
Functional connectomics reveals general wiring
rule in mouse visual cortex

Zhuokun Ding1,2,*, Paul G. Fahey1,2,*, Stelios Papadopoulos1,2,*, Eric Wang1,2, Brendan Celii1,2, Christos Papadopoulos1,2,
Alexander B. Kunin1,2,8, Andersen Chang1,2, Jiakun Fu1,2, Zhiwei Ding1,2, Saumil Patel1,2, Kayla Ponder1,2, J. Alexander

Bae4,5, Agnes L. Bodor3, Derrick Brittain3, JoAnn Buchanan3, Daniel J. Bumbarger3, Manuel A. Castro4, Erick Cobos1,2, Sven
Dorkenwald4,6, Leila Elabbady3, Akhilesh Halageri4, Zhen Jia4,6, Chris Jordan4, Dan Kapner3, Nico Kemnitz4, Sam Kinn3,

Kisuk Lee4,7, Kai Li6, Ran Lu4, Thomas Macrina4,6, Gayathri Mahalingam3, Eric Mitchell4, Shanka Subhra Mondal4,5, Shang
Mu4, Barak Nehoran4,6, Sergiy Popovych4,6, Casey M. Schneider-Mizell3, William Silversmith4, Marc Takeno3, Russel Torres3,

Nicholas L. Turner4,6, William Wong4, Jingpeng Wu4, Wenjing Yin3, Szi-chieh Yu4, Emmanouil Froudarakis1,2,12, Fabian
Sinz14,1,2,13, H. Sebastian Seung4, Forrest Collman3, Nuno Maçarico da Costa3, R. Clay Reid3, Edgar Y. Walker10,11, Xaq

Pitkow1,2,9, Jacob Reimer1,2,�, and Andreas S. Tolias1,2,9,�

1Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, USA
2Department of Neuroscience, Baylor College of Medicine, Houston, USA

3Allen Institute for Brain Science, Seattle, USA
4Princeton Neuroscience Institute, Princeton University, Princeton, USA

5Electrical and Computer Engineering Department, Princeton University, Princeton, USA
6Computer Science Department, Princeton University, Princeton, USA

7Brain & Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge, USA
8Department of Mathematics, Creighton University, Omaha, USA

9Department of Electrical and Computer Engineering, Rice University, Houston, USA
10Department of Physiology and Biophysics, University of Washington, Seattle, USA
11UW Computational Neuroscience Center, University of Washington, Seattle, USA

12Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Greece
13Institute for Bioinformatics and Medical Informatics, University Tübingen, Tübingen, Germany

14Institute for Computer Science and Campus Institute Data Science, University Göttingen, Göttingen, Germany
*co-first author

To understand how the neocortex underlies our ability to per-
ceive, think, and act, it is important to study the relationship be-
tween circuit connectivity and function. Previous research has
shown that excitatory neurons in layer 2/3 of the primary visual
cortex of mice with similar response properties are more likely
to form connections. However, technical challenges of com-
bining synaptic connectivity and functional measurements have
limited these studies to few, highly local connections. Utilizing
the millimeter scale and nanometer resolution of the MICrONS
dataset, we studied the connectivity-function relationship in ex-
citatory neurons of the mouse visual cortex across interlami-
nar and interarea projections, assessing connection selectivity
at the coarse axon trajectory and fine synaptic formation levels.
A digital twin model of this mouse, that accurately predicted
responses to arbitrary video stimuli, enabled a comprehensive
characterization of the function of neurons. We found that neu-
rons with highly correlated responses to natural videos tended
to be connected with each other, not only within the same cor-
tical area but also across multiple layers and visual areas, in-
cluding feedforward and feedback connections, whereas we did
not find that orientation preference predicted connectivity. The
digital twin model separated each neuron’s tuning into a feature
component (what the neuron responds to) and a spatial compo-
nent (where the neuron’s receptive field is located). We show
that the feature, but not the spatial component, predicted which
neurons were connected at the fine synaptic scale. Together,
our results demonstrate the “like-to-like” connectivity rule gen-
eralizes to multiple connection types, and the rich MICrONS
dataset is suitable to further refine a mechanistic understanding
of circuit structure and function.
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Introduction

In the late 1800’s, Santiago Ramón y Cajal — while poring
over the structure of Golgi-stained neurons using only light
microscopy — imagined the Neuron Doctrine, the idea that
individual neurons are the fundamental units of the nervous
system (Ramón y Cajal, 1911). From that moment, under-
standing how cortical computation emerges from those indi-
vidual neurons was linked to understanding the relationship
between their connectivity and function. A variety of influ-
ential proposals about this relationship have been advanced
in the past century. For example, Donald Hebb’s “cell as-
sembly" hypothesis (Hebb, 1949) — colloquially stated as
“neurons that fire together, wire together” — predicted that
interconnected neuronal subnetworks “reverberate" to stabi-
lize functionally relevant activity patterns. In the visual sys-
tem, Hubel and Wiesel proposed that the hierarchical organi-
zation of connected neurons might build feature selectivity;
for example the orientation selectivity of simple cells might
be derived from convergent inputs from neurons in the lateral
geniculate nucleus whose receptive fields are arranged along
a straight line in the visual field. (Hubel and Wiesel, 1962).
Although significant insight can be gleaned from functional
or structural analysis alone, thoroughly testing these predic-
tions requires information about both neural activity and con-
nectivity in the same set of neurons. In the mammalian vi-
sual cortex, evidence for several varieties of “like-to-like”
connectivity (i.e. increased connectivity for cells with sim-
ilar response preferences) has been found via spine imaging
(Iacaruso et al., 2017), combined in vivo imaging and in vitro
multipatching (Ko et al., 2011; Cossell et al., 2015), com-
bined in vivo imaging and rabies monosynaptic retrograde
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tracing (Wertz et al., 2015), and combined in vivo imaging
with electron microscopy (EM) reconstruction (Bock et al.,
2011; Lee et al., 2016; Scholl et al., 2021). The results
of these early functional connectomics studies are consis-
tent with an organization reminiscent of Hebbian cell as-
semblies, where interconnected pyramidal subnetworks with
similar feature preferences amplify sensory input, perhaps to
sharpen tuning or overcome a strong inhibitory tone (Lien
and Scanziani, 2013; Reinhold et al., 2015; Lee et al., 2016).

However, these important early studies that yielded the first
glimpses of functional-structural rules required monumental
effort just to examine small populations of neurons restricted
to small volumes of primary visual cortex (V1), and typically
limited to cortical Layers 2 and 3 (L2/3). This is due in part
to the challenge of collecting functional connectomics data
and especially the challenge of identifying synaptic connec-
tions between neurons across distances larger than a few hun-
dred microns. Therefore, many questions remain unanswered
about how these rules generalize across areas and layers, in-
cluding connections within and between different layers and
areas (including feedforward and feedback), and how they
relate to local and hierarchical mechanisms of sensory pro-
cessing.

Enormous strides have been made over the past decade in our
ability to record activity over large populations of neurons
distributed across multiple regions of the brain (Sofroniew
et al., 2016; Pachitariu et al., 2017; Allen et al., 2019; Stringer
et al., 2019; Demas et al., 2021; Steinmetz et al., 2021;
Jun et al., 2017). Recent technological innovations in se-
rial electron microscopy (Yin et al., 2020; Phelps et al.,
2021) and automatic dense reconstruction using deep learn-
ing (Turner et al., 2020; Dorkenwald et al., 2022b; Mitchell
et al., 2019; Lu et al., 2021; Wu et al., 2021; Dorkenwald
et al., 2022a; Lee et al., 2017), when combined with meso-
scopic two-photon imaging (Sofroniew et al., 2016), have
converged to enable collection of the MICrONS dataset, the
largest functionally-imaged and densely-reconstructed cal-
cium imaging/EM dataset to date (MICrONS Consortium
et al., 2021).

