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Abstract: Type 2 diabetes mellitus (T2DM) is characterized by impaired insulin secretion on a
background of insulin resistance (IR). IR and T2DM are associated with atherosclerotic coronary
artery disease (CAD). The mechanisms of IR and atherosclerosis are known to share similar genetic
and environmental roots. Endothelial dysfunction (ED) detected at the earliest stages of IR might be
the origin of atherosclerosis progression. ED influences the secretion of pro-inflammatory cytokines
and their encoding genes. The genes and their single nucleotide polymorphisms (SNPs) act as
potential genetic markers of IR and atherosclerosis. This review focuses on the link between IR,
T2DM, atherosclerosis, CAD, and the potential genetic markers CHI3L1, CD36, LEPR, RETN, IL-18,
RBP-4, and RARRES2 genes.

Keywords: insulin resistance; type 2 diabetes mellitus; atherosclerosis; endothelial dysfunction;
coronary artery disease; genetic markers; single nucleotide polymorphisms

1. Background

Type 2 diabetes mellitus (T2DM) accounts for over 90 per cent of all patients with
diabetes [1]. T2DM shares several risk factors in common with coronary artery diseases
(CAD), such as aging, hypertension, dyslipidemia, obesity, lack of physical activity, genetics,
and stress. In addition, an increase in the prevalence of diabetes indirectly escalates the risk
of CAD [2]. T2DM is primarily caused by insulin resistance (IR), in which insulin cannot
promote glucose uptake in skeletal muscle and adipose tissue and suppress hepatic glucose
output [3,4].

Endothelial dysfunction (ED), the failure of endothelium to maintain vascular home-
ostasis, is present at the early stages of IR. It may be the origin of the initiation and
progression of atherosclerosis [5]. Atherosclerosis that affects the coronary arteries can
cause coronary artery disease (CAD) [6]. CAD is a type of cardiovascular disease (CVD)
that is often asymptomatic in T2DM patients until the onset of myocardial infarction (MI)
or sudden cardiac death [7].

IR may be associated with ED via various mechanisms such as disturbances of the
subcellular signaling pathways that involve insulin action and nitric oxide (NO) production,
oxidative stress, endothelin, the secretion of hormones and cytokines, as well as the renin–
angiotensin–aldosterone system [8]. Changes in the subcellular signaling pathways convert
the anti-atherogenic property of NO into pro-atherogenic and cause the development of
atherosclerosis and subsequently CAD [9].
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ED has been linked to several factors such as diabetes, hypertension, smoking, a high-
fat diet, as well genetic factors [10]. The genetic factor of ED involves the dysregulation
of the endothelial NO synthase (eNOS) gene followed by disruption of the endothelial
vascular homeostasis [8]. It has been reported that the polymorphism caused by four or
five repeats of a 27-base-pair sequence in intron 4 of the eNOS gene is associated with the
risk of CAD [11]. Another study of the eNOS gene also found that intron 4 polymorphism
was associated with T2DM [12]. Thus, the genetic factor of ED is linked to both T2DM and
CAD [13].

The eNOS gene expression pathways involve the activation of the pro-inflammatory
markers related to IR, atherosclerotic CAD and T2DM [14]. These genes and their single-
nucleotide polymorphisms (SNPs) may act as the possible identifiers of IR and atheroscle-
rosis in T2DM patients with CAD. This review focuses on the potential genetic markers
of IR and atherosclerosis in T2DM with CAD, and identification of these potential genetic
markers may further enhance the optimization of glycemic control and T2DM management.

2. How Does IR Result in T2DM?

Insulin is a peptide hormone secreted by the β cells of the pancreatic islets of Langer-
hans. It maintains normal blood glucose levels by facilitating cellular glucose uptake,
regulating carbohydrate, lipid, and protein metabolism, and promoting cell division and
growth through its mitogenic effects [15]. Insulin secretion may be influenced by alter-
ations in synthesis at the level of gene transcription, translation, and post-translational
modification in the Golgi among other factors influencing insulin release from the secretory
granules [15,16].

