data augmentation. As a result, our 
experiments revealed that CoAtNet-0-rw + Lours achieved 
the highest overall AUROC and macro F1-score, sig-
nificantly outperforming the baseline ResNet50 + LWBCE 

(AUROC: 0.842 vs. 0.811, p = 0.037; macro F1-score: 0.57 
vs. 0.51, p = 0.010). In addition, the AUROCs of CoAtNet-
0-rw + Lours varied widely across different disease labels 
(0.705 to 0.890), but no significant correlations were found 
between the AUROC values and the corresponding positive 
sample ratios (p ≥ 0.058).

Chest X-rays are still one of the most widely used and 
cost-effective medical examinations, despite advancements 
in pulmonary computed tomography (CT) technology. 
However, AI diagnosis of chest X-rays presents a greater 
challenge than CT scans due to the fine-grained classifica-
tion issue [8]. The difficulty in fine-grained classification 
stems from the need for the model to learn and distinguish 
very delicate details, such as slight variations in shape, 

Table 3   Comparisons of AUROCs among different models

a There are significant differences when compared with ResNet50 + LWBCE (p = 0.037), ResNet50 + Lours (p < 0.001), and results of ResNet50 + LWBCE 
in previous studies (p = 0.017)
b There are significant differences when compared with ResNet50 + LWBCE (p = 0.004), ResNet50 + Lours (p = 0.004), and results of ResNet50 + LWBCE 
in previous studies (p = 0.028)
c There are significant differences compared to the other six models (p ≤ 0.006)
d The positive sample ratio was calculated by the count of positive samples over the total sample size. All statistical analyses were performed 
using repeated measures ANOVA tests with Bonferroni adjustments
# In this previous study, only 8 labels were involved
* Data were presented as mean ± standard error (95% confidence interval)

CoAtNet-0-rw EfficientNet-b5 Baseline (ResNet50) Baseline (ResNet50)

Labels LWBCE Lours LWBCE Lours LWBCE Lours LWBCE – Previous 
study [8]#

AUROC AUROC AUROC AUROC AUROC AUROC AUROC

  Atelectasis 0.795 0.833 0.795 0.812 0.776 0.791 0.707
  Cardiomegaly 0.901 0.914 0.906 0.905 0.908 0.890 0.814
  Consolidation 0.787 0.809 0.798 0.802 0.786 0.788
  Edema 0.903 0.912 0.905 0.908 0.898 0.899
  Effusion 0.874 0.890 0.872 0.882 0.867 0.878 0.736
  Emphysema 0.927 0.940 0.906 0.912 0.872 0.871
  Fibrosis 0.826 0.835 0.805 0.807 0.790 0.788
  Hernia 0.865 0.791 0.826 0.837 0.847 0.768
  Infiltration 0.686 0.715 0.699 0.712 0.688 0.705 0.613
  Mass 0.827 0.856 0.827 0.832 0.819 0.823 0.561
  Nodule 0.748 0.779 0.745 0.755 0.722 0.718 0.716
  Pleural_Thickening 0.804 0.819 0.810 0.810 0.789 0.790
  Pneumonia 0.751 0.789 0.736 0.774 0.733 0.733 0.633
  Pneumothorax 0.870 0.902 0.878 0.886 0.857 0.859 0.789

Overall* 0.826 ± 0.018 
(0.786, 
0.866)

0.842 ± 0.017 
(0.805, 
0.879)a

0.822 ± 0.018 
(0.784, 
0.860)

0.831 ± 0.016 
(0.796, 
0.866)b

0.811 ± 0.018 
(0.772, 
0.850)

0.807 ± 0.017 
(0.770, 
0.844)

0.696 ± 0.031 (0.623, 
0.769)c

Pearson correlation 
with the positive 
sample ratiod in the 
test set

−0.517 −0.385 −0.421 −0.432 −0.442 −0.269 −0.260

  p value 0.058 0.174 0.134 0.123 0.113 0.352 0.534
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Table 4   Other performance evaluations among different models