Here, dense reconstruction means that every membrane com-
partment in the volume is segmented into an axon, den-
drite, glia, etc. — in contrast with previous studies that
have sparsely reconstructed connections from or to a lim-
ited number of functionally-characterized target cells (Lee
et al., 2016; Bock et al., 2011). As a result, we were able
to gather information from a higher density of reconstructed
“bystanders”, nearby neurons that could have formed connec-
tions, yet didn’t. This allows for a multi-tiered analysis at dif-
ferent spatial scales, with a coarse level corresponding to the
axonal trajectory past the dendrites of some neurons but not
others, and a fine level at which it may form synapses only
with a subset of those candidate neurons. This multi-tiered
analysis enables a more comprehensive understanding of the
mechanisms by which neurites select their synaptic partners,
including sharing certain functional properties, and thus help
shed light on the complex interplay between structure and
function in the nervous system.

Our functional analysis utilized a digital twin model of the
recorded neurons (Wang et al., 2023), which was able to ac-
curately predict how neurons responded to dynamic natural
stimuli. With this model, we were able to conduct a thor-
ough characterization of neuronal function. Our findings re-
vealed that neurons with highly correlated responses to nat-
ural videos tended to be connected with each other, not only
within the same cortical areas but also across multiple layers
and visual areas, including feedforward and feedback con-
nections. Interestingly, we did not find evidence that con-
nected neurons share similar orientation tuning. The digi-
tal twin model allowed us to separate each neuronal tuning
into two components: a feature component (what the neu-
ron responded to), and a spatial component (the location of
the neuron’s receptive field). Further analysis showed that
the feature component, rather than the spatial component,
predicted fine-scale synaptic connections between neurons.
Lastly, we showed that signal correlation and feature tuning
each uniquely contribute to predicting synaptic level connec-
tivity. Our results provide support for the “like-to-like” con-
nectivity rule across different types of connections (local, in-
terarea, interlaminar, etc) and highlight the potential of the
MICrONS dataset in enhancing our understanding of circuit
structure and function.

Results
MICrONS functional connectomic dataset. Data were
collected and processed as described in the MICrONS data
release publication (MICrONS Consortium et al. 2021, Fig.
1). Briefly, a single mouse expressing GCaMP6s in exci-
tatory neurons underwent fourteen two-photon scans of a
1200 × 1100 × 500µm3 volume (anteroposterior × medio-
lateral × radial depth) spanning layers 2 through 6 at the
conjunction of lateral primary visual cortex and anterolateral
(AL), lateromedial (LM) and rostrolateral (RL) higher visual
areas (HVAs, Fig. 1a). Neuronal responses in the awake, be-
having animal from 115,372 functional units representing an
estimated 75,909 unique excitatory neurons were collected in
response to visual stimuli composed of natural and rendered
movies and parametric dynamic stimuli (Fig. 1b). A state-of-
the-art deep recurrent neural network was trained to predict
neural responses to arbitrary stimuli (Wang et al., 2023), and
used to characterize the in silico functional properties of im-
aged neurons (Fig. 1c).
After functional imaging, the tissue was fixed and a block en-
compassing the functionally characterized volume was dis-
sected for osmium staining, resin embedding, and ultra-
thin sectioning for electron microscopy (Yin et al., 2020) at
4 × 4 × 40nm3 resolution (Fig. 1d). The EM images were
aligned (Mitchell et al., 2019) and automatically segmented
using 3D convolutional networks into “atomic” supervoxels,
which were agglomerated to create objects (e.g. neurons)
with corresponding 3D meshes (Lee et al., 2017; Dorken-
wald et al., 2022b; Lu et al., 2021; Wu et al., 2021; Dorken-
wald et al., 2022a). Synaptic clefts were predicted from the
EM data and assigned to presynaptic and postsynaptic part-
ners by 3D convolutional networks similar to that used for
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Figure 1. Overview of MICrONS Dataset. a, Depiction of functionally characterized volume in right visual cortex (green: GCaMP6s, red: vascular label), using two-photon
(2P) mesoscopic imaging of awake, head-mounted mouse with movie visual stimuli presented to the left eye. Visual areas: primary visual cortex (V1), anterolateral (AL),
lateromedial (LM) and rostrolateral (RL). b, Representation of deconvolved calcium traces of 100 imaged neurons. Alternating blue/white column overlay represents the
duration of serial video trials, with sample frames of natural videos depicted below. Parametric stimuli (not pictured) were also shown for a shorter duration and included in the
model training set. c, Schematic representing digital twin deep recurrent architecture. During training, subsequent movie frames (left) are inputted into a shared convolutional
deep recurrent core (orange, blue layers) resulting in extracted representation of local spatiotemporal stimulus features. Each neuron learns the location (spatial component
in the visual field (gray layer) to read out feature activations (shaded blue vectors), and the dot product with the neuron-specific learned feature weights (shaded lines, feature
component) results in the predicted mean neural activation for that time point. d, Depiction of the structurally characterized and densely reconstructed EM subvolume 65. e,
Overlap of the functional 2P (green) and structural EM (gray) volumes, from which somas were recruited. f, g, Demonstration of corresponding structural features in 2P (f)
and EM (g) volumes, including soma constellations (dotted white circles) and unique local vasculature (red arrowheads), used to build confidence in the manually assigned
2P-EM cell match (solid white circle). Scale bars = 5µm. h, Depiction of 122 manually proofread mesh reconstructions (gray), including representative samples from Layer
2/3 (red), Layer 4 (blue), Layer 5 (green), and Layer 6 (yellow). Bottom panel: presynaptic soma locations relative to visual area boundaries.

segmentation (Dorkenwald et al., 2022b; Turner et al., 2020;
Wu et al., 2021). The densely reconstructed EM volume
spanned roughly 870 × 1300 × 820µm3 (anteroposterior ×
mediolateral × radial depth) after alignment with the func-
tional volume. The analysis presented here is restricted to
the contents of subvolume 65 (roughly 65% of the total EM
volume along the anteroposterior axis, see MICrONS Con-
sortium et al. 2021 for details), which contained an approxi-
mately 560×1100×500µm3 volume (in vivo dimensions) of
overlapping two-photon and EM that has been both densely
functionally and structurally characterized. Of 82,247 auto-
matically extracted neuronal nuclei in subvolume 65, 45,334

were both classified as excitatory and located within the inter-
section of the EM reconstructed volume and functional vol-
ume.

The two-photon and EM volumes were approximately
aligned (Fig. 1e), and 8905 excitatory neurons were manu-
ally matched between the two volumes (Fig. 1f, g; MICrONS
Consortium et al. 2021). Visually responsive and well char-
acterized neurons in retinotopically matched areas in V1 and
HVA were chosen for manual morphological proofreading
focused on extending axonal branches projecting across the
boundary of primary visual cortex and removing inappro-
priate merges (MICrONS Consortium et al., 2021). Postsy-
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Figure 2. Neurons with higher signal correlation are more likely to form synapses. a, Schematic illustrating inclusion criteria for anatomical controls of increasing
specificity. For each proofread presynaptic neuron (yellow), controls for its true postsynaptic partners (black) are drawn from neurons located in the same cortical region
(blue), or from neurons with at least one Axonal-Dendritic Proximity (“ADP”) on the presynaptic axonal arbor (red). b, Representative meshes demonstrating a true presynaptic
(yellow) to postsynaptic (black) pair and corresponding ADP control (red). c, Density histogram of pairwise signal correlation between observed presynaptic - postsynaptic
partners (black) is right-shifted with respect to the control groups described in a. d, Mean signal correlation is different (mean ± sem, two-sample t-test) between observed
presynaptic - postsynaptic partners (black), same region control (blue), and ADP control (red). e, Mean signal correlation of connected neurons is increased with respect
to controls as in d, for within-area (V1 and HVA), feedforward, and feedback connectivity. f, Fold change of connection probability given signal correlation of true synaptic
connectivity relative to controls is decreased for low signal correlations and increased for high signal correlations. (Error bar = ± 1 STD by bootstrap, p values by Cochran-
Armitage two-sided test for trend). g, Fold change of connection probability is decreased for low signal correlations and increased for high signal correlations as in d for
within-area (V1 and HVA), feedforward, and feedback connectivity. h, Representative meshes demonstrating synapses with low cleft volume (896 voxels, left) and high
cleft volume (41716 voxels, right). i, Synapse size (log10 cleft volume in voxels) positively correlated with signal correlation. j, Representative meshes demonstrating
a multisynaptic presynaptic (yellow) to postsynaptic (black) pair. k, Signal correlations between connected neurons with more than 1 observed synapse are higher than
connected neurons with 1 observed synapse, after controlling for synapse opportunity by ADP (p values by two-way ANOVA). (For all panels, ∗ = p-value < 0.05, ∗∗ = p-value
< 0.01, ∗ ∗ ∗ = p-value < 0.001, multiple comparison correction by BH procedure)

naptic partners of the proofread neurons were automatically
cleaned of inappropriate merge errors (Celii et al., 2023).
In total, this resulted in a connectivity graph consisting of
122 presynaptic neurons and 1975 postsynaptic partners with
function characterized in the digital twin (Fig. 1h).