The actions of insulin are influenced by the interplay of other hormones such as growth
hormone, IGF-1, glucagon, glucocorticoids, and catecholamines [17]. Excessive hormone
production might have contributed to IR in some circumstances, though com-promised
insulin signaling is thought to have a greater role at the cellular level [18]. As such, IR can be
considered as a state of chronic, low-level inflammation [19]. Several states or mechanisms
result in IR, such as fatty acid-induced IR [20] and lipid accumulation in skeletal muscle
and liver [21].

The beginning of IR frequently results in insulin paucity and a gradually dwindling
blood glucose regulation, hyperinsulinemia, and increased levels of free fatty acid (FFA)
circulation [22,23]. The circulating FFAs are the main substrate for production of hepatic
triglycerides in the form of very low-density lipoprotein (VLDL) [24–26]. These changes
are trailed by a subsequent decline in plasma glucose control, which manifests as elevated
fasting plasma glucose levels with intermittent and persistent hyperglycemia leading to a
diagnosis of T2DM (Figure 1) [27]. Therefore, in terms of pathogenesis, glucolipotoxicity
is stated as an essential determinant of T2DM. Glucolipotoxicity is the combination of
glucotoxicity (hyperglycemia or elevated blood glucose levels) and lipotoxicity (high lipid
levels, especially FFAs) [28].

From Figure 1, T2DM can be seen as end-stage IR in a genetically susceptible indi-
vidual. The effects of insulin, insulin shortage, and IR, however, vary depending on the
physiological function of the tissues and organs and their reliance on insulin for metabolic
activities [29]. The direct and indirect effects in tissues sensitive to insulin are linked to
glucose homeostasis in the liver, skeletal muscle, and fat tissues [30]. Another site of insulin
action and the manifestation of IR and T2DM is the endothelium [31]. With ED being
observed at the early phase of atherosclerosis, the vascular endothelial cells may play
critical roles in various facets of cardiovascular biology [8].
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Figure 1. IR and T2DM. Insulin secretion by the pancreas is influenced by the interplay of various
hormones (hormone, IGF-1, glucagon, glucocorticoids, and catecholamines) in order to regulate
glucose levels in the bloodstream. However, insulin failure to manage blood glucose will lead to the
progression of IR. IR will compromise endothelial function, rendering liver, skeletal muscle, and fat
cells unable to use glucose. This worsens hyperinsulinemia, and the pancreas is already incapable of
keeping normal blood glucose despite secreting large amounts of insulin. Blood plasma glucose levels
keep increasing and the feedback loop enhances IR further. At this stage, the patient is diagnosed
with T2DM. Abbreviations: ED, endothelial dysfunction; FFA, free fatty acid; IGF-1, insulin-like
growth factor 1; IR, insulin resistance; T2DM, type 2 diabetes mellitus.

IR is strongly prevalent in the pathogenesis of T2DM [32]. A study in the United King-
dom found that almost 8% of 6500 participants were diagnosed with diabetes throughout
the course of the study’s 10 years of follow-up [33]. There was a significant decline in
insulin sensitivity in the five years before the diabetes diagnosis in comparison to those
who were not diagnosed with diabetes.

3. Atherosclerosis and Its Relationship with IR, T2DM, and CAD

T2DM and atherosclerotic CVD share many common factors. In T2DM, inflammatory
processes play a part in the cause of atherosclerotic CVD [34]. The markers of inflammation
predict CAD and the levels of markers are raised in patients with T2DM [35]. ED is
considered as an early marker for atherosclerosis, and it plays a prominent role in the
development of IR and T2DM [5]. IR and impaired insulin secretion are central to the
pathogenesis of T2DM, but it is unclear how these abnormalities are related to accelerated
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atherosclerosis [36]. The precise mechanisms for the susceptibility and advancement of
atherosclerosis in patients with T2DM are undetermined.