CoAtNet-0-rw EfficientNet-b5 Baseline (ResNet50)

Labels LWBCE Lours LWBCE Lours LWBCE Lours

Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy

  Atelectasis 0.689 0.772 0.731 0.714 0.650 0.740
  Cardiomegaly 0.812 0.840 0.745 0.839 0.875 0.855
  Consolidation 0.673 0.769 0.730 0.719 0.597 0.654
  Edema 0.797 0.824 0.820 0.822 0.761 0.738
  Effusion 0.746 0.753 0.768 0.810 0.724 0.787
  Emphysema 0.891 0.900 0.776 0.898 0.831 0.805
  Fibrosis 0.762 0.847 0.738 0.839 0.631 0.626
  Hernia 0.992 0.768 0.734 0.981 0.948 0.659
  Infiltration 0.683 0.742 0.709 0.692 0.626 0.628
  Mass 0.796 0.895 0.870 0.790 0.729 0.785
  Nodule 0.735 0.819 0.820 0.700 0.683 0.600
  Pleural_

Thickening
0.708 0.829 0.747 0.785 0.622 0.685

  Pneumonia 0.705 0.768 0.809 0.788 0.491 0.610
  Pneumothorax 0.803 0.894 0.797 0.858 0.819 0.788

Overall# 0.248 0.257 0.175 0.218 0.103 0.138
Macro precision Macro precision Macro precision Macro precision Macro precision Macro precision

  Atelectasis 0.59 0.62 0.60 0.59 0.58 0.60
  Cardiomegaly 0.55 0.56 0.54 0.56 0.57 0.56
  Consolidation 0.54 0.55 0.55 0.54 0.54 0.54
  Edema 0.54 0.54 0.54 0.54 0.53 0.53
  Effusion 0.64 0.64 0.65 0.66 0.63 0.65
  Emphysema 0.57 0.57 0.54 0.57 0.54 0.54
  Fibrosis 0.52 0.52 0.51 0.52 0.51 0.51
  Hernia 0.55 0.50 0.50 0.52 0.51 0.50
  Infiltration 0.60 0.62 0.60 0.60 0.58 0.59
  Mass 0.57 0.63 0.60 0.57 0.56 0.57
  Nodule 0.55 0.57 0.57 0.54 0.54 0.53
  Pleural_

Thickening
0.53 0.55 0.53 0.54 0.53 0.53

  Pneumonia 0.51 0.52 0.52 0.51 0.51 0.51
  Pneumothorax 0.58 0.63 0.58 0.60 0.58 0.57

Overall* 0.56 ± 0.01 (0.54, 
0.58)

0.57 ± 0.01 (0.55, 
0.60)a

0.56 ± 0.01 (0.53, 
0.58)

0.56 ± 0.01 (0.54, 
0.58)

0.55 ± 0.01 (0.53, 
0.57)

0.55 ± 0.01 (0.53, 
0.58)

Macro recall Macro recall Macro recall Macro recall Macro recall Macro recall
  Atelectasis 0.72 0.76 0.74 0.72 0.71 0.72
  Cardiomegaly 0.82 0.83 0.81 0.82 0.83 0.80
  Consolidation 0.73 0.74 0.74 0.73 0.72 0.73
  Edema 0.83 0.84 0.84 0.83 0.82 0.82
  Effusion 0.80 0.81 0.80 0.80 0.79 0.80
  Emphysema 0.85 0.87 0.82 0.82 0.78 0.79
  Fibrosis 0.74 0.74 0.72 0.71 0.72 0.72
  Hernia 0.72 0.73 0.78 0.78 0.75 0.72
  Infiltration 0.65 0.65 0.65 0.65 0.63 0.65
  Mass 0.76 0.75 0.74 0.75 0.75 0.75
  Nodule 0.69 0.70 0.68 0.68 0.66 0.65
  Pleural_

Thickening
0.73 0.73 0.73 0.73 0.71 0.72
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texture, or patterns among different classes. In contrast 
to CT, these details can be challenging to detect in chest 
X-rays because they often show subtle changes in grayscale 
or size and lack apparent morphological and color differ-
ences between objects or lesions and lung tissue [33]. As 
a result, even the trained eyes may struggle to distinguish 
between different labels, such as nodules and masses or 
infiltrations and edema. Additionally, the class imbalance 
problem, which we discussed earlier, exacerbates the chal-
lenge of fine-grained classification. Without proper AI 
techniques, this can result in a biased model that performs 
well for common diseases but poorly for rare diseases.

