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Abstract: During reactivation from latency, gammaherpesviruses radically restructure their host
cell to produce virion particles. To achieve this and thwart cellular defenses, they induce rapid
degradation of cytoplasmic mRNAs, suppressing host gene expression. In this article, we review
mechanisms of shutoff by Epstein–Barr virus (EBV) and other gammaherpesviruses. In EBV, canonical
host shutoff is accomplished through the action of the versatile BGLF5 nuclease expressed during
lytic reactivation. We explore how BGLF5 induces mRNA degradation, the mechanisms by which
specificity is achieved, and the consequences for host gene expression. We also consider non-canonical
mechanisms of EBV-induced host shutoff. Finally, we summarize the limitations and barriers to
accurate measurements of the EBV host shutoff phenomenon.
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1. Introduction

Epstein–Barr virus (EBV) is a gammaherpesvirus that persistently infects more than
90% of the adult human population. Primary EBV infection often presents as infectious
mononucleosis but may cause milder illness, particularly in children. After recovery, EBV
infection is usually uneventful; however, the combined effects of high seroprevalence and
life-long infection allow rare complications of chronic EBV infection to cause significant
disease. In 2020, this included an estimated 300,000 EBV-associated human cancers, with
approximately 200,000 cancer deaths [1]. EBV also causes nonmalignant diseases, including
hemophagocytic lymphohistiocytosis and oral hairy leukoplakia, and has been linked to
several auto-immune disorders, particularly multiple sclerosis [2,3].

Integral to EBV’s strategy of persistence is its ability to establish life-long latent in-
fection in B lymphocytes and to reactivate from this reservoir to infect other hosts. A
remarkable feature of this reactivation is that EBV produces virions asymptomatically
leading to its presence in the saliva of seropositive individuals. In order to accomplish this
maturation without inciting a host inflammatory response, EBV employs multiple mecha-
nisms during lytic replication to co-opt cellular machinery and thwart innate and adaptive
immunity [4]. Chief among these is EBV’s ability to induce widespread suppression of
host gene expression once it commits to its early lytic cascade. This phenomenon is termed
“host shutoff” and its effects on the host and EBV that permit successful replication are the
focus of this review.

2. Host Shutoff Mechanisms Are Highly Divergent, Even among Herpesviruses

Although host shutoff is employed by many viruses from different viral families, the
effector mechanisms vary widely. Within the herpesvirus family, the term “virion host
shutoff (vhs)” was coined to describe the phenomenon of inhibition of cellular protein
synthesis and host mRNA degradation upon infection of alphaherpesviruses such as herpes
simplex virus (HSV) [5]. As the name implies, the protein mediating host shutoff (HS)
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in alphaherpesviruses is packaged within the virion and exerts its effects during initial
infection. However, no homologs of the alphaherpesvirus vhs protein are encoded by beta
or gammaherpesviruses (Table 1). Moreover, the betaherpesvirus family does not exhibit
host shutoff during its replication [6]. A significant breakthrough in our understanding of
host shutoff was the discovery that the DNA alkaline exonuclease (AE) found in all her-
pesviruses mediates host shutoff in gammaherpesviruses. Subsequent work demonstrated
that in the gammaherpesvirus subfamily, this protein also has RNase activity, but unlike
vhs, gammaherpes host shutoff factors (HSFs) are not packaged in virions [7–10]. Thus,
in gammaherpesvirus infected cells, including EBV, host shutoff strictly occurs during
reactivation from latency.

Table 1. Diverse herpesvirus genes mediate host shutoff. Virion host shutoff (vhs) protein homologs
are found only in alphaherpesviruses. In gammaherpesviruses, host shutoff is mediated by the
alkaline exonuclease (AE) proteins. Collectively, herpesvirus proteins that promote degradation of
host mRNAs are referred to as host shutoff factors (HSF) and are shaded green. Note that host shutoff
is not observed during betaherpesvirus replication.

virus VHS AE

alpha
HSV UL41 UL12

VZV ORF17 ORF48

beta

CMV – UL98

HHV6 – U70

HHV7 – U70

gamma EBV – BGLF5

KSHV – ORF37/SOX

3. Host Shutoff in Epstein–Barr Virus Infection

Shortly after its discovery in KSHV, host shutoff was described for EBV by Rowe and
colleagues, who used a CD2/eGFP lytic reporter gene to enrich Akata Burkitt lymphoma
cells undergoing EBV lytic replication [11]. They observed a near-global inhibition of total
de novo protein synthesis in these cells, including the synthesis of both HLA class I and II
molecules. This effect occurred even when viral DNA synthesis was blocked, implicating an
early lytic gene product in the effect. They further demonstrated that expression of BGLF5,
the EBV homolog of KSHV ORF37 (also called SOX for ShutOff and eXonuclease), was
sufficient to mediate host shutoff. Interestingly, both ORF37/SOX and BGLF5 appeared to
exert their shutoff effects on mRNA stability [11] despite these proteins being AEs without
known RNase activity.

