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Functional connectomics reveals general wiring
rule in mouse visual cortex
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Understanding the relationship between circuit connectivity and studies in these RNNs reveal that disrupting ‘like-to-like’ con-
function is crucial for uncovering how the brain implements nections has a significantly greater impact on performance com-
computation. In the mouse primary visual cortex (V1), exci- pared to lesions of random connections. These findings suggest
tatory neurons with similar response properties are more likely that these connectivity principles may play a functional role in
to be synaptically connected, but previous studies have been lim- s0 sensory processing and learning, highlighting shared principles
ited to within V1, leaving much unknown about broader connec- between biological and artificial systems.

tivity rules. In this study, we leverage the millimeter-scale MI-
CrONS dataset to analyze synaptic connectivity and functional
properties of individual neurons across cortical layers and ar-
eas. Our results reveal that neurons with similar responses are
preferentially connected both within and across layers and ar- Introduction

eas — including feedback connections — suggesting the univer- ) ) )

sality of the ‘like-to-like’ connectivity across the visual hierar-  In the late 1800°s, Santiago Ramén y Cajal — while por-

functional connectomics | visual cortex | digital twin | MICrONS
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chy. Using a validated digital twin model, we separated neu- ing over the structure of Golgi-stained neurons using only
ronal tuning into feature (what neurons respond to) and spa- light microscopy — imagined the Neuron Doctrine, the idea
tial (receptive field location) components. We found that only that individual neurons are the fundamental units of the ner-
the feature component predicts fine-scale synaptic connections, vous system (Ramén y Cajal, 1911). Implicit in the Neuron
beyond what could be explained by the physical proximity of ,, Doctrine is the idea that the function of individual neurons
axons and dendrites. We also found a higher-order rule where — their role in what we would now call neural computa-

postsynaptic neuron cohorts downstream of individual presy-
naptic cells show greater functional similarity than predicted by
a pairwise like-to-like rule. Notably, recurrent neural networks

tion — is inextricably linked to their connectivity in neu-
ral circuits. A variety of influential proposals about the re-
(RNNs) trained on a simple classification task develop connec- latlonsh'lp between connectivity and function have beejn ad-
tivity patterns mirroring both pairwise and higher-order rules, * vanced in the past century. For example, Donald Hebb’s cell

with magnitude similar to those in the MICrONS data. Lesion assembly hypothesis (Hebb, 1949) — colloquially stated as
“neurons that fire together, wire together” — predicted that
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interconnected neuronal subnetworks “reverberate" to stabi-
lize functionally relevant activity patterns. In the cortical
visual system, Hubel and Wiesel proposed that the hierar-
chical organization of connected neurons might build more
complex feature preferences from simpler ones; for example
the position invariance of orientation-selective complex cells
might be derived from convergent inputs of like-oriented sim-
ple cells with spatially scattered receptive fields (Hubel and
Wiesel, 1962; Reid, 2012).

Testing these predictions has been difficult because of the
challenges of measuring neural activity and synaptic-scale
connectivity in the same population of neurons. In the mam-
malian visual cortex, evidence for several varieties of like-
to-like connectivity (i.e. increased connectivity for cells with
similar response preferences) has been found via spine imag-
ing (Iacaruso et al., 2017), combined in vivo imaging and
in vitro multipatching (Ko et al., 2011, 2013; Cossell et al.,
2015; Znamenskiy et al., 2024), combined in vivo imaging
and rabies monosynaptic retrograde tracing (Wertz et al.,
2015; Rossi et al., 2020), and combined in vivo imaging
with electron microscopy (EM) reconstruction (Lee et al.,
2016; Scholl et al., 2021). However, a caveat of these im-
portant early studies is that they have mostly been limited
to small volumes, usually single lamina of primary visual
cortex (except see Wertz et al. 2015; Rossi et al. 2020),
mostly due to the challenge of identifying synaptic connec-
tions between functionally-characterized neurons across dis-
tances larger than a few hundred microns. Thus, many ques-
tions remain unanswered about how these rules generalize
across areas and layers.

The MICrONS dataset is the largest functionally-imaged EM
dataset to date (MICrONS Consortium et al., 2021), with
mesoscopic calcium imaging (Sofroniew et al., 2016) per-
formed in vivo and subsequent EM imaging (Yin et al., 2020;
Phelps et al., 2021) and dense reconstruction (Turner et al.,
2020; Dorkenwald et al., 2022b; Mitchell et al., 2019; Lu
et al., 2021; Wu et al., 2021; Dorkenwald et al., 2022a; Lee
et al., 2017) for an approximately 1mm?® volume spanning
visual cortical areas V1, LM, AL, and RL in a single mouse.
In contrast with previous studies that have selectively recon-
structed presynaptic or postsynaptic partners of a small set of
functionally-characterized target cells (Lee et al., 2016; Bock
etal., 2011), the MICrONS volume is densely reconstructed,
offering access to segmentation of all neurons in the volume,
and enabling analyses that are not possible in targeted sparse
reconstructions. Here, we take advantage of the dense recon-
struction to compare the functional similarity of connected
pairs with unconnected "bystanders" — pairs of neurons with
closely-apposed axons and dendrites that had the opportunity
to form synaptic connections, yet didn’t.