Yet, there are many indications linking lipoproteins with atherosclerosis [37]. Lipopro-
teins are the combinations of fats and protein. The lipoproteins are proved to play an
important role in atherosclerosis, and they interact with the artery wall to trigger the chain
of events that leads to atherosclerosis. Low-density lipoprotein (LDL) is the most common
lipoprotein that is associated with atherosclerosis, but other lipoproteins such as VLDL
may also be atherogenic. An important component of these atherogenic lipoproteins is
Apolipoprotein B (Apo B) that promotes the accumulation of LDL in the intima initiates
atherosclerosis [38]. This is mediated by increased endothelial permeability and raised
intimal retention of LDL [39]. Moreover, diabetes (T1DM and T2DM) is associated with
increased hepatic production of triglyceride-rich lipoproteins, which leads to increased
formation of atherogenic VLDL [40]. The atherogenic index is defined as the ratio of LDL-C
(low-density lipoprotein cholesterol) to HDL-C (high-density lipoprotein cholesterol). In
one study, researchers discovered that hyperlipidemic rats had a higher atherogenic ratio
(8.06 mg/dL) than the control group (1.09 mg/dL) [41].

Metabolic syndrome, pre-diabetes, and T2DM, which all co-segregate with IR, acceler-
ate the progression of atherosclerosis and the consequential disease [34].

Silent atherosclerosis and cardiovascular complications start to commence during
the pre-diabetic period in genetically susceptible people [42]. During the onset of dia-
betes, hyperglycemia and hyperinsulinemia are present in IR and lead to acceleration of
atherosclerosis and CAD (Figure 2) [43,44]. Still, despite the fact that diabetic patients
developed severe lesion formation, patients with and without diabetes often have identical
atherosclerotic lesions [36]. Areas of necrotic lesions accumulate lipid, cholesterol crystals,
and inflammatory cells, which leads to thickening of the arterial wall. Complications can
arise from erosion or calcification, causing a thrombus to form and obstruct the lumen,
resulting in health defects such as CAD [8,44].

Moreover, genetic factors have been investigated to modulate atherosclerosis devel-
opment. Candidate gene and linkage analysis studies have failed to identify previously
unknown pathways in the pathogenesis of atherosclerosis [45,46]. The publication of the
HapMap has made possible genome-wide association studies aimed at probing the patho-
genesis of atherosclerosis. Genome-wide association studies have reproducibly identified
several loci involved in the pathogenesis of atherosclerosis, and most of the identified genes
are newly implicated in the disease process. APOE- or LDLR-deficient mice are widely
used models to study the pathogenesis of atherosclerosis.
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Figure 2. Pathogenesis of atherosclerosis. Atherosclerosis may be caused by environmental and ge-
netic factors. The onset of atherosclerosis is during ED initial occurrence, which is also associated with
the onset of IR. These incidences reflect pre-diabetes and pre-CVD phases, and symptoms of compli-
cations may appear. Ongoing atherosclerosis development is incessantly supported by ED, linked to
the release and regulation of inflammatory cytokines and chemokines, as well as IR, which develops
into hyperinsulinemia. At this stage, patients may have developed advanced atherosclerosis and
diabetes, while exhibiting evident complications. Further ED, IR, and atherosclerosis advancement
will result in more apparent complications and CAD development. Abbreviations: CAD, coronary
artery disease; CVD, cardiovascular disease; ED, endothelial dysfunction; IR, insulin resistance.

4. How Do IR and Atherosclerosis Link Genetically?

Patients with T2DM are at higher risk of developing CAD. It has previously been
proposed that diabetes and atherosclerotic CVD share the same genetic and environmental
roots [47]. Although IR has been postulated to involve many mechanisms in developing
other diseases, the major process in developing atherosclerotic CAD from IR is ED [5].
Endothelium-derived NO regulates endothelial function. It is synthesized from L-arginine
by NO synthase encoded by the endothelial NO synthase (eNOS) gene, which is mapped
on chromosome 7 (7q35-7q36) [5,48]. When IR affects cells, there is an increase in oxidative
stress and the protein kinase C and receptor for advanced glycation end products (RAGE)
will be activated [49]. This will be followed by several changes in the endothelium, primarily
compromised eNOS gene activity that decreases NO bioavailability and ultimately causes
ED [48].

ED results in vasoconstriction, inflammation, and thrombosis that may contribute
to the development of the atherosclerosis [50]. At the same time, ED will increase the IR
condition, mainly the inflammatory process [34]. The inflammatory process involves the
release of pro-inflammatory cytokines and chemokines that cause IR and the development
of atherosclerosis [51]. The pro-inflammatory cytokines and chemokines are encoded by
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genes that may be associated with both IR and atherosclerosis [52]. Expressing these genes
may serve as the potential genetic markers of IR and atherosclerosis.