Mechanistic studies of the gammaherpes HSFs BGLF5 and SOX initially suggested
their shutoff function was independent of exonuclease activity. The activities were geneti-
cally separable: random mutagenesis screens produced BGLF5 and SOX mutants that were
selectively impaired for either AE or HS activity [12–14]. The activities are also subcel-
lularly separated. Processing of viral DNA by AE occurs exclusively in the nucleus and
the HSV AE, which lacks HS function, localizes exclusively to the nucleus. By contrast,
gammaherpesvirus AEs display nucleocytoplasmic localization [11,12,15]. This subcellular
localization appears to play a role in regulating BGLF5/SOX function: AE activity in the
nucleus and HS in the cytoplasm. Indeed, restricting SOX localization to the cytoplasm
by abolishing its nuclear localization signal did not affect its HS activity [12]. Similarly,
fusion of the murine gammaherpesvirus 68 SOX homolog (muSOX) to a nuclear retention
signal restricted its localization to the nucleus and abolished HS activity [15]. Interestingly,
structural studies established that purified BGLF5 and SOX have intrinsic RNase activity
that depends on the same catalytic machinery as AE DNA processing [16,17]. Thus, the
genetic separability of AE and HS may be due to the involvement of different residues in
substrate recognition (and/or subcellular localization) rather than separability of activities
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per se. In a landmark study, Covarrubias et al. demonstrated that SOX degrades mRNAs
via a two-step process: The initial endonucleolytic cleavage is mediated by SOX, making the
two fragments susceptible to degradation by cellular exonucleases (Figure 1A) [18,19]. This
two-step mechanism was subsequently shown to be conserved across other host shutoff
factors, including BGLF5 [20]. This mechanism contrasts with basal cellular mRNA decay
that initiates at mRNA ends via poly(A) removal and decapping. The internal cleavage of
target mRNAs by BGLF5 and homologs is hypothesized to have a two-fold effect: (1) rapid
inactivation of transcripts rendering them incompetent for translation and (2) a mechanism
for transcript selectivity. However, the extent of selectivity is incompletely defined.
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Figure 1. Canonical and non-canonical mechanisms of EBV-mediated host shutoff. (A) Canonical EBV
host shutoff occurs in the cytoplasm via a two-step process: initial endonucleolytic cleavage by BGLF5
and subsequent degradation by cellular exonucleases (Xrn1, Dis3L2, and likely the exosome complex
(not shown)). mRNA degradation releases RNA binding proteins (RBPs), which are recycled into the
nucleus. The accumulation of RBPs, in particular the cytoplasmic poly(A)-binding protein (PABPC),
induces a state of cellular stress that inhibits host gene expression by inhibiting transcription by
RNA polymerase II and possibly by suppressing the nuclear export of mRNAs. (B–D) Non-canonical
EBV host shutoff mechanisms include: (B) global loss of host chromatin accessibility induced by the
immediate early protein Zta. (C) During the late phase of replication, host chromatin compaction
occurs in parallel with the expansion of viral replication compartments that is believed to further
disrupt the ability of the host cell to express its gene repertoire. (D) Preferential export of non-spliced
viral mRNA mediated by the EBV SM protein. Abbreviations: NLS, nuclear localization signals; CBC,
cap-binding complex; TF, transcription factor. Figure created with BioRender.com.
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4. Selectivity

Several early studies indicated that BGLF5 and its homologs have target specificity
despite inducing widespread RNA degradation. For example, RNAs transcribed by poly-
merase II (RNAPII) are degraded, but noncoding RNAs and even untranslatable mRNAs
are not. This specificity is thought to arise through targeting of mRNAs associated with
the translation machinery [17,19–21]. Indeed, in vitro studies have suggested that BGLF5
and SOX association with RNA is substantially weaker than with DNA and may require
additional factors in vivo to efficiently target and degrade RNA [16,17]. Consistent with
this suggestion, polysome profiling revealed that SOX co-sediments with the 40S ribosomal
subunit [19,20], which would allow preferential targeting of mRNAs and may be important
for enhancing binding to RNA and/or the efficiency of cleavage. Future studies examining
whether BGLF5 also associates with the 40S subunit and the extent to which BGLF5/SOX
mutants selectively defective for HS activity are impaired for 40S association will help
clarify the significance of this proposed mechanism for selectivity.