In contrast to previous studies, we did not use the con-
ventional hierarchical multi-label method, which relies 
strongly on human cognition [34]. Instead, we utilized 
several advanced AI techniques and training tricks, such 

as depth-wise separable convolution, self-attention, joint 
data augmentation, class weighting, and tail sample focus-
ing, to address the issue of multi-label imbalance. As a 
result, we achieved a better performance in the multi-
label diagnosis for all 14 diseases than results reported in 
any previous studies [7, 8]. These AI techniques we used 
helped yield higher overall and individual AUROCs and 
macro F1-score compared to the baseline. Regarding the 
network structures, previous studies have argued that the 
Transformer structure facilitates higher-level cognition of 
global receptive fields [21, 22, 35]. Without the aid of 
large-scale pretraining and datasets, Transformer-based 
networks were shown to be inferior to CNNs in end-to-end 
tasks because CNNs have locality learning strategies and 
thus have a more substantial inductive bias [19, 24]. How-
ever, in our experiments, we found that Transformer can 

Table 4   (continued)

CoAtNet-0-rw EfficientNet-b5 Baseline (ResNet50)

Labels LWBCE Lours LWBCE Lours LWBCE Lours

Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy

  Pneumonia 0.68 0.72 0.69 0.67 0.65 0.67
  Pneumothorax 0.80 0.81 0.80 0.80 0.78 0.78

Overall* 0.75 ± 0.02 (0.72, 
0.79)

0.76 ± 0.02 (0.73, 
0.80)b

0.75 ± 0.02 (0.72, 
0.79)

0.75 ± 0.02 (0.71, 
0.78)

0.74 ± 0.02 (0.70, 
0.77)

0.74 ± 0.01 (0.70, 
0.77)

Macro F1-score Macro F1-score Macro F1-score Macro F1-score Macro F1-score Macro F1-score
  Atelectasis 0.57 0.63 0.60 0.58 0.54 0.60
  Cardiomegaly 0.54 0.56 0.50 0.56 0.59 0.57
  Consolidation 0.48 0.53 0.51 0.51 0.44 0.47
  Edema 0.51 0.53 0.53 0.53 0.49 0.48
  Effusion 0.64 0.65 0.66 0.69 0.62 0.67
  Emphysema 0.59 0.60 0.51 0.59 0.53 0.52
  Fibrosis 0.47 0.51 0.46 0.50 0.41 0.41
  Hernia 0.58 0.44 0.43 0.54 0.50 0.40
  Infiltration 0.59 0.62 0.61 0.60 0.56 0.56
  Mass 0.58 0.66 0.63 0.57 0.53 0.57
  Nodule 0.53 0.58 0.57 0.51 0.50 0.45
  Pleural_

Thickening
0.48 0.54 0.50 0.52 0.44 0.47

  Pneumonia 0.44 0.47 0.48 0.47 0.35 0.40
  Pneumothorax 0.58 0.67 0.58 0.63 0.59 0.57

Overall* 0.54 ± 0.02 (0.51, 
0.57)c

0.57 ± 0.02 (0.53, 
0.61)d

0.54 ± 0.02 (0.50, 
0.58)

0.56 ± 0.02 (0.52, 
0.59)e

0.51 ± 0.02 (0.46, 
0.55)