Various studies have documented the association of genetic markers with IR and
atherosclerosis. The common genetic markers of IR are IRSs genes, SLC2A4 gene, PTP1B
gene, LEPR gene, and RETN gene. CHI3L1 [53], CD36 [54], IL-18 [55], and RARRES2 [56,57]
genes have also been reported to be associated with IR, whereas APOA1, CD36, LEP, FN1,
and CETP genes were found to be associated with atherosclerosis. Gong et al. [58] found
that the expression of CHI3L1 was strongly connected with atherosclerotic risk factors and
the severity of CAD. Nonetheless, the extent of the impact of genetic markers on IR and
atherosclerosis is not fully understood.

We have identified seven genes (CHI3L1, CD36, LEPR, RETN, IL-18, RBP-4, and
RARRES2) that may be associated with IR and atherosclerosis as having possible evidence
based on the disease pathogenesis of ED and inflammation. The pathway that links ED
with IR and atherosclerosis is summarized in Figure 3.
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Figure 3. The link between IR and atherosclerosis; and potential genetic markers of IR and atheroscle-
rosis. Hyperglycemia leads to IR, indicated by diminishing PI3K, Akt, eNOS, and NO bioavailability
and production. IR causes ED, signified by increased oxidative stress and activation of protein kinase
C and RAGE. Through inflammation, thrombosis, and vasoconstriction, ED brings about atheroscle-
rosis and eventual CAD development. The relationship of genetic factors (gene polymorphisms and
expression) highlighted ED in a central position among IR, CAD, atherosclerosis, and T2DM interplay.
The associated genes are CHI3L1, CD36, LEPR, RETN, IL-18, RBP4, and RARRES2. Abbreviations:
↓, reduction; AKT, protein kinase B; CAD, coronary artery disease; CD36, cluster of differentiation
36; CHI3L1, chitinase-3 like-protein-1; ED, endothelial dysfunction; eNOS, endothelial nitric oxide
synthase; IL-18, interleukin 18; IR, insulin resistance; LEPR: leptin receptor; PI3K, phosphoinositide
3-kinase; RAGE, the receptor for advanced glycation end products; RARRES2, retinoic acid receptor
responder 2; RBP-4, retinol-binding protein 4; RETN, resistin.
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5. Genes and SNPs That May Be Associated with IR and Atherosclerosis in T2DM
Patients with CAD

Identifying candidate gene polymorphisms begins with identifying risk variants and
candidate SNPs associated with IR and atherosclerosis. The gene polymorphisms are
typically called SNPs [59] and are the most common type of genetic variation among
people. SNPs are single-nucleotide substitutions of one base for another that occur in more
than one per cent of the general population [60]. Each SNP represents a difference in a
single DNA building block, called a nucleotide. Reliable SNPs can be predictive markers
that enable informed decisions about various aspects of healthcare, such as precise disease
identification, as well as drugs’ efficacy, and negative feedbacks [61,62]. Even though
several studies have reported an association of functional or position candidates, only some
SNPs have been potentially associated with IR and atherosclerosis in T2DM patients with
CAD (Figure 3 and Table 1). Following are the potential genes and their SNPs:

Table 1. Summarization of gene and SNPs associated with IR and atherosclerosis.

Gene SNP ID Position Parameter Association Population N p-Value Ref

CHI3L1 rs946263 −9639 C > G G-allele was nominally found to be
associated with T2DM Danish 9438 0.027 [63]

Was associated with serum Ykl-40 levels Danish 6784 <0.0001 [64]

−2122 C > T Was associated with LDL level (cause of
atherosclerosis) Korean 290 0.005 [65]

Was associated with a significantly increased
CHI3L1 mRNA level in peripheral blood
cells and elevated nuclear factor binding

0.008

CD36 rs1761667 −31118 G >
A Was associated with T2DM North

Indian 400 <0.001 [66]

Was associated with lipid profile <0.001
Was associated with LDL <0.05
Was associated with VLDL 0.029