Gammaherpesvirus HSFs also appear to mediate site-specific cleavage of their target
transcripts. For example, primary cleavage of reporter mRNAs by HSF (prior to exonuclease
degradation) produces fragments of consistent size [19,20]. Furthermore, primary cleavage
of different transcripts of similar length results in distinct cleavage intermediates [19].
In addition, cleavage of the same transcript by BGLF5 versus SOX resulted in different
intermediates [20]. Thus, despite their shared mechanism, gammaherpesvirus HSFs likely
recognize different target sequences in host mRNAs and therefore may preferentially
target distinct populations of host mRNAs. Characterization of cleavage intermediates
produced by SOX from three reporter mRNAs identified a five-base motif (UGAAG)
upstream of the cleavage site that was necessary but not sufficient for SOX cleavage [19].
In contrast, a larger 200nt sequence containing this motif did confer susceptibility to SOX
cleavage. Given that the 200nt sequences from 3 reporter mRNAs were different, this
finding supports a requirement for specific mRNA structure(s) in addition to the cis acting
motif. A transcriptome-wide analysis of SOX cleavage was also consistent with site-specific
cleavage [22]. Although no simple consensus sequence emerged, sites could be predicted
by a position-specific weight matrix. RNA structure prediction indicated susceptible
sequences are characterized by a secondary RNA stem-loop that is frequently followed
by several unpaired adenine residues just upstream of the cleavage site. Mendez et al.
demonstrated SOX binds specifically to this polyadenosine tract and that both binding
and cleavage require an open loop structure [23]. Further in vitro and in silico studies,
including the solved structure of SOX bound to a target RNA, confirmed that cleavage
occurs within unpaired nucleotides found within a stem-loop or bulge-loop structure [24].
These authors also found that SOX makes no sequence specific contacts with RNA. Thus, the
four adenine residues upstream of the cleavage site, by virtue of their decreased propensity
to form RNA duplexes, are promoting loop structures, not sequence specific binding.
The SOX residues responsible for binding these RNA-loop structures are only partially
conserved in BGLF5. This difference in the binding pocket provides additional evidence
that gammaherpesvirus HSFs target different, but potentially partially overlapping, sets of
host mRNAs. Collectively, these studies have demonstrated that the gammaherpesvirus
host shutoff factors target mRNAs at an early stage during translation and that cleavage
occurs at specific sites determined largely by RNA structural motifs. Such motifs have
been shown to be widely distributed across host and viral RNAs [22], explaining the
ability of these factors to cause widespread degradation while selectivity targeting mRNAs
competent for translation.

5. Host Shutoff Escape

A surprising feature of herpesvirus HSFs is that they also target viral mRNAs for
degradation [13,21,24–26]. HSF cleavage activity needs to be sufficiently limiting, at least
at physiologic levels of BGLF5 or SOX expression, to ensure adequate viral protein levels
are obtained from the surviving viral mRNAs. In addition, some host mRNAs are resistant
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to HSF cleavage. The first such resistant mRNA identified was IL-6, which accumulates at
high levels in KSHV infected cells undergoing lytic replication despite SOX expression [27].
Deep sequencing of mRNAs from HEK293 cells identified multiple other transcripts that
were not decreased upon SOX expression. Some, like the apoptosis enhancing nuclease
(AEN) transcript, were directly resistant to cleavage, while others were susceptible to
cleavage, but did not decrease in abundance, presumably due to other regulatory effects
such as increased transcription. The 3′ UTRs of the IL-6, GADD45B, and C19ORF66
transcripts contain elements that are sufficient to mediate resistance to HSF cleavage
when transferred to a heterologous reporter mRNA [28–30]. Some of these SOX-resistance
elements (SREs) also mediate BGLF5 resistance. In contrast, SREs found in the AEN and
GADD45B transcripts failed to confer resistance to muSOX or BGLF5 cleavage [29,31].