Our analysis of functional similarity builds on recent ad-
vances in using machine learning to characterize the response
properties of neurons in visual cortex. By training a neural
network to replicate the responses of recorded neurons across
a rich stimulus set of natural and parametric movies (Wang
et al., 2024), we produce a "digital twin" of the cortical pop-
ulation which can accurately predict the response of a neu-

2 | bioRxiv

105

110

15

120

125

130

135

140

145

150

155

160

Ding, Fahey, Papadopoulos et al. |

ron to any arbitrary visual stimulus. The digital twin makes it
possible to explore a much larger stimulus space with in silico
experiments than would be possible (due to time constraints)
with in vivo measurements (Wang et al., 2024). We have ex-
tensively validated this approach by looping back in vivo and
validating model predictions of the most-exciting natural im-
ages and synthetic stimuli for a neuron (Walker et al., 2019).
As part of the current study, we have validated the correspon-
dence between model predictions and empirically-observed
visual response properties, including signal correlations, ori-
entation tuning, and spatial receptive field location. These
validation results are described below. Finally, the digital
twin model allowed us to separate each neuron’s tuning into
two components: a feature component (what the neuron re-
sponded to), and a spatial component (where the neuron’s
receptive field is located), allowing us to dissociate these two
aspects of function and their relationship to connectivity.

Results

MICrONS functional connectomic dataset. Data were
collected and processed as described in the MICrONS data
release publication (MICrONS Consortium et al. 2021, Fig.
1). Briefly, a single mouse expressing GCaMP6s in excita-
tory neurons underwent fourteen two-photon scans (awake
and headfixed on treadmill) of a 1200 x 1100 x 500 um? vol-
ume (anteroposterior X mediolateral x radial depth) span-
ning layers 2 through 6 at the conjunction of lateral primary
visual cortex (V1) and anterolateral (AL), lateromedial (LM)
and rostrolateral (RL) higher visual areas (Fig. la). Mice
rapidly acclimated to head fixation, and were able to walk,
groom, and adjust their posture during imaging. We moni-
tored treadmill velocity and collected video of the pupil to
track behavioral state. Neuronal responses from 115,372
functional units representing an estimated 75,909 unique ex-
citatory neurons were collected in response to visual stim-
uli composed of natural and rendered movies and paramet-
ric dynamic stimuli (Fig. 1b). A state-of-the-art deep recur-
rent neural network was trained to predict neural responses to
arbitrary stimuli (Wang et al., 2024), and used to character-
ize the in silico functional properties of imaged neurons (Fig.
lo).

After functional imaging, the tissue was processed for elec-
tron microscopy and imaged (Yin et al., 2020) at 4 x 4 x
40nm? resolution (Fig. la). The EM images were aligned
(Mitchell et al., 2019) and automatically segmented using
3D convolutional networks into “atomic” supervoxels, which
were agglomerated to create objects (e.g. neurons) with cor-
responding 3D meshes (Lee et al., 2017; Dorkenwald et al.,
2022b; Lu et al., 2021; Wu et al., 2021; Dorkenwald et al.,
2022a), and synapses were automatically detected and as-
signed to presynaptic and postsynaptic partners (Dorkenwald
et al., 2022b; Turner et al., 2020; Wu et al., 2021). The
analysis presented here is restricted to the overlap of “sub-
volume 657 (MICrONS Consortium et al., 2021) and the
two-photon functional volume (Fig. 1a), an approximately
560 x 1100 x 500um? volume (in vivo dimensions) that has
been both densely functionally and structurally character-
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Figure 1. Overview of MICrONS Dataset. a, Depiction of functionally-characterized volumes (left; GCaMP6s in green, vascular label in red) and EM (right; gray). Visual
areas: primary visual cortex (V1), anterolateral (AL), lateromedial (LM) and rostrolateral (RL).The overlap of the functional 2P (green) and structural EM (gray) volumes from
which somas were recruited is depicted in the top inset. The bottom inset shows an example of matching structural features in the 2P and EM volumes, including a soma
constellation (dotted white circles) and unique local vasculature (red arrowheads), used to build confidence in the manually assigned 2P-EM cell match (central white circle).
All MICrONS data are from a single animal. Scale bars = 5um. b, Deconvolved calcium traces from 100 imaged neurons. Alternating blue/white column overlay represents
the duration of serial video trials, with sample frames of natural videos depicted below. Parametric stimuli (not pictured) were also shown for a shorter duration than natural
videos. ¢, Schematic of the digital twin deep recurrent architecture. During training, movie frames (left) are input into a shared convolutional deep recurrent core (orange
and blue layers, CVT=convolutional vision transformer, LSTM=Ilong short-term memory) resulting in a learned representation of local spatiotemporal stimulus features. Each
neuron is associated with a location (spatial component in the visual field (gray layer) to read out feature activations (shaded blue vectors), and the dot product with the
neuron-specific learned feature weights (shaded lines, feature component) results in the predicted mean neural activation for that time point. d, Depiction of 148 manually
proofread mesh reconstructions (gray), including representative samples from Layer 2/3 (red), Layer 4 (blue), Layer 5 (green), and Layer 6 (gold). Bottom panel: presynaptic
soma locations relative to visual area boundaries.