A > G CAD patients with an AG genotype had
higher plasma levels of LDL Egyptian 100 0.046 [67]

LEPR rs1137100 109 T > A Was independently associated with early
atherosclerosis Finnish 526 0.042 [68]

Was associated with high total cholesterol 0.005
Was associated with insulin levels

RETN rs1862513 −420 C > G Was associated with resistin levels in DM
patients Japanese 198 2.9 ×

10−7 [69]

Was associated with HbA1c levels
Was associated with total cholesterol levels
(CAD marker) Pakistani 350 <0.0001 [70]

Was associated with LDL levels (CAD
marker) 0.0067

Was associated with resistin levels 0.0009
Was associated with hs-CRP levels (CAD
marker) <0.0001

rs3745367 +299 G > A Significantly associated with T2DM Thai 95 0.004 [71]
Associated with total cholesterol levels Pakistani <0.0001 [70]
Associated with LDL levels 0.0153
Associated with resistin levels <0.0001
Associated with hs-CRP levels <0.0001
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Table 1. Cont.

Gene SNP ID Position Parameter Association Population N p-Value Ref

IL-18 rs1834481 G > C Associated with CAD/ MI risk European 3202 0.0021 [72]
Associated with IL-18 levels European 200 <0.005 [73]
Associated with glucose levels <0.005

RBP-4 rs7094671 G > A Associated with CAD Chinese 392 <0.0001 [74]
+5169 C > T Associated with T2DM Mongolian 281 <0.005 [75]

RARRES2 rs17173608 T > G Associated with risk of metabolic syndrome
(IR, high LDL) Iranian 300 0.012 [57]

5.1. CHI3L1 Gene

The chitinase-3 like-protein-1 (CHI3L1) gene encodes YKL-40 (human cartilage glycoprotein-
39) located on chromosome 1q31–1q32 [76]. YKL-40 is secreted by macrophages within
the atherosclerotic plaques and is involved in inflammatory processes [77]. Patients with
T2DM have elevated circulating YKL-40, parallel with their IR level [78]. YKL-40 is linked
with all-cause mortality, including in patients with stable CAD [63]. The genetic variation
in CHI3L1 is strongly associated with YKL-40 levels [63,64]. The normal function of CHI3L1
is catalyzing the hydrolysis of chitin and may also play a part in tissue remodelling and
cells’ response to changes in their environment. Besides IR and atherosclerosis, CHI3L1 is
also involved in inflammatory processes [79].

Several SNPs of CHI3L1 correlate with IR and CAD. Among the SNPs, rs946263 of
CHI3L1 is the most prominent that has been studied [63,64,80]. This SNP influences YKL-40
serum levels and low-density lipoprotein (LDL) levels in healthy individuals and patients
with various inflammatory diseases such as CAD [63]. The CHI3L1 level has been reported
to be upregulated in patients with IR, T2DM, and CVD [81]. In a study among 290 Koreans,
a significant association was shown between rs946263 and LDL serum levels, a major risk
factor for the development of atherosclerosis [63]. The SNP rs946263 has also been studied
in diabetes, but the associations were not fully elucidated [63,64]. Thus, rs946263 might be
associated with both IR and atherosclerosis.

5.2. CD36 Genes

The CD36 gene is located on chromosome 7q11.2 and is encoded by 15 exons [82–84].
CD36 is an 88-kD membrane glycoprotein categorized as a class B scavenger cell surface
receptor that mediates internalization of oxidized low-density lipoprotein (Ox-LDL) lead-
ing to the formation of macrophage foam cells [85]. It presents on the surface of platelets,
monocytes or macrophages, and endothelial and smooth muscle cells [86]. CD36 serves as
a candidate gene for impaired fatty acid metabolism, glucose intolerance, arterial hyperten-
sion, atherosclerosis, and numerous cardiovascular diseases [83,87] as well as Alzheimer’s
disease [88] and malaria [89,90], and may be imperative in the pathogenesis of human IR
syndromes. Deficiency of CD36 is related to phenotypic expression of metabolic syndrome,
which is commonly connected to atherosclerotic CVD, resulting in raised levels of glucose
and thus contributing to T2DM [85]. In some studies, the CD36 SNP, rs1761667, was corre-
lated with T2DM [66,67]. This SNP has also been used in identifying cardiovascular events
such as atherosclerosis [67,91]. In a study conducted among a Sohag population in Egypt,
it was found that the AG genotype of the rs1761667 polymorphism in the CD36 gene may
have participated in CAD pathogenesis, body mass index (BMI) increase, and T2DM [67].
So, this SNP most probably will associate with both IR and atherosclerosis.