The mechanism by which these SREs confer resistance is incompletely understood.
Several studies implicated host ribonucleoprotein complexes binding to SREs as being
essential for their role in mediating HSF resistance [28,29,32,33]. SREs from different
transcripts appear to bind distinct but partially overlapping sets of RNPs. In several
cases, siRNA knockdown of components of these SRE-binding RNP complexes restored
susceptibility to HSF degradation. Whether differences in the RNP complexes account
for the ability of some SREs to confer resistance to cleavage by multiple HSFs and other
SREs to confer resistance to a single HSF is unclear. Despite the uncertainty regarding
the exact mechanism by which SREs act, it is clear that differential transcript resistance
and susceptibility to specific HSF proteins combine to define the spectrum of host mRNAs
targeted for degradation during replication of a given gammaherpesvirus. It is likely
that some host mRNAs (as occurs with viral mRNAs—see Section 8) are expressed as
sufficiently high to be translated into their protein products despite susceptibility to HSF
degradation. Furthermore, because HSF acts at the mRNA level, many host proteins persist
despite degradation of their corresponding mRNAs. Therefore, it is predominantly new
protein expression that is affected [11,34].

6. Secondary HSF Effects May Augment Shutoff

Extensive degradation of mRNAs by gammaherpesvirus HSFs may further augment
shutoff of host gene expression by dysregulating mRNA stability factors. BGLF5 or SOX
expression leads to marked redistribution of RNA binding proteins including the cyto-
plasmic poly(A)-binding protein (PABPC) into the nucleus as well as hyperadenylation of
nascent mRNAs [25,35,36]. PABPC redistribution is downstream of the RNA degradation
activity of HSFs, presumably due to release of large amounts of PABPC from degraded host
mRNAs [37]. Nuclear accumulation of PABPC may impair mRNA export and be respon-
sible for mRNA hyperadenylation induced by HSFs [35]. Remarkably, this HSF-induced
RNA degradation is accompanied by decreased RNAPII recruitment to host promoters by
an unknown mechanism, leading to repressed transcription of many host genes [18]. While
not formally demonstrated to occur with BGLF5, this degradation-induced transcriptional
repression is seen with SOX and HSV vhs, suggesting it is a general feature of herpesvirus
host shutoff. Notably, transcription of viral mRNAs does not occur via this mechanism.
As these secondary host shutoff mechanisms only occur as a consequence of HSF-induced
mRNA degradation, it is not clear that their contributions are essential for achieving shutoff.
However, these secondary effects do provide a means by which HSF can impair expression
of mRNAs that resist their endonuclease activity.

7. Host Genes Targeted by HSF during Lytic Infection

Host shutoff may contribute to viral replication by at least two mechanisms: abrogat-
ing protein expression required to mount an anti-viral response and promoting preferential
translation of viral mRNAs. There is substantial evidence that EBV host shutoff can impair
the innate and adaptive immune responses. EBV lytic reactivation in Burkitt lymphoma
cells is associated with downregulation of multiple Toll-like receptors, including TLR1,
TLR6, TLR7, TLR9, and TLR10. Overexpression of BGLF5 inhibits TLR2 and TLR9 expres-
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sion in HEK293 or MelJuSo melanoma cells [38,39]. Both TLR2 and TLR9 are implicated in
sensing and inhibiting primary EBV infection and reactivation [40–44]. BGLF5 also targets
CD1d, a non-classical HLA that presents lipid antigens to invariant natural killer T (iNKT)
cells [38,45]. The iNKT response has been implicated in control of primary EBV infection
and may play a role in limiting EBV reactivation during chronic infection [46,47]. In con-
trast, TLR4 which has not been reported to sense EBV infection, was not downregulated
by BGLF5 overexpression, indicating some degree of selectivity of innate immune factors
targeted by BGLF5 [38,42].