ized. Of 82,247 automatically extracted neuronal nuclei in chosen for manual proofreading. Proofreading focused on
this subvolume, 45,334 were both classified as excitatory and extending axonal branches — with an emphasis on enriching
located within the intersection of the EM reconstructed vol- projections across the VI/HVA boundary — and on remov-
ume and functional volume. 75 ing false merges (instances where other somas, glia, axons,

or dendrites were incorrectly merged into a neuron’s recon-
The two-photon and EM volumes were approximately struction) (MICrONS Consortium et al. 2021, Supplemental
aligned (Fig. 1la, and 13,952 excitatory neurons were man- Table 1). Postsynaptic partners of the proofread neurons were
ually matched between the two volumes (Fig. la; MICTONS  aytomatically cleaned of false merges with NEURD (Celii
Consortium et al. 2021). Retinotopically-matched regions in o, et al., 2024). In total, this resulted in a connectivity graph
V1 and higher visual areas AL and RL (together, HVA) were  consisting of 148 functionally-characterized presynaptic neu-

chosen to increase the likelihood of inter-area connections, rons and 4811 functionally-characterized postsynaptic part-
and visually-responsive neurons within these regions were
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Figure 2. Neurons with higher signal correlation are more likely to form synapses. a, Schematic illustrating inclusion criteria for anatomical controls. For each
proofread presynaptic neuron (yellow), control neurons for its true postsynaptic partners (black) are drawn either from unconnected neurons with non-zero axon-dendrite
co-travel distance (Axonal-Dendritic Proximity (“ADP”), red), or unconnected neurons with zero axon-dendrite co-travel distance located in the same cortical region (blue).
The axon-dendrite co-travel distance (L4, yellow highlight on dendrites) is quantified as the total skeletal length of dendrite within 5 pm from any point on the presynaptic
axon. A synapse is indicated with a gray circle. b, Representative meshes demonstrating a true presynaptic ("pre", yellow axon) to postsynaptic ("post", black dendrite) pair
and an axonal-dendritic proximity control ("ADP", red dendrite). ¢, Presynaptic neuron axons plotted in EM cortical space for the four projection types (V1—V1, HVA—HVA,
V1—HVA, HVA—V1) along with soma centroids of connected partners (black dots), ADP control neurons (red dots), same area control neurons (blue dots) and all other
functionally matched neurons that are not used as controls (gray dots). The same presynaptic neuron is plotted for both the V1—V1 and V1—HVA group, and another
neuron is used for both the HVA—HVA and HVA—V1 groups to demonstrate that a single presynaptic neuron can be represented in multiple projection types. Dashed
line represents the boundary between V1 and HVA. Scale bar: 100um d, Mean signal correlation is different (mean £ sem, paired t-test) between synaptically-connected
partners (black), ADP controls (red), and same region controls (blue). This relationship was observed for within-area (V1—V1, HVA—HVA), feedforward (V1—HVA), and
feedback (HVA—V1) connectivity. For details, see Supplemental Tab. 2 e, Axon-dendrite co-travel distance (umL ) increases in a graded fashion with signal correlation.
A L4 and A signal correlation are the deviations from the mean for each presynaptic neuron. For reference, the mean L, for each projection type is: V1—V1, 9.03um;
HVA—HVA, 9.83um; V1—HVA, 4.17um; HVA—V1, 1.53um. For details of the analysis, see Supplemental Tab. 3, 5 The shaded regions are bootstrap-based standard
deviations. f As in e, but with synapse density (N, /mmL ). Synapse density increases in a graded fashion with signal correlation, for within-area (V1—V1, HYA—HVA),
feedforward (V1— HVA), and feedback (HVA—V1) connectivity. For reference, the mean N, /mmLg for each projection type is: V1—V1, 1.12 synapses / mmLg;
HVA—HVA, 0.83 synapses / mmL4; V1—HVA, 1.55 synapses / mmL4; HYA—V1, 1.26 synapses / mm L. For details of the analysis, see Supplemental Tab. 4, 6 g,
Representative meshes demonstrating synapses with small cleft volume (896 voxels, left) and large cleft volume (41716 voxels, right). h, Synapse size (log1¢ cleft volume in
voxels) is positively correlated with signal correlation (p-values are from linear regression, residual signal correlation is obtained after regressing out the baseline effects on
signal correlation due to differences in Ly). i, Representative meshes demonstrating a multisynaptic presynaptic (yellow) to postsynaptic (black) pair. j, Signal correlations
increase with number of synapses (p-values are from linear regression, residual signal correlation is obtained after regressing out the baseline effects on signal correlation
due to differences in Lg4). (For all panels, * = p-value < 0.05, ** = p-value < 0.01, * * % = p-value < 0.001, multiple comparison correction by BH procedure)

ners (Fig. 1d). from developmental processes that broadly organize neural
circuits, to fine-scale plasticity mechanisms that modulate the