Multi-tiered anatomical controls. Connectivity between
neurons is affected by numerous mechanisms, ranging from
developmental processes that organize broad patterns of
functional tuning and neurite growth, to mechanisms of
synaptic formation and plasticity that modulate the strength
of individual connections between neurons. Thus, it is im-
portant to differentiate connectivity patterns that can be ex-
plained by the spatial locations of cell bodies, axons and den-
drites, from those which require additional specificity. Be-
cause the dense reconstruction provides information not only
on the detailed morphology of the axonal arbor of presynaptic
neurons and dendritic arbor of postsynaptic neurons, but also
on the dendritic arbors of “bystander” neurons with no ob-

served connection, it allows for the creation of specific and
multi-tiered controls for testing hypotheses on the relation-
ship between function and connectivity. In this study, we
compare the population of connected neurons against two
groups of control neurons with progressively tighter inclu-
sion criteria (Fig. 2a, b). The first is the “same region” con-
trol, which includes all reliably visually responsive excita-
tory neurons (CCmax > 0.6) that are accurately predicted by
the digital twin (CCabs > 0.35), have been matched to the
EM volume, and are located in the same cortical region (V1
vs HVA) as the postsynaptic target, but were not observed to
form a synapse with the presynaptic neuron. The second con-
trol group is the Axonal-Dendritic Proximity (ADP) control,
which further restricts the neurons in the same region control
to those with the opportunity to synapse, as defined by a den-
drite passing within 5µm of the presynaptic neuron axonal
skeleton and also within 10µm of at least one synapse in the
presynaptic axonal arbor (3D euclidean distance). The func-
tional properties of the two control groups and the observed
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synaptic partners can be compared against each other to bet-
ter interpret the different contributions to synaptic partner se-
lectivity. The difference between the ADP control and same
region control represents a coarse level selectivity related to
the axon’s trajectory to some areas and layers of visual cor-
tex but not others. For example, if the targeted cortical area
is organized with respect to functional properties such as re-
ceptive field location (i.e. retinotopy) or preferred orienta-
tion (Fahey et al., 2019), then the functional similarity of the
synaptic partners of the axon could be due to where it projects
within that area, even if it synapses randomly within that lo-
cation. On the other hand, the difference between the con-
nected neurons and the ADP group represents a fine level se-
lectivity related to which ADPs are converted into synapses.

Signal correlation is selected at axon trajectory and
synaptic levels. For pairs of connected neurons and con-
trols included under the constraints described above, the digi-
tal twin was used to calculate the in silico signal correlation in
response to a large battery of novel natural movies (250 clips,
10 seconds per clip). By using the predicted mean response
from the digital twin, which would require many repeats to
obtain with in vivo measurements, we are able to explore a
much larger stimulus space with in silico experiments than
would be possible with in vivo measurements (Wang et al.,
2023). We found that the distribution of in silico signal cor-
relations for observed synapses had a small but significant
positive shift relative to both controls (Fig. 2c, d; p-value <
0.001 for both comparisons, two-sided two-sample t-test cor-
rected for multiple comparisons with Benjamini-Hochberg
(BH) procedure). This pattern was also independently ob-
served when subsets of neuron pairs were grouped into lo-
cal V1, local HVA, feedforward (V1 → HVA) and feedback
(HVA → V1) connections (Fig. 2e). Notably, when testing
local and interarea selectivity separately, it may potentially
be confounded by differences in spatial distribution between
local and interarea arbors, for example due to incomplete re-
construction following proofreading emphasis on projecting
interarea axons. To measure how signal correlation affects
connection probability compared to either same region or
ADP control, we quantified the fold changes in connection
probability as a function of signal correlation. We observed
that connection probability is higher for neurons with larger
signal correlations (Fig. 2f, p-value <0.001 for both com-
parisons, Cochran-Armitage two-sided tests for trend). This
increased connectivity was stronger in the same region con-
trol but remained positive in the more restrictive ADP con-
trol. For a small group of highly correlated neurons (>0.3
signal correlation, 5.2% of neurons), connection probability
reached as high as 1.8 fold increase relative to the same re-
gion control and 1.5 fold increase relative to the ADP con-
trol. This relationship was observed in both local projections
within V1 and HVA, feedforward, and feedback projections
(Fig. 2g).

Functional similarity predicts volume and number of
synapses. Previous studies have found that presynaptic-
postsynaptic pairs with greater functional similarity have

greater synapse strength (Cossell et al., 2015) and larger post-
synaptic density (PSD) area (Lee et al., 2016). In the MI-
CrONS dataset, synapses were automatically segmented with
cleft volume measurements, which is related to spine head
volume, PSD area, and synaptic strength (Arellano et al.,
2007; Holler et al., 2021; Dorkenwald et al., 2022b). We
found that signal correlation positively correlates with cleft
volume (Fig. 2h, i; pearson r = 0.098, p < 0.001). We
also found that presynaptic-postsynaptic pairs with multiple
synapses had higher signal correlation (Fig. 2j, k) when com-
pared to monosynaptic pairs.

Factorized in silico functional representation. Due to
the architecture of the digital twin (Fig.1c, Wang et al. 2023),
each modeled neuron’s predicted response is determined by
two factors: readout location in visual space—a pair of az-
imuth/altitude coordinates; and readout feature weights—
the relative contribution of the core’s learned nonlinear out-
put features in predicting the target neuron’s activity. For
each neuron, the combination of this receptive field location
and feature weights together encode everything the model has
learned about that neuron’s functional properties, and enable
the model’s predictive capacity for that neuron. This factor-
ized in silico representation allowed us to examine the extent
to which these two elements independently contribute to the
relationship between signal correlation and connectivity seen
in Fig. 2.

Postsynaptic feature tuning is selected at the synap-
tic level. As seen with signal correlation above (Fig. 2c), the
mean cosine similarity between the presynaptic and postsy-
naptic feature weights of the connected population is larger
than both control populations (Fig. 3a, p-value <0.001, two-
sample t-test). The local V1, local HVA, feedforward, and
feedback projection breakout analyses further demonstrate
selectivity at the synaptic level with respect to the model fea-
ture weight similarity (Fig. 3b, c). Higher feature weight
similarity is also associated with larger synapse volume and
multisynapse connectivity (Supp. Fig. 1a, b).

Postsynaptic receptive field location is selected at the
axon trajectory level. Receptive field location similarity
was measured as the visual angle difference between the
model receptive field centers, with lesser center distance cor-
responding to greater location similarity. In contrast to signal
correlation and feature weight similarity, receptive field lo-
cation similarity is selected at the axon trajectory level, as
evidenced by the leftward shift in receptive field location dis-
tance between connected neurons and same region control
(black vs blue, Fig. 3d). This pattern is consistent with the
decrease in receptive field location distance between same re-
gion control and connected neurons in the projection break-
out (black vs blue, Fig. 3e) and with the decreasing trend
in connection probability (blue, Fig. 3f). However, there is
no statistically significant difference between the connected
population and ADP control across all three analyses (black
vs red, Fig. 3d, e, f), suggesting that there is not an additional
synaptic selectivity on the basis of receptive field location
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Figure 3. Feature weight similarity predicts synaptic selectivity better than receptive field center distance and difference in preferred orientation. a,
d, g, Density histograms of pairwise model feature weight similarity (a), RF center distance (d), and difference in preferred orientation (Delta ori, g) for observed
presynaptic-postsynaptic pairs (black) and controls. Mean signal correlation, mean RF center distance and mean difference in preferred orientation are compared
across the connected neuron pairs and two controls (two sample t-test). b, e, h, Mean feature weight similarity (b), mean RF center distance (e), and mean
difference in preferred orientation (h) for connected and control populations (two-sample t-test). c, f, i, Fold change in connection probability conditioned on feature
weight similarity (c), receptive field center pairwise distance (f), and difference in preferred orientation (i). (Cochran-Armitage two-sided tests for trend) Error bars
are bootstrapped STD. (For all panels, ∗ = p-value < 0.05, ∗∗ = p-value < 0.01, ∗ ∗ ∗ = p-value < 0.001, p-values are corrected for multiple comparison using BH
procedure)

beyond axonal targeting of retinotopically matched regions.
Receptive field center distance also does not correlate with
synapse volume (Supp. Fig. 1c), nor with multisynapse con-
nectivity (Supp. Fig. 1d).