0.51 ± 0.02 (0.46, 
0.56)

a There are significant differences when compared with ResNet50 + LWBCE (p = 0.043) and ResNet50 + Lours (p = 0.045).
b There are differences when compared with ResNet50 + LWBCE (p = 0.051) and ResNet50 + Lours (p = 0.015)
c There is a significant difference when compared with ResNet50 + LWBCE (p = 0.041)
d There are significant differences when compared with ResNet50 + LWBCE (p = 0.010) and ResNet50 + Lours (p = 0.002)
e There are significant differences when compared with ResNet50 + LWBCE (p = 0.002) and ResNet50 + Lours (p = 0.015). All statistical analyses 
were performed using repeated measures ANOVA tests with Bonferroni adjustments
# It indicates the correct prediction of all 14 labels
* Data were presented as mean ± standard error (95% confidence interval)



1342	 Journal of Digital Imaging (2023) 36:1332–1347

1 3

catch up or even surpass the performance of the powerful 
EfficientNet after the fusion with CNNs. CoAtNet, with 
the addition of Transformer modules connected with prior 
MBConV modules, has the adaptive learning ability to 
process long-range image information or lesions with large 
regions and can obtain better performance [19]. Another 
advantage of CoAtNet over CNN (e.g., EfficientNet) lies 
in the transfer learning capability, allowing similar train-
ing in further study on 3-dimensional images (e.g., CT) 
as in the 2-dimensional images (chest X-ray) in this study. 
Transformer can apply the parameters of its transformer 
block directly to 3-dimensional data with the same struc-
ture due to its global attention. In addition, Transformer 
has a significantly larger parameter capacity than CNN and 
is more suitable for more extensive data sizes and com-
plicated data distributions [33, 35]. Therefore, although 
EfficientNet has the advantage of floating-point operations 
(FLOPs) with only mild lower AUROC, CoAtNet holds an 
advantage in future and broader applications.

To further improve the model’s performance, we designed 
a novel loss (Lours) for training. Theoretically, this loss inte-
grates the advantages of reweighting, hard-sample focus, and 
a nonlinear shifting probability to reduce the contribution of 

negative and easy samples [8, 15, 25]. Besides, it can more 
accurately adjust the long-tail differences between different 
labels, so AUROCs of various disease labels did not show 
any significant correlations with the corresponding posi-
tive sample ratio. Our results demonstrate that training with 
Lours improved the performance, and CoAtNet-0-rw + Lours 
achieved the highest overall AUROC and macro F1-score, 
both significantly higher than the ResNet50 + LWBCE base-
line. While accuracy is not a perfect evaluation metric for 
imbalanced data, as it can be inflated by over-predicting 
the majority class (“No findings”), it is worth noting that 
CoAtNet-0-rw + Lours also achieved the highest accuracy 
(0.257) among all models. However, this study unexpect-
edly found little effect of Lours on ResNet50. We speculate 
that a deep network without an attention mechanism (e.g., 
channel attention and self-attention) may be insusceptible to 
our designed loss, which merits further exploration.

Regarding the limitations, this study still has some remain-
ing challenges: (1) Despite efforts to improve classification, 
the results still show a low overall macro F1-score when diag-
nosing multi-disease with varying degrees of long-tail label 
distribution. Data availability remains a significant challenge 
in chest X-ray research. When facing a large spectrum of 

Fig. 3   AUROC curves of dif-
ferent label identification by 
CoAtNet-0-rw + Lours
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more than ten diseases, the sample size of the ChestX-ray14 
dataset is still insufficient. (2) The current labeling process, 
which primarily relies on automated radiology report label-
ers, leads to potential mislabeling and nonuniformity in the 
spectrum of diseases in different published chest X-ray data-
sets (Fig. 5), which negatively affects the performance of the 
models and the ability to utilize different datasets effectively 
[36, 37]. (3) In this study we didn’t consider the issues of 
multiple images from same patient and very small sample 
sizes in validation and test sets originated from random data-
set division. To ensure a comparable experimental setup, we 
used the same data preprocessing and dataset division as in 
previous studies [7, 8]. This was done to enable a focus on 
evaluating and comparing the performance of the proposed 
deep-learning models for multi-disease diagnosis with these 
previous networks and setups [7, 8].