Multi-tiered anatomical controls. Connectivity between strength of individual synaptic connections. The MICrONS
15s neurons may be affected by numerous mechanisms, ranging
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volume offers the opportunity to examine function-structure
relationships at both of these scales. Because it is densely
reconstructed, we not only know the distance between ev-
ery pair of cell bodies in the volume, but also the relative
geometry of their axons and dendrites. With this informa-
tion, we can determine whether two neurons experience any
fine-scale axon-dendrite proximities (ADP), with axon and
dendrite coming within 5um of each other. Furthermore, for
neurons pairs with one or more ADP, we can compute the
axon-dendrite co-travel distance L, (Lee et al., 2016), a pair-
wise measurement which captures the total extent of postsy-
naptic dendritic skeleton within 5um from any point on the
presynaptic axonal skeleton.

With this metric in hand, we can define three cohorts of other
neurons for functional comparisons with each presynaptic
neuron (Fig. 2a-c, Supplemental Fig. 1). The first cohort
are the connected postsynaptic targets of the presynaptic cell;
these are neurons in the cortical region of interest that re-
ceive at least one synaptic input from the presynaptic neuron.
The second group are "ADP controls", these are neurons with
dendrites that come within striking range (5 um) of the presy-
naptic axon, but which don’t actually form a synaptic con-
nection. Finally, there are "same region controls" which are
non-ADP neurons in the same cortical region (V1 or higher
visual area). All connected neurons, ADP controls, and same
region controls are restricted to visually responsive neurons
with high-quality predictions from the digital twin (see Meth-
ods).

At the "axonal scale", we can ask how selective are axon
trajectories within the volume, and whether neurons with
axons and dendrites that meet and co-travel together have
more similar tuning than nearby neurons that do not have
any examples of axon-dendrite proximities. Selectivity at
this scale could occur, for example, if a target cortical area
has topographically-organized functional properties such as
receptive field location (i.e. retinotopy) (Wang and Burkhal-
ter, 2007; Garrett et al., 2014) or preferred orientation (Fahey
et al., 2019; Ringach et al., 2016), and if axons preferentially
target subregions with similar functional properties. In this
case, we would expect functional properties between a presy-
naptic neuron and its ADP cohort to be more similar than ran-
dom neurons selected from anywhere within the target region
(same region control).

At the "synaptic scale", we can ask whether there is a rela-
tionship between functional properties and connectivity be-
yond the axonal scale — i.e. beyond what can be ex-
plained by the axonal trajectory and the spatial organization
of functional properties within the volume. For this analysis,
we compare the functional similarity between synaptically-
connected neurons on the one hand, and unconnected ADP
controls on the other, asking how frequently a certain amount
of axon-dendrite co-travel distance is converted to a synapse.
One hypothesis is that converting proximities to synapses is
independent of the functional similarity between pre- and
postsynaptic neurons. In this case, axon trajectories and
axon-dendrite proximities would be sufficient to explain all
of the observed connectivity between neurons ("Peter’s rule")

Ding, Fahey, Papadopoulos et al. |
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(Peters and Feldman, 1976; Braitenberg and Schiiz, 2013;
Rees et al., 2017). A competing hypothesis is that synapse
formation and/or stabilization depends on the functional sim-
ilarity between pre- and postsynaptic neurons. In this case,
we might expect to find an additional boost in synaptic con-
nections in similarly-tuned neurons above and beyond what-
ever selectivity already exists due to axonal trajectories and
functional inhomogeneities in the volume. The densely-
reconstructed MICrONS volume offers the first opportunity
to distinguish between these two hypotheses at a scale span-
ning layers and areas.

Functional similarity is enhanced at both the axonal
and synaptic scale. We tested the hypothesis of like-to-like
connectivity in the context of signal correlations, a more gen-
eral measure of functional similarity and a better predictor of
connectivity in V1 L2/3 than orientation or direction tuning
(Cossell et al., 2015). The digital twin was used to calculate
the in silico signal correlation across a large battery of novel
natural movies (250 ten-second clips). This approach was
validated in a set of control experiments in a separate cohort
of mice to ensure that the in silico signal correlation faith-
fully reproduced in vivo signal correlation measurements. In
these control experiments, in silico signal correlations from
the digital twin closely resembled the benchmark in vivo sig-
nal correlation matrix computed across a set of 30 movie clips
each presented ten times, and in fact were more accurate than
the in vivo signal correlation matrix computed with only six
movie clips each presented ten times (which is the number of
clips available in the MICrONS data, Supplemental Fig. 2).
This excellent correspondence between in vivo and in silico
signal correlation estimates was achieved even though none
of the in vivo clips were used during training or testing of the
digital twin.