Postsynaptic orientation tuning is selected at the axon
trajectory level. Previous work has found like-to-like con-
nectivity with respect to similarity in orientation preference
(Supp. Fig. 2a, b; Ko et al. 2011; Lee et al. 2016). Similar to
the in silico signal correlation computed above, we extracted
neuronal orientation tuning from the responses to in silico
presentations of noise-based stimuli with coherent orienta-
tion and direction. Only orientation-tuned neurons are in-
cluded in the analysis (global OSI > 0.25) which were shown
to have similar in silico and in vivo orientation tuning prop-
erties in a separate set of experiments (Supp. Fig. 4). Over-
all orientation tuning of the volume revealed a cardinal bias
(Kondo and Ohki, 2016; Salinas et al., 2017; Kreile et al.,
2011), resulting in a U-shaped distribution in the difference
in preferred orientation between presynaptic and postsynap-
tic neurons (Fig. 3g). While we did find a leftward shift of the
overall connected distribution relative to the same region con-
trol (Fig. 3g, p-value = 0.003), we did not observe synapse
level selectivity when comparing in silico orientation tuning
in connected pairs against ADP controls, either at the overall
level (Fig. 3g) or in the projection breakout analysis (Fig. 3h,
i). Thus, for the portion of V1 captured in the connectivity

graph used for these analyses, like-to-like connectivity with
respect to in silico orientation tuning was only detected at the
axon trajectory level, and not at the synapse level. However,
in order to recruit an unbiased presynaptic population, candi-
dates for proofreading were not chosen based on orientation
tuning, and consequently only 87/122 (71%) of the presy-
naptic neurons were significantly tuned for orientation. To
control for the decrease in sample size, we re-tested the re-
lationship between connectivity and signal correlation (Fig.
2c, e, g), and between connectivity and feature weight simi-
larity (Fig. 3a - c) with only the subsampled population with
statistically significant orientation tuning (Supp. Fig. 3). We
found that both signal correlation and feature weight rela-
tionships remained similar overall, suggesting the subsam-
pling alone cannot account for the lack of relationship be-
tween similarity in orientation preference and connectivity.

Like-to-like rule generalizes across joint layer and area
membership of cells. To get a more detailed understand-
ing of the organization of connections across layers and ar-
eas, for each functional similarity metric (signal correlation,
feature weight similarity, receptive field center distance, and
difference in preferred orientation), we also tested the rela-
tionship with connectivity across the joint distribution of two
area groups (primary visual cortex, V1; higher visual areas
AL and RL, HVA) and three layer groups (L2/3, L4, and
L5, Fig. 4). For signal correlation (Fig. 4a, b) and fea-
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Figure 4. Like-to-like effects are widespread but vary across joint area / layer
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ture weight similarity (Fig. 4c, d), like-to-like effects (red
squares) were widespread across many area and layer combi-
nations, relative to both same region and ADP controls. How-
ever, pertinent negatives include HVA L2/3 → HVA L2/3, for
which we failed to reject the null hypothesis of no difference
from ADP control, despite that this group had 296 synapses
between 46 unique presynaptic and 207 unique postsynap-
tic neurons, suggesting that in at least some subgroups the
like-to-like is either greatly diminished, highly variable, or
perhaps entirely absent. In the case of RF center distance,

while like-to-like effects (red squares) were widespread when
compared to the same region control across many groups and
layers, none were significant in the ADP comparison, sug-
gesting that RF distance selectivity at the axon trajectory but
not synaptic level is also consistent across tested excitatory
cell types (Fig. 4e, f). Lastly, in the case of difference in
preferred orientation, we were not able to detect significant
differences between connected and control neuron pairs (Fig.
4g, h). When we examine orientation tuning for V1 L2/3
→ V1 L2/3 connections specifically, we observed a similar
trend of connection probability compared to previous litera-
ture (Supp. Fig. 2a, b), however the trend was not signif-
icant (p = 0.090 vs region control, p = 0.750 vs ADP con-
trol, Cochran-Armitage two-sided test for trend). Because
the data are constrained to only presynaptic and postsynaptic
pairs with significant orientation tuning, it is possible that the
tuning and selectivity of a few individual presynaptic neurons
may have an outsized influence on single categories. How-
ever, the V1 L2/3 → V1 L2/3 group in our data has a greater
number of connections when compared to previous studies
(Ko et al. 2011: 25 connections; Lee et al. 2016: 29 connec-
tions; this study: 126 connections), and only slightly fewer
unique presynaptic neurons (Lee et al. 2016: 15 presyn., 21
postsyn.; this study: 9 presyn., 115 postsyn.).

Signal correlation and feature weight similarity inde-
pendently contribute to connectivity. We next examined
the relationships between pairwise functional properties. Sig-
nal correlation is correlated to feature weight similarity (pear-
son r=0.66, p < 0.001) (Fig. 5a), and weakly anti-correlated
to receptive field center distance (pearson r=-0.08, p < 0.001)
(Fig. 5b). To test whether in silico signal correlation and fea-
ture weight similarity both independently contribute to higher
connection probability, we used a logistic regression model to
analyze the relationship between feature weight, signal cor-
relation and connectivity. We first tested the efficacy of our
selected model on simulated data with known effect sizes.
A graph of potential connectivity was constructed, where
nodes are neurons, and edges were assigned between neu-
rons with an observed synapse or ADP in the dataset. For
each edge, observed pairwise signal correlation (SC), fea-
ture weight similarity (FW), and receptive field center dis-
tance (RF) were inherited from the corresponding neurons.
In three toy models, synapses in the graph were stochasti-
cally simulated at the overall observed connectivity rate (Fig.
5c, red dotted line), with synapse probability determined per
ADP by feature weight similarity alone (Fig. 5c, left), sig-
nal correlation alone (Fig. 5c, center), or an equal contribu-
tion of signal correlation and feature weight similarity (Fig.
5c, right). We are able to recover the simulated contribu-
tions through the estimated coefficients of the logistic regres-
sion model (connectivity ∼ SC + FW + RF , p < 0.001
by Monte-Carlo simulation) despite the high correlation be-
tween SC and FW (Fig. 5c). Interestingly, when we applied
the logistic regression model to the observed connectivity, we
found that the coefficients of both signal correlation and fea-
ture weight were statistically significant (Fig. 5d, coefficients
significantly different from zero, Wald test, p < 0.001 for
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Figure 5. Feature weight similarity predicts synaptic connectivity beyond signal correlation. a, b, Signal correlation is strongly correlated with feature weight
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which pairwise functional properties were preserved (top row) but with injected causal relationships (red arrows) between connectivity and feature weight similarity
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Logistic regression model coefficients as in (c), fitted to observed connectivity data, revealing significant non-zero contribution from both SC and FW (mean ± 95%
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Logistic regression model connectivity prediction performance on observed connectivity data (measured as likelihood relative to an intercept-only model) for three
models trained on only two of the three functional pairwise properties (FW + RF, SC + RF, SC + FW, left) versus the model trained on all three properties (SC + FW
+ RF, right). Removing SC and FW both significantly reduce model performance (likelihood ratio test). (∗ = p-value < 0.05, ∗∗ = p-value < 0.01, ∗ ∗ ∗ = p-value <
0.001).

both SC and FW, p = 0.091 for RF). Additionally, we found
that including both signal correlation and feature weight sim-
ilarity as predictors in the model significantly improved pre-
diction accuracy compared to models in which either one was
excluded (Fig. 5e, likelihood ratio test, p < 0.001 for reduc-
ing SC, p < 0.001 for reducing FW, p = 0.092 for reducing
RF). Overall, our results show that both signal correlation
and feature weight similarity carry independent information
about the connection probability between neurons, that could
not be fully captured by either metric alone.