BGLF5 is capable of targeting genes essential for adaptive immune responses, includ-
ing HLA class I and II molecules [11,14,25,38]. Further, expression of BGLF5 or SOX protects
HEK293 cells against HLA-A2-restricted CD8+ T-cell responses compared to control [14].
This protection was conferred by BGLF5 mutants defective for alkaline exonuclease but
not BGLF5 lacking host shutoff activity—providing a direct link between host shutoff and
immune evasion. Evidence that BGLF5 protects EBV-infected B cells from adaptive immune
responses is less clear. Knockdown of BGLF5 in lymphoblastoid cell lines (LCLs) only
produced a slight increase in CD8+ T-cell response to specific lytic antigens compared to
knockdown or knockout of other EBV immune evasion genes (BILF1 or BNLF2a) [48]. This
discrepancy highlights the potential redundancy of EBV anti-immune factors; however,
it is at least noteworthy that BGLF5 is not sufficient to impair the CD8+ T-cell response
(i.e., in the BILF1 and BNLF2a knockdown conditions). It should also be noted that these
CD8+ T-cell responses were maintained despite decreased lytic protein expression observed
during the knockdown of BGLF5. One important caveat of these studies is the BGLF4 and
BGLF5 transcripts overlap such that any shRNA that targets BGLF5 will also knockdown
BGLF4 transcript and significant functional interactions between BGLF4 and BGLF5 have
been reported [26,49,50]. Nonetheless, BGLF5 does abrogate adaptive immune responses,
though further studies in relevant cell types are required to define the magnitude and
extent of this effect.

8. HSF Interactions with Viral Gene Expression

It is unlikely that HSF promotes preferential translation of viral mRNAs. Multiple
studies have demonstrated that viral mRNAs are susceptible to HSFs, an effect that is
presumably overcome by high-level transcription of lytic mRNAs [13,21,24–26]. Thus,
HSFs may fine tune expression levels of viral mRNAs and HSF knockout has the potential
to disrupt the stoichiometry of viral proteins required for optimal viral replication. Al-
though knockdown of BGLF5 impairs nucleocapsid maturation and slightly impairs DNA
replication, and the former may be due to loss of AE rather than host shutoff activity [51].
The situation is clearer for MHV68, where a host shutoff-specific muSOX mutant (R443I)
produces virions with abnormal morphology and composition [21]. Interestingly, the R443I
mutant did not exhibit noticeable replication defects during acute infection in vivo but
did impair the establishment of latency as evidenced by reduced numbers of infected
splenocytes and lower levels of viral DNA during chronic infection [13].

Viral genes may in turn regulate HSF activity. This possibility is best established
for herpes simplex virus, where its vhs is inactivated at late stages of replication to fa-
cilitate accumulation of late mRNAs. It is not known whether this inactivation occurs
for gammaherpesvirus HSFs. For EBV, it has been suggested that the BGLF4 protein ki-
nase counters BGLF5 shutoff based on their opposing effects on several viral mRNAs in
transcomplementation assays [26]. However, evidence is conflicting regarding whether
BGLF4 promotes BGLF5 phosphorylation [52,53]. Furthermore, when the number of cells
in the late phase is taken into account, BGLF5-knockout produces subtle increases in late
mRNA abundance [26,51,54]. One important limitation of these studies is that they were
performed with bulk populations of asynchronously replicating cells. It is therefore difficult
to isolate events occurring during the late phase of replication.
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9. Non-HSF Viral Proteins Contribute to Impaired Host Gene Expression

Although canonical host shutoff by gammaherpes HSFs is sufficient to dramatically
curtail host gene expression, several other viral proteins create additional “non-canonical
shutoff” barriers that thwart expression of host genes (Figure 1B–D). For example, Buschle
et al. recently demonstrated that the immediate early transcription factor Zta, in addition
to initiating the EBV lytic cascade, induces a global restructuring of host chromatin with
widespread loss of chromatin accessibility and chromatin–chromatin interactions [55].
They did not observe a decrease in host mRNA levels after 6 h of Zta expression, but
this may not have been sufficient time for steady state expression levels to be achieved.
Nascent transcription has been examined in Burkitt lymphoma cells induced for EBV
replication with sodium butyrate. Reduction in transcription of multiple host genes was
observed, potentially due to Zta effects and/or secondary effects downstream of sodium
butyrate [56]. Further, Park et al. reported decreased synthesis of some host proteins in
response to Zta expression [36]. Additionally, herpesvirus replication is characterized by a
shift from preferential export of spliced mRNAs to preferential export non-spliced viral
mRNAs. In EBV this change is mediated by SM (also known as Mta or EB2) and appears
to be important for both export of viral mRNAs and their translation [57–63]. Progression
of the lytic cascade is accompanied by such extensive compaction and margination of
host chromatin that further host transcription becomes untenable [64,65]. These additional
mechanisms may contribute to the ability of herpesviruses to usurp their host’s translational
machinery. Additionally, any effort to define BGLF5 targets under physiologic conditions
must be able to distinguish bona fide host shutoff effects from those due the potentially
confounding host shutoff mechanisms.