For each proofread presynaptic neuron, we computed the
mean signal correlation with postsynaptic neurons, ADP con-
trols, and same region controls (Fig. 2d). We found that mean
signal correlations were higher for connected neurons than
both ADP and same region control groups, indicating that
functional properties and connectivity are indeed related at
the scale of individual synapses. Furthermore, signal corre-
lations across pairs of neurons that experience at least one
axon-dendrite proximity (ADP controls) were significantly
higher than same region controls, indicating that there is
also functional specificity at the axonal scale, with axons
more likely to travel near dendrites of similarly-tuned neu-
rons. These effects were independently observed when sub-
sets of neuron pairs were considered within and across local
V1 (V1 — V1), local HVA (HVA — HVA), feedforward (V1
— HVA) and feedback (HVA — V1) projection types (Fig.
2d, see Supp. Tab. 2 for details). In summary, we observed
a functional "like-to-like" rule both at the level of axonal tra-
jectories and for connectivity at the synaptic scale.

We explored this finding further, by asking whether there is
a graded relationship between the amount of axon-dendrite
co-travel distance and the corresponding boost in signal cor-
relations (Fig. 2e).

For this analysis, to avoid confounding variability due to the
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Figure 3. Feature weight similarity predicts synaptic selectivity better than receptive field center distance. a, Axon-dendrite co-travel distance increases with
feature weight similarity and decreasing RF center distance for within-area (V1—V1, HVA—HVA), feedforward (V1— HVA), and feedback (HVA—V1) connectivity.
b,, Synapse density increases with feature weight similarity, but not with RF distance, except for HVAtoV1 projections. ¢, Multiple synapses are associated with
increasing feature similarity, but not receptive field center distance, after regressing out L 4. d,, Only feature similarity (not receptive field center distance) is associated
with an increase in cleft volume, after regressing out L. (For all panels, * = p-value < 0.05, *x* = p-value < 0.01, * % % = p-value < 0.001, p-values are corrected for
multiple comparisons using BH procedure, for details, see Supplemental Tab. 11, 13, 15, 17, 12, 14, 16, 18,)

size of each presynaptic neuron’s axonal arbor and their vary-
ing mean signal correlations, for each presynaptic neuron
we first computed the mean L, and mean signal correlations
across all of its ADP targets and same region control neurons.
Then for each of the pairwise comparisons, we subtracted
the pre-computed mean and kept only the difference from the
mean for each metric. This approach has the effect of center-
ing both the x- and y-axes in Fig. 2e (and also 2f), in order
to focus on the relative effect within each presynaptic neu-
ron and its downstream partners, removing neuron-to-neuron
variability in both metrics.

Binning these differences revealed that longer-than-average
L, between a presynaptic neuron and a downstream target
was associated with higher-than-average signal correlation
between the two neurons. This result was significant when
repeated across all projection types, and indicates that the ax-
ons and dendrites of neurons with more similar functional
properties are likely to meet more often and/or travel farther
together in the volume, and there is a graded relationship in
this effect that is observed both within and across cortical ar-
eas.

We next performed a similar analysis for synapses, looking
at connected neuron pairs. For each presynaptic neuron we
first computed the mean number of synapses per millimeter
of co-travel distance (synapse density, Ny, /mmL,), along
with mean signal correlations across all pairs of synaptic and
ADP targets. Then for each of these pairwise comparisons
for a single presynaptic neuron, we subtracted the mean and
kept only the difference from the mean. After centering on
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the means for each presynaptic cell in this way, the binned
differences again revealed a strong graded relationship be-
tween synaptic connectivity and functional similarity (Fig.
2f). Specifically, higher-than-average rates of synaptic den-
sity (synapses per unit co-travel length) were associated with
higher-than-average functional similarity, again in a graded
fashion.

Given this relationship between synapse frequency and func-
tional similarity, we wondered whether there might be a rela-
tionship between functional similarity and either synapse size
(a proxy for synaptic strength; (Holler et al., 2021)) and/or
the multiplicity of synaptic connections between two neu-
rons. Indeed, previous studies have found that functionally-
similar presynaptic-postsynaptic pairs have stronger synap-
tic connections (Cossell et al., 2015) and larger postsynaptic
densities (PSDs) (Lee et al., 2016). In the MICrONS dataset,
segmented synapses were automatically annotated with the
cleft volume, which is positively correlated to spine head
volume, PSD area, and synaptic strength (Celii et al., 2024,
Holler et al., 2021; Dorkenwald et al., 2022b) (Fig. 2g).

We found that signal correlation positively correlates with
cleft volume (Fig. 2h; r = 0.032, p < 0.001). Looking at
the multiplicity of connections between neurons (the number
of individual synapses connecting two cells), we also found
that presynaptic-postsynaptic pairs with multiple synapses
also had higher signal correlations (Fig. 2i, j) when com-
pared to monosynaptic pairs. In both Fig. 2h, j, the synap-
tic scale effect is isolated by regressing out the contribution
of L4 to signal correlation. In summary, both the strength

Functional connectomics reveals general wiring rule in mouse visual cortex


https://doi.org/10.1101/2023.03.13.531369
http://creativecommons.org/licenses/by/4.0/

365

370

375

380

385

390

395

400

405

41

o

415

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.13.531369; this version posted October 15, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

(synaptic volume) and multiplicity of connections are higher
when neurons are more functionally similar, consistent with
an underlying Hebbian plasticity mechanism that might act
to strengthen and stabilize connections between jointly-active
neurons.