Discussion
Discovering the principles that relate structure to function
is central in the pursuit of a circuit-level mechanistic under-
standing of brain computations. Here, we used the MICrONS
multi-area dataset — the largest of its kind — to study the re-
lationship between the connections and functional responses
of excitatory neurons in mouse visual cortex across cortical
layers and visual areas. Our findings revealed that neurons
with highly correlated responses to natural videos (i.e. high
signal correlations) tended to be connected with each other,
not only within the same cortical areas but also across multi-
ple layers and visual areas, including feedforward and feed-
back connections. While the overall principle of “like-to-
like” connectivity that we describe here is consistent with a
number of previous studies, this work leverages three unique
strengths of the MICrONS dataset to extend and refine these
previous findings.
First, the scale of the volume enabled us to look at connec-
tion principles across all layers of cortex, not just within V1,
but also in projections between V1 and higher visual areas.
In agreement with previous findings from V1 L2/3, we found
that pairs of cells with higher signal correlations were more

likely to be connected (Ko et al., 2011; Cossell et al., 2015).
This general principle held not just in V1 L2/3, but also in
higher visual areas and for interarea feedforward and feed-
back projections.

Second, we were able to take advantage of the dense recon-
struction to compute a set of null distributions for the ex-
pected connectivity between neurons. These controls enable
us to distinguish whether the relationships we observed be-
tween connectivity and function are due to the overall geom-
etry of axonal and dendritic arbors in the volume, or whether
they reflect a more precise connectivity rule at the level of
individual synapses. For example, it is only with the inclu-
sion of both same region and ADP controls that we are able
to observe the diverging findings of axon trajectory level se-
lectivity for receptive field center distance (Fig. 3 d, e, f) and
synaptic level selectivity for feature weight similarity (Fig. 3
a, b, c). These different controls can be mapped onto poten-
tial developmental or adult plasticity mechanisms that may
shape the coarse axon trajectory and fine-scale synaptic con-
nectivity across the brain.

Finally, our deep learning neural predictive modeling ap-
proach enabled us to not only comprehensively character-
ize signal correlation, but also to separate (i.e. factorize)
neuronal tuning into spatial and feature tuning components.
While the model feature weights represent the feature tuning
preferences of a given neuron, signal correlation represents
how those feature tuning preferences interact with the statis-
tics of the stimulus set used to measure them. Although these
two metrics are correlated, by comparing the relationship to
connectivity in cases where feature weight similarity and sig-
nal correlation diverge, we can attempt to separate the contri-
butions of feature tuning (e.g. “like-to-like”) and coincident
activity (e.g. “fire together, wire together”) to how neural cir-
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cuits are wired. In fact, we find that signal correlation and
feature weight similarity do independently contribute to pre-
dictions of connectivity between pairs of neurons. The causes
of these independent contributions provide the opportunity
for some interesting speculation. For example, both feature
weight similarity and signal correlation could predict connec-
tivity arising from coincident activity due to features within
the overlapping classical receptive field. However, the inde-
pendent contribution of signal correlation may be due to long
range spatiotemporal correlations in natural scene statistics
(Simoncelli and Olshausen, 2003), including those beyond
the range of the classical receptive field. This is because un-
der the “fire together, wire together” hypothesis, the observed
synapses are due to the coincident firing of neuron ensembles
shaped by the statistics of the lifetime visual experience of
the animal, which we mimic with the statistics of our natural
dynamic stimuli. On the other hand, the independent con-
tribution of feature weights may be a result of mechanisms
that influence both neuronal tuning properties and connectiv-
ity. One example would be if functionally similar neurons
are genetically predestined to form more synapses between
them.

A more banal explanation might be that one could falsely de-
tect an independent contribution when two similarity metrics
are correlated — as one metric fails to capture the functional
similarity between a neuron pair, the second metric provides
the missing information. One potential cause would be if
our similarity metrics inadequately capture the relevant fea-
tures influencing connectivity. For example, to the extent
that the high dimensional feature representation in the digital
twin suffers from a redundant (i.e. non-identifiable) embed-
ding, decreasing predictive power of feature weight cosine
similarity may emerge as an apparently independent signal
correlation contribution. While the focus in this work was
on creating a model optimized for predictive performance,
and model training included dropout (Srivastava et al., 2014)
which has been shown to decorrelate features in neural net-
work (Cogswell et al., 2015), future work might improve
by also including model architecture and training regime
changes guaranteeing a non-redundant penultimate layer of
feature weights. Alternatively, if the in vivo or in silico stimu-
lus poorly approximates the lifetime statistics of the animal’s
visual experience, it may result in an apparently indepen-
dent feature weight similarity contribution. To mitigate this,
the MICrONS dataset utilized a high entropy, natural video
stimulus and hours-long recordings to characterize functional
properties, although future work could expand in this dimen-
sion by continuing to design more immersive or ethologically
linked recording conditions (Froudarakis et al., 2014; Hoy
et al., 2016; Parker et al., 2022)

In order to compare with previous work, we also used the
digital twin to extract a more classical form of feature tuning
preference, orientation tuning. However, in contrast to pre-
vious studies (Lee et al., 2016; Ko et al., 2011), we did not
see a significant relationship between orientation tuning and
connection probability, except at the axon trajectory level.
This may be due to practical differences, such as the para-

metric stimulus used to characterize orientation tuning (in
silico drifting noise with orientation coherence in our study
versus drifting gratings), or the location and size of the area
being studied (anterolateral V1 and HVA in our study ver-
sus posterior V1 in Lee et al. 2016 and monocular V1 in Ko
et al. 2011). In the case of the latter, previous work has de-
scribed an orientation tuning bias across V1 (Fahey et al.,
2019). As a consequence, the same connectivity rule may
be more difficult to observe under different orientation bi-
ases in different parts of V1, for example if the presynaptic
or postsynaptic population was unusually homogeneous with
respect to preferred orientation. It is also possible that con-
nectivity rules might differ across V1. However, given that
stimuli optimized to drive the responses of neurons even in
mouse V1 exhibit complex spatial features deviating strik-
ingly from Gabor-like stimuli (Walker et al., 2019), this may
highlight the advantages of studying more complete tuning
functions, such as the model feature weights, that go beyond
classical orientation preference.

Lastly, many of the relationships we describe here, while
statistically significant, have an apparently small effect size.
One possibility is that small effects, applied broadly in the
context of large neural populations, may have emergent ef-
fects across the circuit with large consequences. Another or-
thogonal possibility is that the small effect sizes we see here
are actually the average of more complicated rules that net
out to a small effect in aggregate. Future work could address
this by expanding the descriptive model to take into account
additional features that inform the likelihood of a synapse for
a particular presynaptic-postsynaptic pair, such as transcrip-
tomic / morphological features, role in higher order circuit
motifs, or location of the synapse opportunity within the ar-
bor.

This work provides a first glimpse of principles of corti-
cal organization that can be discovered with large datasets
combining detailed functional characterization with synaptic-
scale connectivity. While the incredible accuracy of machine
learning-based reconstruction methods has rightly increased
optimism about the potential discoveries that can be made
from large EM volumes — especially when combined with
functional characterization — we should also not forget the
magnitude of the challenge contained in even a 1mm3 vol-
ume of mouse cortex. The analyses in this paper are based
on only a small number of manually proofread neurons, but
even this limited view of the dataset represents an impressive
volume of axonal and dendritic reconstruction. Ongoing in-
vestments in proofreading, matching, and extension efforts
within this volume will have exponential returns for future
analyses as they yield a more complete functional connec-
tomic graph. There is much more to discover about this rela-
tionship from this dataset, and others like it that are currently
in preparation. Our hope is that this dataset, including both
the structural anatomy and the immortalized digital twin for
ongoing in silico experiments, will be a community resource
that will yield both concrete insights as well as inspiration
about the scale of investigation that is now possible in Neu-
roscience.
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Methods
MICrONS Dataset. MICrONS dataset was collected as de-
scribed in MICrONS Consortium et al. (2021), including
neurophysiological data collection, visual stimulation, stim-
ulus composition, EM data collection, automatic EM seg-
mentation and reconstruction, manual EM proofreading, vol-
ume coregistration, and manual soma-soma matching be-
tween the functional and EM volumes. Neurophysiologi-
cal experiments, Visual Stimulution,and Stimulus Composi-
tion sections below are specific to additional experiments de-
scribed in Supp. Fig. 4.