5.3. LEPR Gene

LEPR gene is located on chromosome 1p31, and it encodes leptin receptor (LepR) [92].
Leptin is synthesized in adipose tissue function to regulate appetite and body temper-
ature [93]. Previously, leptin was considered an anti-obesity hormone, and later it was
proposed to protect non-adipose tissues (e.g., liver, endocrine pancreas, heart) from lipo-
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toxicity [94]. Leptin therapy has been reported to improve metabolic, glucose, and lipid
imbalances in T2DM patients [95]. Meanwhile, studies on LEPR gene have associated it
with MetS parameters such as IR [96], cardiovascular diseases [97], and hypertension [98].
Changes in the expression of leptin and LEPR due to genetic and environmental factors may
lead to dysfunction of the leptin system, disturbances in energy balance, weight gain, and
risk for developing T2DM or atherosclerosis [99]. The SNPs in LEPR have been reported
to be associated with plasma LepR levels at the genome-wide significance level [100,101].
The rs1137100 SNP in the LEPR gene was independently associated with early atherosclero-
sis [68] and some risk factors of IR [102]. Lys109Arg of LEPR (rs1137100) has been shown
to associate with some CVD risk factors [103]. Thus, this SNP may have a higher chance of
association with IR and atherosclerosis.

5.4. RETN Genes

RETN encodes resistin and is located in chromosome 19p13.3 [104]. Resistin is
cysteine-rich with 108 amino acid residues and is expressed largely in immune cells such
as monocytes, macrophages, and neutrophils. Meanwhile, associations of RETN with
plasma resistin levels, T2DM, and related metabolic traits have varied [105]. The blood
circulating levels of resistin have been shown to be upregulated in subjects with IR, hy-
pertension, T2DM, and CAD [106–108]. Additionally, RETN’s SNP rs3745367 has been
implicated in cardiovascular disease, resistin levels, fasting glucose levels, and diabetic
incidence [109–112], while rs1862513 was associated with IR and T2DM [111,113]. Hence,
rs3745367 and rs1862513 might be potential markers for IR and atherosclerosis.

5.5. IL-18 Genes

IL-18 gene is located on chromosome 11q22.2–q22.3 and contains numerous SNPs
in the promoter region [114,115]. It encodes proinflammatory cytokine interleukin-18
(IL-18), which is central to the inflammatory chain reaction. The IL-18 gene variations
in the promoter region can influence IL-18 production and activity [116,117]. In patients
with known CAD, circulating IL-18 levels and IL-18 gene polymorphisms were associated
with future cardiovascular mortality [118,119]. SNP rs1834481 within the IL-18 gene was
associated with IL-18 levels and IR [55]. The rs1834481 of IL-18 has had reported effects
on BMI in T2DM [120] and in subjects with CAD [72]. Polymorphism in IL-18 has been
associated with IL-18 levels in CAD patients with T2DM [121]. Therefore, IL-18 SNPs can
be the markers for IR and atherosclerosis.

5.6. RBP-4 Genes

The RBP-4 gene is located on chromosome 10q23–q24 [74]. It encodes RBP-4 and is
identified to link obesity with its comorbidities, especially IR and T2DM [122]. RBP-4 gene
expression in visceral adipose tissue is the most probable source for elevated RBP-4 serum
concentrations in patients with increased visceral fat mass and T2DM. It contributes to the
development of IR [51]. A study on Han Chinese found the RBP-4 gene to be associated
with CAD [74]. In addition to IR and T2DM links, the A/A genotype at the RBP-4 rs7094671
locus also links with CAD in the population.