Lastly, to ensure the robustness of these findings, we ran the
same analyses above with signal correlations measured di-
rectly from in vivo responses (rather than from the digital
twin) and found that they replicated the like-to-like results
achieved using the in silico signal correlations — including
the graded relationships at the axonal and synaptic scale, and
the relationships with synaptic cleft volume and synapse mul-
tiplicity (Supplemental Fig. 3).

Factorized in silico functional representation. A key ad-
vantage of the digital twin (Fig.1c, Wang et al. 2024) is the
factorization of each modeled neuron’s predicted response
into two factors: readout location in visual space—a pair of
azimuth/altitude coordinates; and readout feature weights—
the relative contribution of the core’s learned features in pre-
dicting the target neuron’s activity. Intuitively, these learned
features can be thought of as the basis set of stimulus fea-
tures that the network then weighs to predict the neural re-
sponses. For each neuron, the combination of feature weights
("what") and receptive field location ("where") together en-
code everything the model has learned about that neuron’s
functional properties, and enable the model’s predictive ca-
pacity for that neuron. This factorized representation allowed
us to examine the extent to which these two aspects of neu-
ral selectivity independently contribute to the relationship be-
tween signal correlation and connectivity we observed in Fig.
2. Feature weight similarity was measured as the cosine sim-
ilarity between the vectors of presynaptic and postsynaptic
feature weights. Receptive field (RF) location similarity was
measured as the visual angle difference between the center
of the model readout locations, with lesser distance between
the centers ("center distance") corresponding to greater lo-
cation similarity. We conducted a separate series of experi-
ments to validate the model’s readout location as an estimate
of RF center. These experiments demonstrated that the read-
out location correlates strongly with receptive field centers
measured using classical sparse noise (dot-mapping) stimuli
(Supplemental Fig.4a, b). Moreover, our approach outper-
formed classical linear in vivo measurements of the spatial
receptive field for the significant fraction of neurons that are
not responsive to the dot-mapping stimuli, even with one hour
of dot-mapping data (Supplemental Fig.4c).

Both RF location similarity and feature weight simi-
larity increase with axon-dendrite co-travel distance.
Among pairs of neurons with at least one axon-dendrite
proximity (ADP neurons), axon/dendrite co-traveling for
longer-than-average distances was associated with higher-
than-average feature similarity (Fig. 3a). Similarly, neu-
rons with higher-than-average receptive field similarity (i.e.
receptive fields closer to each other), also co-traveled for
longer-than-average distances. Thus, both feature tuning and
receptive field location are positively correlated with the ex-
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Figure 4. Like-to-like effects are widespread but vary across brain areas, cor-
tical layers, and tuning similarity metrics. a-f, Degree of like-to-like broken down
by area and layer membership measured at axonal (a, ¢, e) and synaptic scales (b,
d, f). Colorbar: like-to-like coefficients, red is more like-to-like. For axonal scale, box
size represents axon-dendrite co-travel distance (umL4). For synaptic scale, box
size represents synapse density (Nsyn /mmLg). Like-to-like coefficients are the
coefficients of GLMMs fitted to predict axon-dendrite co-travel distance or synapse
density with the corresponding functional similarity. (black border = significant at
p-value < 0.05, white border = p-value > 0.05, by Wald test after BH correction for
multiple comparisons, for details see Supplemental Tab. 26, 25, 28, 27, 30, 29 ).

tent of axon-dendrite proximity between pairs of neurons,
and these relationships held both within and across cortical
areas. This result is consistent with a scenario where axonal
projections are enriched in downstream regions with similar
tuning properties, either via axon guidance cues during de-
velopment or via selective stabilization of axons in areas with
similar functional properties, or both.

A like-to-like rule for feature similarity, but not spa-
tial RF location, is observed at the scale of individ-
ual synapses. In contrast with the functional similarity in
both features and RF locations associated with axon-dendrite
proximity, synaptic connectivity between neurons was only
positively correlated with similarity in feature preferences
(Fig. 3b). Receptive field location similarity was either not
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correlated with synapse density or — in the case of V1 — was
anti-correlated. Thus, at the synaptic scale, only like-to-like
feature preference (not smaller spatial RF center distance)
is associated with increased synaptic connectivity. This is

ss a prominent difference between axonal-scale and synaptic-
scale relationships with function, and suggests that Hebbian
plasticity mechanisms operating at the level of individual
synapses are driven by feature similarity rather than receptive
field center distance. Consistent with this view, both synapse

a0 multiplicity (Fig. 3c) and synaptic cleft volume (Fig. 3d)
strongly increase with feature similarity rather than RF loca-
tion similarity (after regressing out L, as for Fig. 2h, j).