Neurophysiological experiments. All procedures were
approved by the Institutional Animal Care and Use Com-
mittee of Baylor College of Medicine. Three mice (Mus
musculus, 1 female, 2 males, 78-86 days old at first exper-
imental scan) expressing GCaMP6s in excitatory neurons via
Slc17a7-Cre and Ai162 transgenic lines (recommended and
generously shared by Hongkui Zeng at Allen Institute for
Brain Science; JAX stock 023527 and 031562, respectively)
were anesthetized and a 4 mm craniotomy was made over the
visual cortex of the right hemisphere as described previously
(Reimer et al., 2014; Froudarakis et al., 2014).
For additional experiments, mice were head-mounted above
a cylindrical treadmill and calcium imaging was performed
with an experimental mesoscope (Sofroniew et al., 2016) as
described in release (MICrONS Consortium et al., 2021),
with surface power not exceeding 20 mW, depth constant of
220 µm, and greatest laser power of ∼ 86 mW was used at
approximately 400 µm from the surface.
The craniotomy window was leveled with regards to the ob-
jective with six degrees of freedom. Pixel-wise responses
from an ROI spanning the cortical window (3600 x 4000 µm,
0.2 px/µm, 200 µm from surface, 2.5 Hz) to drifting bar stim-
uli were used to generate a sign map for delineating visual
areas (Garrett et al., 2014).
For the orientation tuning validation data in Supp. Fig. 4,
our target imaging site was a 1200×1100µm2 area spanning
L2-L5 at the conjunction of lateral primary visual cortex (V1)
and three lateral higher visual areas: anterolateral (AL), lat-
eromedial (LM), and rostrolateral (RL). This resulted in an
imaging volume that was roughly 50% V1 and 50% higher

visual area. This target was chosen in order to mimic the
area membership and functional property distribution in the
MICrONS animal. Each scan was performed at 6.3 Hz, col-
lecting eight 620 × 1100µm2 fields per frame at 0.4 px/µm
xy resolution to tile a 1190 − 1200 × 1100µm2 FOV at four
depths (two planes per depth, 40 − 50µm overlap between
coplanar fields). The four imaging planes were distributed
across layers with at least 50µm spacing, with two planes in
L2/3 (depths: 180µm,230µm), one in L4 (325µm), and one
in L5 (400µm).
Movie of the animal’s eye and face was captured throughout
the experiment. A hot mirror (Thorlabs FM02) positioned be-
tween the animal’s left eye and the stimulus monitor was used
to reflect an IR image onto a camera (Genie Nano C1920M,
Teledyne Dalsa) without obscuring the visual stimulus. The
position of the mirror and camera were manually calibrated
per session and focused on the pupil. Field of view was man-
ually cropped for each session. The field of view contained
the left eye in its entirety, 250-310 pixels height x 350-400
pixels width at 20 Hz. Frame times were time stamped in
the behavioral clock for alignment to the stimulus and scan
frame times. Video was compressed using Labview’s MJPEG
codec with quality constant of 600 and stored the frames in
AVI file.
Light diffusing from the laser during scanning through the
pupil was used to capture pupil diameter and eye movements.
A DeepLabCut model (Mathis et al., 2018) was trained on
17 manually labeled samples from 11 animals to label each
frame of the compressed eye video (intraframe only H.264
compression, CRF:17) with 8 eyelid points and 8 pupil points
at cardinal and intercardinal positions. Pupil points with like-
lihood >0.9 (all 8 in 69.8-91.0% of frames per scan) were fit
with the smallest enclosing circle, and the radius and center
of this circle was extracted. Frames with < 3 pupil points
with likelihood >0.9 (<0.5% frames per scan), or produc-
ing a circle fit with outlier > 5.5 standard deviations from
the mean in any of the three parameters (center x, center y,
radius, <0.1% frames per scan) were discarded (total <0.6%
frames per scan). Gaps of <= 10 discarded frames were re-
placed by linear interpolation. Trials affected by remaining
gaps were discarded (<4 trials per scan, <0.5%).
The mouse was head-restrained during imaging but could
walk on a treadmill. Rostro-caudal treadmill movement
was measured using a rotary optical encoder (Accu-Coder
15T-01SF-2000NV1ROC-F03-S1) with a resolution of 8000
pulses per revolution, and was recorded at ∼100 Hz in order
to extract locomotion velocity.

Visual stimulation. For the orientation tuning validation
data in Supp. Fig. 4, monitor size and positioning relative to
the mouse were as described in MICrONS Consortium et al.
(2021), with the exception of replacing the dot stimulus with
10 x 10 grid tiling a central square (approx 90 degrees width
and height) with 10 repetitions of 200 ms presentation at each
location.
A photodiode (TAOS TSL253) was sealed to the top left cor-
ner of the monitor, and the voltage was recorded at 10 KHz
and timestamped with a 10 MHz behavior clock. Simulta-
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neous measurement with a luminance meter (LS-100 Kon-
ica Minolta) perpendicular to and targeting the center of the
monitor was used to generate a lookup table for linear inter-
polation between photodiode voltage and monitor luminance
in cd/m2 for 16 equidistant values from 0-255, and one base-
line value with the monitor unpowered.
At the beginning of each experimental session, we collected
photodiode voltage for 52 full-screen pixel values from 0 to
255 for one second trials. The mean photodiode voltage for
each trial was collected with an 800 ms boxcar window with
200 ms offset. The voltage was converted to luminance using
previously measured relationship between photodiode volt-
age and luminance and the resulting luminance vs voltage
curve was fit with the function L = B +A ·P γ where L is the
measured luminance for pixel value P, and the γ of the moni-
tor was fit as 1.73. All stimuli were shown without linearizing
the monitor (i.e. with monitor in normal gamma mode).
During the stimulus presentation, display frame sequence in-
formation was encoded in a 3 level signal, derived from the
photodiode, according to the binary encoding of the display
frame (flip) number assigned in-order. This signal under-
went a sine convolution, allowing for local peak detection
to recover the binary signal together with its behavioral time
stamps. The encoded binary signal was reconstructed for
>93% of the flips. Each flip was time stamped by a stimulus
clock (MasterClock PCIe-OSC-HSO-2 card). A linear fit was
applied to the flip timestamps in the behavioral and stimulus
clocks, and the parameters of that fit were used to align stim-
ulus display frames with scanner and camera frames. The
mean photodiode voltage of the sequence encoding signal at
pixel values 0 and 255 was used to estimate the luminance
range of the monitor during the stimulus, with minimum val-
ues of approximately 0.005 cd/m2 and maximum values of
approximately 9.0 cd/m2.

Stimulus Composition. Dynamic stimuli libraries of natu-
ral movies, global directional parametric stimuli ("Monet"),
and local directional parametric stimuli ("Trippy"), are as de-
scribed in MICrONS Consortium et al. (2021). In addition
to the 84 minutes of trials as described in MICrONS Consor-
tium et al. (2021), each stimulus contained an additional 40
minutes of trials, randomly intermixed, as follows:
• Unique Global Directional Parametric Stimulus

("Monet"): 120 seeds, 15 seconds each, 1 repeat per scan,
30 minutes total. Seeds conserved across all scans.

• Oracle Global Directional Parametric Stimulus
("Monet"): 4 seeds, 15 seconds each, 10 repeats, 10
minutes total. Seeds conserved across all scans.