5.7. RARRES2 Gene

RARRES2, the encoding gene of chemerin, is located on chromosome 7q36.1. Chemerin
is potentially involved in regulating immune responses at inflammation and tissue injury
sites [123]. Chemerin, described as being secreted from mature adipocytes, has elevated
circulating levels in human plasma parallel with obesity progression [124]. Patients with
T2DM were investigated to present significantly higher chemerin values than controls [125].
The accumulation of chemerin in an atherosclerotic lesion contributes to atherosclero-
sis [126]. In addition, the severity of coronary atherosclerosis is found to be positively
correlated with the level of RARRES2 mRNA [127]. Furthermore, the bovine RARRES2
gene polymorphisms have been linked to T2DM [128]. SNP rs17173608 can be used as
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genetic determinants of IR [56,129]. The RARRES2 variant rs17173608 was also associated
with chemerin concentration and CAD [57,129]. In short, this RARRES2 SNP might be the
marker associated with IR and atherosclerosis.

6. Executive Summary
6.1. Genetic Markers and Disease

Genetic markers study the relationship between T2DM complications (IR and atheroscle-
rosis) and their genetic cause. They are the variations or polymorphisms that can be
observed. The studies that have been conducted thus far address the genetic polymor-
phisms of IR or atherosclerosis separately. Thus, future studies are crucial to investigate the
association of potential mutual genetic polymorphisms with IR and atherosclerosis.

6.2. Mechanisms Involved in the Identification of Genetic Markers

The exact mechanisms for the increased susceptibility and progression of atheroscle-
rosis in patients with diabetes are unknown. Still, ED is the common key event in IR and
atherosclerosis progression. ED involves an inflammatory process. The inflammatory
process involves the release of pro-inflammatory cytokines and chemokines encoded by
genes that may be associated with IR and atherosclerosis. The encoding genes may serve
as potential genetic markers.

6.3. Association of Potential Genetic Markers with IR and Atherosclerosis

Gene polymorphisms CHI3L1 (rs946263), CD36 (rs1761667), LEPR (rs1137100), RETN
(rs1862513 and rs3745367), IL-18 (rs1834481), RBP-4 (rs7094671), and RARRES2 (rs17173608)
have the great potential to associate with IR and atherosclerosis in T2DM patients with
CAD, as having possible evidence based on data from previous studies and the disease
pathogenesis.

7. Conclusions

T2DM and CAD share several common risk factors such as aging, hypertension,
dyslipidemia, obesity, lack of physical activity, genetics, and stress. IR is the main culprit
contributing to T2DM and atherosclerotic CAD development. IR and atherosclerosis
share the same genetic basis. ED and inflammation (involving pro-inflammatory markers)
link IR and atherosclerosis. The pro-inflammatory markers’ encoding genes may be the
potential genetic markers of IR and atherosclerosis in T2DM patients with CAD. This review
identified CHI3L1, CD36, LEPR, RETN, IL-18, RBP-4, and RARRES2 genes as the potential
genetic markers of IR and atherosclerosis in T2DM patients with CAD.

8. Future Perspectives

Previous studies outlined genetic markers of IR and atherosclerosis separately in
T2DM patients with CAD. The findings of this study offer an opportunity to improve
management in T2DM patients with CAD by identifying new common genetic markers
for IR and atherosclerosis. This could be accomplished by analyzing the diseases’ risk
factors using specific SNPs linked to IR and atherosclerosis. SNPs identification methods
such as TaqMan SNP are effective in genotyping the SNPs, and it has a high throughput
and an accuracy of 99.9% and has long been regarded as the gold standard in qPCR. As a
result, the data obtained from the genetic variations analysis will be consistent, precise, and
reliable. This research will comprehend the genetics of pro-inflammatory markers (released
secondary to ED) that may serve IR and atherosclerosis pathogenesis and provide novel
insights into glycemic control and the progression of atherosclerosis in T2DM patients
with CAD. Integrating genetic variation into clinical variables would be an added value
for optimization, leading to cost-savvy effects in managing CAD in T2DM patients. The
findings of this study pave the way for researchers to investigate further the functional
variants in the coding regions of the candidate genes, as well as the relationship between
IR, atherosclerosis, T2DM, CAD, and their risk factors. This will also spark future research
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if genetic variations in the ED pathway are linked to the risk of IR and atherosclerosis in
T2DM patients in their respective populations.
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