Like-to-like rule generalizes across joint layer and area
membership of cells. To achieve a more detailed under-
ws standing of the organization of connections across layers
and areas, for each functional similarity metric (signal cor-
relation, feature weight similarity, and receptive field center
distance), we also tested the relationship with connectivity
across two areas (primary visual cortex, V1; higher visual ar-
o eas AL and RL, HVA) and three layers (L2/3, L4, and LS5,
Fig. 4). For signal correlation (Fig. 4a, b, see Supplemental
Tab. 25, 26 for details) and feature weight similarity (Fig.
4c, d, see Supplemental Tab. 27, 28 for details), like-to-like
effects (red squares) were widespread across many area and
sss layer combinations, at both the axonal and synaptic scale.
In the case of RF center distance, while like-to-like effects
(red squares) were widespread at the axonal scale, these
effects disappeared when considering synaptic-scale speci-
ficity. This finding is consistent with the view that selectivity
sso for retinotopic overlap exists at the scale of axon trajectories
but not at the scale of individual synapse formation (Fig. 4e,
f, see Supplemental Tab. 29, 30 for details). In this analysis,
individual presynaptic baselines (e.g. variable Lj, synapse
rate, signal correlation), were accounted for with a gener-
s alized linear mixed model (GLMM) (see Methods for de-
tails). Distributions of all pairwise functional measurements,
including in vivo signal correlation, in silico signal correla-
tion, feature weight similarity, and receptive field distance
are provided in Supplementary Fig. 10. Varying the inclu-
a0 sion thresholds of the above analyses across varying levels of
digital twin model performance (quartiles of neurons ranked
by prediction accuracy) did not substantially change the main
results (Supplementary Fig. 11).

Orientation tuning is like-to-like within V1 at both ax-
s onal and synaptic scales. Many neurons in mouse primary
visual cortex and higher visual areas are strongly tuned for
orientation, and a number of previous functional connectiv-
ity studies have used differences in preferred orientation as
a metric for visual similarity within V1. In order to com-
a0 pare our findings more directly with this previous work, we
repeated the central analysis in Fig. 2, but now using only
the difference in preferred orientation — rather than signal
correlations — to determine functional similarity.
We used the digital twin to estimate orientation tuning, and
s we validated this approach with in vivo validation experi-
ments (Supplemental Fig. 7a, b), where we compared the
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Figure 5. Postsynaptic neurons with a common input are more functionally
similar to each other than expected from a pairwise like-to-like rule. a, Left:
Schematic illustrating the null hypothesis that postsynaptic neurons (gray circles,
"postsyns") of a common presynaptic neuron (yellow circle, "presyn”) have no addi-
tional feature similarity with each other beyond their like-to-like similarity with their
common presyn. In this scenario, postsyns are distributed uniformly around the
presyn in the "like-to-like" region of functional space (dark blue region). Right:
Schematic illustrating the alternative hypothesis that the postsynaptic neurons are
closer in functional space than predicted from a pairwise like-to-like rule, equiva-
lent to being clustered non-uniformly within the "like-to-like" region. b, Schematic
illustrating the functional connectivity model used to simulate the null hypothesis
in a. Pairwise functional measurements (left) — including signal correlations, fea-
ture weight similarity and receptive field location distance — were passed through
a function relating functional similarity to connection probability. Then, within this
modeled network, we computed the pairwise similarity of all postsyns downstream
of a common presyn (right). In ¢, we compare the actual postsynaptic functional
similarity we observed in the data (black) to the expected postsyn similarity as de-
termined from the model (blue). In three out of four area comparisons, we find that
postsyns are significantly more similar to each other than expected from a pairwise
like-to-like rule.

in silico orientation tuning curve with the tuning curve esti-
mated from the in vivo data. Orientation-selective responses
were driven by lowpass filtered noise with coherent orien-
tation and motion, a stimulus we have previously used to
drive strong visual responses in orientation-tuned cells (Fa-
hey et al., 2019; Wang et al., 2024). For orientation-tuned
neurons (gOSI > 0.25, corresponding to more that 50% of co-
registered neurons; please see methods for gOSI versus OSI
comparison), the in silico orientation tuning curves align ex-
traordinarily well with in vivo orientation tuning curves (Sup-
plemental Fig. 7c-f).

We found that connected neurons in V1 have more similar
orientation tuning than unconnected controls (Supplemental
Fig. 8), as reported by previous studies (Rossi et al., 2020;
Ko et al., 2011; Lee et al., 2016). However, in contrast with
previous studies, we did not observe a similar significant like-
to-like effect when restricting the analysis specifically to pro-
jections within V1 L2/3 excitatory neurons. To understand
this deviation from previous literature, we first determined
that connected neuron pairs within V1 L2/3 projections in the
MICrONS dataset did indeed have similar orientation prefer-
ences (Supplemental Fig. 9), as expected. However, uncon-
nected pairs showed the same level of similarity in orientation
preference. We believe this is the result of a local orientation
bias where the MICrONS volume is located in V1 (Fahey
et al. 2019).