Preprocessing of neural responses and behavioral
data. Fluorescence traces from the MICrONS dataset and the
additional data for Supp. Fig. 4 were detrended, decon-
volved, and aligned to stimulus and behavior as described in
Wang et al. (2023), and all traces were resampled at 29.967
Hz. Possible redundant traces, where a single neuron pro-
duced segmented masks in multiple imaging fields, were all
kept for downstream model training. We elected to remove

one of the 14 released scans from the analysis due to com-
promised optics (water ran out from under the objective for
∼ 20 minutes), leaving 13 scans. Trials with more than 10
consecutive untracked pupil frames were discarded (18-180
trials per scan, 2-39%).

Model architecture. Model architecture was similar to
Wang et al. (2023) with the following differences in the core
component of the neural network:
• a feedforward network with 7 3D convolutional layers with

an ELU nonlinearity, instead of 3 layers with a GeLU non-
linearity.

• a recurrent network with a Conv-LSTM architecture, in-
stead of the newly proposed recurrent vision transformer
(RvT) architecture.

Model training of digital twin. We utilized transfer learn-
ing to train the digital twin model as described in Wang et al.
(2023). Briefly, the core network of the models was trained
on 8 scans collected from 8 mice to capture cortical represen-
tations of visual stimuli shared across mice. The parameters
of the core network are then frozen and the rest of the net-
work parameters are trained for each scan in the MICrONS
dataset independently.

Functional unit inclusion criteria. In order to focus our
analyses on neurons that are visually responsive and well
modeled by the digital twin, we applied a dual functional
threshold over two metrics prior to all analyses related to
signal correlation, receptive field center distance, and feature
weight similarity.
In vivo reliability threshold: In order to estimate the relia-
bility of neuronal responses to visual stimuli, we computed
the upper bound of correlation coefficient (CCmax, Schoppe
et al. 2016) across 60 seconds of natural movie stimuli re-
peated 10 times across the stimulus period (10 min total).
CCmax was computed as:

CCmax =

√
NV ar(y)−V ar(y)

(N −1)V ar(y) ,

where y is the in vivo responses, and N is the number of
trials. A threshold of CCmax > 0.6 was applied.
Model prediction performance threshold: In order to fo-
cus our analyses on neurons for which adequate model per-
formance indicated sufficiently accurate representation of the
neuronal tuning features, we computed the test correlation
coefficient on the withheld oracle test dataset, which was not
part of the training set. Test correlation coefficient (CCabs)
was computed as:

CCabs = Cov(x,y)√
V ar(x)V ar(y)

,

where x is the in silico response and y is the in vivo response.
A threshold of CCabs > 0.35 was applied.
122 out of 152 presynaptic neurons and 1975 out of 5502
postsynaptic neurons passed the dual functional unit inclu-
sion criteria.

Ding, Fahey, Papadopoulos et al. | Functional connectomics reveals general wiring rule in mouse visual cortex bioRχiv | 11

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 14, 2023. ; https://doi.org/10.1101/2023.03.13.531369doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.13.531369
http://creativecommons.org/licenses/by/4.0/


Oracle score: Lastly, the oracle score was computed for
all units as described in (MICrONS Consortium et al.,
2021). Where more than one two-photon functional unit was
matched to a given EM unit, the functional trace with the
higher oracle score was used for analysis.

Anatomical controls. In order to control for anatomy at the
coarse axon projection level ("same region" control), we re-
cruited all visually responsive, well predicted, matched ex-
citatory neurons (CCmax > 0.6, CCabs > 0.35, EM → 2P
soma matched) that are located in the same region as the post-
synaptic target, but are not observed to form a synapse with
the presynaptic neuron. Area membership labels per neuron
were used from the MICrONS release (MICrONS Consor-
tium et al., 2021). Additionally, control candidates that meet
criteria for both the same region control and the ADP control
will only be included in ADP control.
In order to control for anatomy at the finer synaptic level
("ADP" control), we recruited all visually responsive, well
predicted, matched excitatory neurons (CCmax > 0.6, CCabs

> 0.35, EM → 2P soma matched) with a dendritic skeleton
passing within 5µm of the presynaptic neuron axonal skele-
ton and also within 10µm of at least one synapse in the presy-
naptic axonal arbor (3D euclidean distance), but are not ob-
served to form a synapse with the presynaptic neuron. Presy-
naptic axonal skeletons were computed using the pcg_skel
package developed by collaborators at the Allen Institute
for Brain Science (Schneider-Mizell et al., 2023; Schneider-
Mizell and Collman, 2023). For postsynaptic dendritic skele-
tons, we used the automatically proofread and skeletonized
dendritic arbors as described in Celii et al. (2023). ADP de-
tection was also run as described in Celii et al. (2023), with
the exception of using pcg_skel presynaptic skeletons as
described above.
In the case of the joint area and layer analysis (Fig. 4), can-
didates in both the "same region" and "ADP" controls must
additionally match the same layer classification as the post-
synaptic target in order to be included. Layer membership
was classified by depth of imaged soma respect to the dura
in the structural two-photon stack: L1: 0 − 98µm; L2/3:
98 − 283µm; L4: 283 − 371µm; L5: 371 − 574µm; L6:
574−713µm.

Measuring functional similarities.

In silico response correlations. To characterize the pair-wise
tuning similarity between two modeled neurons, we com-
puted the Pearson correlation of their responses to 2500 sec-
onds of natural movies. The natural movies were fed in to
the model as trials of 10 sec. Model responses were gener-
ated at 29.967 Hz and Pearson correlations were computed
after binning the responses into 500msec non-overlapping
bins and concatenating across trials.

In silico feature weight similarity and receptive field cen-
ter distance. The digital twin model architecture includes a
shared core which is trained to represent spatiotemporal fea-
tures in the stimulus input, and a final layer where the spa-

tiotemporal features at a specific readout location are linearly
weighted in order to produce the predicted activity of a spe-
cific neuron at the current time point Wang et al. (2023). The
readout location and linear feature weight are independently
learned for each neuron. In order to measure the feature
weight similarity between two units, we extract the linear fea-
ture weights from this final step as vector of length 512, and
take the cosine similarity between the two vectors. In order
to measure the receptive field center distance between two
units, we extract the readout location as 2D coordinates on
the monitor, and take the angle between them with respect to
the mouse’s eye, assuming the monitor is centered on, 15 cm
away from, and normal to the surface of the mouse’s eye at
the closest point.

In silico difference in preferred orientation. 240 blocks of
parametric directional visual stimuli ("Monet") are shown to
the model, with each fifteen second block consisting of 16 tri-
als of equally distributed and randomly ordered unique direc-
tions of motion between 0-360 degrees. A modeled neuron’s
direction tuning curve is computed as its mean responses
to 16 directions averaged across blocks. We calculated the
global orientation selectivity index (gOSI) from the modeled
neuron’s tuning curve as follows:

gOSI = ΣRθe2iθ

ΣRθ
(1)

where θ is the direction of the stimulus and Rθ is the mean
modeled response to the stimulus at direction θ. Only neu-
rons with gOSI > 0.25 were included in the analyses in this
paper. Unit-wise direction tuning curves are then modeled by
a bivariate von Mises function with an offset:

f(θ|µ,κ,p) = 1
2πI0(κ){pexp(κcos(θ −µ))