In the future, we propose several potential strategies to fur-
ther increase the accuracy of AI in chest X-ray diagnosis: (1) 
Federated learning with a standard labeling system using a 

robust NLP labeling tool for chest X-rays. Federated learning 
aids in collecting more disease samples from various medi-
cal centers and allows model parameters to be shared with-
out original data transfer, addressing the challenges posed by 
ethical and legal regulations regarding medical privacy when 
creating a widely accessible public dataset [38]. (2) Implement-
ing multi-modal and cross-modal AI models for comprehensive 
diagnosis. The routine diagnostic process involves the com-
prehensive analysis of a patient’s medical history, laboratory 
investigation results, and chest X-rays before reaching a final 
diagnosis. This highlights the importance of using multiple 
sources of information to improve classification accuracy [39]. 
(3) Utilizing contrastive learning to obtain more accurate rep-
resentations of the data. This study utilized pre-trained weights 
from ImageNet, which may somewhat limit the model’s per-
formance on medical datasets. Contrastive learning offers a 
better self-supervised learning method by using radiology 
reports as supervision without additional labeling, being able 
to train the model’s backbone more accurately [33].

Fig. 4   An exemplary illustration of accurately predicted cases (left, 
original images; right, Group-CAM heatmaps). A A case (Image Index: 
00000761_010.pgn, label: Atelectasis) showed right attention of atelec-
tasis at the left lower lung. B A case (Image Index: 00012834_049.png, 
label: Edema|Effusion|Infiltration) showed the right attention to diffused 
edema, effusion, and infiltration at bilateral lungs. C A case (Image 
Index: 00012834_049.png, label: Consolidation) showed the right atten-
tion of extensive consolidation at the right lower lung. D A case (Image 

Index: 00014849_011.png, label: Fibrosis) showed the right attention of 
fibrosis at bilateral lungs. E A case (Image Index: 00009658_002.png, 
label: Atelectasis|Mass|Pleural_Thickening) showed the right attention 
of a mass with atelectasis and peripheral pleural thickening at the right 
upper lung. F A case (Image Index: 00002935_000.png, label: Emphy-
sema) showed the right attention of emphysema at bilateral lungs. Abbre-
viation: Group-CAM, group-score-weighted class activation mapping
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Fig. 5   Exemplary illustra-
tion with incorrect attention 
(left, original images; right, 
Group-CAM heatmaps). 
A A case (Image Index: 
00028948_001.png, label: 
Cardiomegaly|Hernia|Mass) was 
predicted only “Cardiomegaly,” 
which was correctly focused in 
the heatmap; however, labels 
“hernia” and “mass” cannot 
be identified by our profes-
sional radiologist from the 
original image (left). B A case 
(Image Index: 00003285_001.
png, label: Nodule) with cor-
rect prediction showed the 
ignorance of small lung nodules 
(white arrows) at the right 
lung. C A case (Image Index: 
00000631_004.png, label: 
Pneumothorax) with correct 
prediction demonstrated the 
attention around the thoracic 
drainage catheter (white arrows) 
but not the right pneumo-
thorax area (red dash-line 
circle). D A case (Image Index: 
00014234_000.png, label: 
Pneumonia) presented incorrect 
attention at the diaphragm, but 
the original image (left) was 
identified with no “pneumonia” 
by our professional radiologist. 
Abbreviation: Group-CAM, 
group-score-weighted class 
activation mapping
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Conclusions

This study demonstrated an improved performance in the 
multi-disease diagnosis of chest X-rays in a long-tailed 
dataset using a pretrained CNN + Transformer hybrid net-
work named CoAtNet-0-rw. However, the limited sample 
size of diseases and potential inaccuracies in labeling may 
have impacted the diagnostic capability of the model. To 
enhance performance, establishing uniform evaluation cri-
teria for chest X-rays, incorporating multi-modal diagnostic 
information in training, and adopting contrastive learning 
techniques have the potential to facilitate federated learning 
and improve the model’s performance in the future.
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