10. Technical Barriers to Defining HSF Effects

Despite remarkable progress in understanding the mechanism(s) by which gamma-
herpesviruses induce host shutoff, many important questions remain. Because gamma-
herpesviruses are notoriously difficult to induce into lytic replication, many studies have
relied upon HSF overexpression to define their effects. We know that HSF degradation is
surmountable by viral mRNAs and likely by host mRNAs as well. Thus, overexpression-
based approaches may exaggerate the true extent of host shutoff and will not capture
regulatory effects of other viral genes on HSF activity. Enrichment strategies to isolate
lytically infected cells can be used to circumvent these limitations (Figure 2). One such
strategy is the use of reporter cell surface markers in conjunction with magnetic-activated
cell sorting (MACS) [11,39,55,66,67]. However, several limitations of MACS make it less
suitable for enriching lytic reactivated cells. First, the enrichment efficiency of MACS is
inversely related to the rarity of the target population, with increasing rarity resulting
in decreased efficiency of enrichment [68,69]. Second, the asynchronous nature of lytic
reactivation produces distinct early and late lytic sub-populations that require separate
enrichment. Alternatively, single cell RNA-seq approaches could be employed, although
the low frequency of lytic infection may make the cost of this approach prohibitive.

Another technical challenge in studying host shutoff is that most RNA quantification
methods, especially RNA-seq, make the implicit assumption that the total amount of mRNA
in the cell is the same among different experimental conditions. This assumption is clearly
false because of the extensive mRNA degradation resulting from host shutoff. Failure to
account for this problem is highlighted by two studies analyzing similar lytic transcriptomes
of Akata Burkitt lymphoma cells using different normalization methods. Conventional
RNA-seq normalization by Ramasubramanyan et al. [66] indicated few changes in host
gene expression during lytic replication. In contrast, by using synthetic spike-in RNA
standards for their normalization, Buschle et al. [55] accounted for differences in transcript
abundances across lytic and non-lytic conditions to demonstrate a widespread host shutoff
resulting in a massive downregulation of host genes. It is also important to consider that
general RNA-seq analysis may be difficult in the context of host shutoff. For example,
gene set enrichment analysis may be less helpful in identifying meaningful biological
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pathways important for viral replication given that the overall imprint is suppression of
host pathways. Alternatively, analyzing unregulated genes (i.e., host shutoff escapees) may
be more useful. Although this approach is less conventional than analysis of differentially
expressed genes, commonly used tools including DESeq2 incorporate statistical methods
for detecting unregulated genes [70]. Such considerations are necessary for accurate and
meaningful analysis of lytic replication in the face of host shutoff.
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Figure 2. Barriers and potential solutions for accurate quantification of host shutoff. The inefficient
and asynchronous entry of EBV into lytic replication means that bulk populations of EBV infected
cells are predominantly latently infected with decreasing levels of early and late lytic infection. As a
consequence, detection of differentially expressed genes is diminished, especially mRNAs that are
downregulated (or degraded) in lytic cells, such as those subject to host shutoff (compare bulk to
actual). This limitation can be addressed via cell sorting approaches; however, given the marked
differences in total mRNA in latent versus lytic cells, conventional normalization methods fail to
accurately measure changes in gene expression. To account for such differences, exogenous spike-in
RNAs can be added on a per cell basis. These (or similar) modifications are essential to capture host
shutoff effects accurately on the cell gene expression. Figure created with BioRender.com.

Studying lytic replication in physiologically normal cells is also important for deter-
mining biologically relevant host shutoff targets and escapees. Differences in transcripts
targeted or escaping HSF-mediated degradation across cell types has been previously
described [28–31]. These differences are due in part to expression of lineage specific mR-
NAs but may also be due to differences in HSF expression levels, the presence/absence of
proteins, or mRNA isoforms that promote host shutoff escape. To date, all studies have
relied on non-physiologic cell lines due to limitations in cell culture described earlier. For
example, cell lines derived from Burkitt lymphomas are commonly used due to their higher
levels of lytic replication [55,56,66,71,72]. Because HSF are under selection for their ability
to allow gammaherpes viruses to replicate in normal cells, it is essential that HSF effects be
defined in model systems that most closely approximate them. Studies using physiologic
models such as lymphoblastoid cell lines and EBV-infected oral keratinocytes to define the
effects of BGLF5 during EBV replication form an important basis for defining the essential
targets of EBV shutoff.
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