+ (1−p)exp(−κcos(θ −µ))}
+ b

(2)

where I0 is the modified Bessel function, µ is the preferred
direction, κ measures the concentration of the two peaks
(larger κ means higher peaks thus higher orientation selectiv-
ity), p measures the relative height of the two peaks (p = 0.5
means two peaks of the same height, when p approaches 0 or
1, the bi-modal distribution reduces to a uni-model von Mises
distribution), b is the offset. µ, κ, p, and b are fit by minimiz-
ing least squared error. The preferred orientation of a neuron
is taken as the modulus of µ to 180 degrees.
In three scans not included in the MICrONS release, we char-
acterized both the in vivo orientation tuning in response to 30
minutes of global directional parametric stimulus ("Monet",
Supp. Fig. 4a), as well as the in silico orientation tuning
as described above for digital twin models with shared cores
and readouts trained on neurons from the same scans, in re-
sponse to stimuli matching the composition and duration of
the MICrONS release scans (Supp. Fig. 4b). When we ap-
plied a threshold of gOSI > 0.25, we found that 95% of cells
had an absolute difference between their in silico and in vivo
preferred orientations less than 9.77deg.
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Statistical analysis of functional similarities and con-
nectivity. To compare functional similarities among the
three neuron pair populations (connected neuron populations
and two control neuron populations), independent t-tests
were performed, with the Benjamini-Hochberg (BH) proce-
dure used to correct for multiple comparisons. For region
breakout analysis, multiple comparisons across four groups
(V1 → V1, HVA → HVA, V1 → HVA, HVA → V1) and
two control designs (connected v.s. same region control and
connected v.s. ADP) were accounted for (total eight groups).
For layer breakout analysis, we started with six presynap-
tic/postsynaptic groups (two regions; L2/3, L4, L5; total 36
groups) and two control comparisons (connected vs same re-
gion control, connected vs ADP; total 72 groups), and only
groups with >10 connected neuron pairs were included in
the analysis and accounted for in multiple comparisons (58
for Fig. 4a-f, 50 for Fig. 4g, h). To quantify fold changes
in connection probability as a function of functional simi-
larities, we followed these steps: 1) We binned all neuron
pairs by their functional similarities (signal correlation, fea-
ture weight similarity, RF center distance, or difference in
preferred orientation). 2) We calculated connection probabil-
ity within each bin as the fraction of connected neuron pairs
out of the total number of connected and control neuron pairs.
3) We normalized the connection probability by overall con-
nection probability across all bins. Only bins with more than
10 connected neuron pairs and more than 2.5% of all con-
nected neuron pairs are included in the analysis. To estimate
standard deviation of fold changes in connection probability,
we resampled the connected and control neuron pairs with re-
placement, binned the resampled distribution, and calculated
the standard deviation of fold change in connection probabil-
ity within each bin.
Pearson correlation coefficients were used to quantify rela-
tionships between functional similarities and cleft volume
sizes. P values of two-sided tests on the Pearson correla-
tion coefficients were reported. To test if multi-synaptic con-
nected neuronal pairs share more similar functional prop-
erties when compared to ADP controls for spatial proxim-
ity, we grouped all connected neuron pairs and ADP neu-
ron pairs into two groups: single synapse/ADP contact and
multiple synapse/ADP contacts. Two-way ANOVA is per-
formed to test whether functional similarity changes signif-
icantly across the interaction term of connectivity (synapses
vs ADPs) and number of contacts (single vs multiple).

Simulated connectivity graphs. A graph of potential con-
nectivity was constructed, where vertices are all visually re-
sponsive, well predicted, matched excitatory neurons (CCmax
> 0.6, CCabs > 0.35, EM → 2P soma matched), and vertices
are connected by an edge if the pair of neurons has an ob-
served synapse or ADP in the dataset. For each edge, we
included the pairwise signal correlation (SC), feature weight
similarity (FW), and receptive field center distance (RF) from
the pair of corresponding vertices as potential causal vari-
ables for connectivity. Thus the colinearities among them
were kept the same as the observed data. Fisher transforma-
tions were applied to SC and FW to Gaussianize the respec-

tive marginal distributions. Transformed SC, FW, and RF are
then mean-subtracted and scaled by standard deviations for
simulation and logistic regression analysis downstream.
The simulated connection probabilities were determined by
three causal models: 1). signal correlation alone (Fig. 5c,
left), 2). feature weight similarity alone (Fig. 5c, center),
or 3). an equal contribution of signal correlation and feature
weight similarity (Fig. 5c, right) through a logistic function

psim = 1
1+e−(Ax+B)

, where psim is the simulated connection probability, x is the
determining functional property, A is the coefficient of the
logistic regression p ∼ SC fit on the observed data and B is
optimized such that the simulated overall connection proba-
bility matches the observed overall connection probability.
Lastly, we sample 1000 simulated connectivity graphs per
causal model. Each simulated graph is generated by stochas-
tically sampling edges according to the edge probability. For
each simulated graph, we fitted a multivariable logistic re-
gression to predict connectivity probability between two ver-
tices and included the SC, FW, and RF from the pair of corre-
sponding vertices as covariates (p ∼ SC + FW + RF ). We
derived the 95% confidence intervals of the coefficients for
each causal model from empirical distributions of the coeffi-
cients across simulations.

Logistic regression analysis of connectivity predic-
tion. We modeled the connection probability between two
neurons as a multivariable logistic regression of form p ∼
SC + FW + RF , with three coefficients corresponding to
the signal correlation, feature weight similarity, and recep-
tive field center distance between the two neurons. Mean
and variance of the coefficients are estimated through Max-
imum Likelihood Estimation (MLE). We next compared the
full model with reduced models where each of the three vari-
ables (SC, FW, and RF) are removed from the model. Mc-
Fadden’s pseudo-R-squared of the full model and the reduced
models are reported. Likelihood ratio tests (LRT) were used
to compare the performance of the full models to the reduced
models in order to assess the significance and importance of
each individual feature for connectivity prediction.

Software. Experiments and analysis are carried out with cus-
tom built data pipelines. The data pipeline is developed in
Matlab and Python with the following tools: Psychtoolbox,
ScanImage, DeepLabCut, CAIMAN, and Labview were used
for data collection. DataJoint, MySQL, and CAVE were
used for storing and managing data. Meshparty, NEURD,
and pcg_skel were used for morphology analysis. Numpy,
pandas, SciPy, statsmodels, scikit-learn, and PyTorch were
used for model training and statistical analysis. Matplotlib,
seaborn, HoloViews, Ipyvolume, and Neuroglancer were
used for graphical visualization. Jupyter, Docker, and Ku-
bernetes were used for code development and deployment.

Code and Data availability. All MICrONS data
have already been released on BossDB (https:
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//bossdb.org/project/microns-minnie, please
also see https://www.microns-explorer.org/
cortical-mm3 for details). Additional code and data
including digital twin architecture, learned weights, and in
silico similarity metrics will be made publicly available in
an online repository latest upon journal publication. Please
contact us if you would like to get access before that time.
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Supplemental Figure 1. Functional similarity predicts synaptic volume and number. a, c, e, Presynaptic-postsynaptic pairwise
feature weight similarity (a), receptive field center distance (c), and difference in preferred orientation (e) as a function of synapse size
(log10 cleft volume in voxels, r = pearson correlation coefficient, two sided p-value). b, d, f, Mean presynaptic-postsynaptic pairwise
feature weight similarity (b), receptive field center distance (d), and difference in preferred orientation (f) for pairs with single versus
multiple synapses (black) or ADPs (red). p-value by two way ANOVA.
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Supplemental Figure 3. Functional similarity selectivity findings consistent in orientation-tuned subsample. a, b, c, Selectivity
with respect to signal correlation as Fig. 2c, e, g, but restricted to orientation-tuned neurons as in Fig. 3g, h, i. d, e, f, Same as a, b, c,
but with respect to feature weight similarity as in Fig. 3a, b, c. g, h, i, Same as a, b, c, but with respect to receptive field center distance
as in Fig. 3d, e, f. j, k, l, Same as Fig. 3g, h, i, duplicated here for reference.
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Supplemental Figure 4. In silico orientation tuning is consistent with in vivo orientation tuning a, Sample frame from global
directional parametric stimulus ("Monet") used to characterize orientation and direction selectivity. Directional motion was orthogonal to
orientation, and was tested at 22.5°intervals. b, Schematic of domain validation experimental design. In a single scan in a new animal,
neuronal responses are collected in response to sufficient stimulus to both train the digital twin model and characterize orientation tuning
from in vivo responses. Later, in silico orientation tuning is extracted from model responses to parametric stimuli, and compared against
in vivo orientation tuning for the same neurons. c, Comparison of in silico and in vivo mean responses per stimulus direction (mean
± SEM), fitted tuning curves (lines), and extracted preferred orientation (dotted lines) for three neurons. d, 95th percentile difference
in preferred orientation between in silico and in vivo fitted responses as a function of gOSI threshold. Dotted lines correspond to
gOSI > 0.25 threshold applied for all analyses and resulting 95th percentile difference in preferred orientation ≈ 9.77deg across all
three animals imaged. Lines correspond to individual animals (gray) or cumulative across all animals (black). e, f, Two-dimensional
histogram of in silico versus in vivo preferred orientation for all neurons across three animals (e) and only neurons with gOSI > 0.25 (f).
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