Overall, we found that the model feature weight similarity
is a better predictor of connectivity than classical orientation
preference, even for neurons tuned to oriented stimuli (Sup-
plemental Fig. 6). Recent work by our group and others has

Functional connectomics reveals general wiring rule in mouse visual cortex
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emphasized that optimal stimuli for neurons in mouse V1 can
exhibit complex spatial features that deviate strikingly from
Gabor-like stimuli (Walker et al., 2019; Tong et al., 2023).
These results highlight the advantages of studying more com-
plete tuning functions, such as the model feature weights that
we focus on here, rather than single tuning parameters such
as orientation preference.

Neurons with common input are functionally similar.
If the pairwise "like-to-like" rule were the sole organizing
principle of the visual cortex — implying that all postsynap-
tic neurons closely resemble their presynaptic partners — we
would expect postsynaptic neurons to exhibit a certain degree
of similarity to one another.

However, neural feature selectivity likely arises from more
complex connectivity rules, so a cohort of neurons down-
stream of a single presynaptic neuron might, on average, be
less (Fig. 5a, left) or more functionally similar to each other
(Fig. S5a, right). To evaluate whether the similarity among
postsynaptic neurons differs from what the "like-to-like" rule
predicts, we built a simple model network, and introduced
the empirical relationships between presynaptic/postsynaptic
functional similarity and connectivity that we observed in our
data. Specifically, we replicated the empirical distribution of
signal correlations, feature weight similarities, and receptive
field location distances over all model neuron pairs, and then
predicted the expected number of synapses between neuron
pairs — based on their functional similarity — with a Pois-
son linear mixed-effects model (Fig. 5b). We confirmed that
this model replicated the expected functional similarity be-
tween connected neurons, indicating that it accurately cap-
tured the same pairwise "like-to-like" rule that we observed
in the data (Supplemental Fig. 5). Then, we measured the
similarity among all postsynaptic neurons downstream of a
single presynaptic neuron, by calculating the mean pairwise
signal correlations. As expected, on average, postsynaptic
neurons were more functionally-similar to other postsynaptic
neurons than random pairs (Supplemental Fig. 5). However,
we also found that postsynaptic neurons receiving common
synaptic inputs in the MICrONS dataset were even more sim-
ilar than the "like-to-like" model predicted (Fig. 5c¢). These
relationships held when tested at both axonal and synaptic
scales for three out of the four projection types (Supplemen-
tal Fig. 5). This suggests the existence of higher-order func-
tional organization beyond the simple pairwise relationships
that we focused on up to this point.

Like-to-like connectivity and its functional role in ar-
tificial neural networks. A possible functional role for the
like-to-like connectivity observed in our data is suggested by
theoretical work on recurrent neural network (RNN) models,
starting with early work on attractor-based models like Hop-
field networks (Hopfield, 1982; Khona and Fiete, 2022a). In
these models, like-to-like connectivity increases similarity in
neural responses to similar stimuli, which aids both super-
vised and unsupervised learning. Artificial neural networks
produce stimulus representations similar to those in primary
visual cortex (Yamins et al., 2014; Cadena et al., 2019), but
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there have been no comparisons to date between like-to-like
connectivity in biological and artificial neural networks.

To make such a comparison, we trained an RNN model on
a simple image classification task (Fig. 6a; see Methods for
details). The trained RNN showed increased like-to-like con-
nectivity compared to the same model before training (Fig.
6b,c), and a small shift in the distributions of signal correla-
tions, similar to those in our data (Supplementary Figs. 10
and 12). Intriguingly, we found that ablating like-to-like con-
nections in the trained model decreased performance more
than ablating random connections with the same connection
strengths (Fig. 6d), suggesting that like-to-like connectiv-
ity plays a functional role in the model. Finally, we found
that the trained model exhibits an increase in signal correla-
tions within cohorts of postsynaptic cells defined by a shared
presynaptic neuron, similar to the higher order connectivity
rule that we observed in our data. (Fig. 6e). These results
suggest that like-to-like connectivity — similar to the magni-
tude we observed in the MICrONS data — could be sufficient
to subserve a functional role in sensory processing and learn-
ing.

Discussion

Discovering the principles that relate structure to function
is central in the pursuit of a circuit-level mechanistic under-
standing of brain computations. Here, we used the MICrONS
multi-area dataset — the largest of its kind — to study the re-
lationship between the connections and functional responses
of excitatory neurons in mouse visual cortex across corti-
cal layers and visual areas. Our findings revealed that neu-
rons with highly correlated responses to natural videos (i.e.
high signal correlations) tended to be connected with each
other, not only within the same cortical areas but also across
multiple layers and visual areas, including feedforward and
feedback connections. While the overall principle of “like-
to-like” connectivity that we describe here is consistent with
a number of previous studies (Ko et al., 2011, 2013; Wertz
et al., 2015; Lee et al., 2016; Rossi et al., 2020), our work
leverages three unique strengths of the MICrONS dataset to
extend and refine these previous findings.

First, the scale of the volume enabled us to look at connec-
tion principles across layers 2-5 of cortex, not just within V1,
but also in projections between V1 and higher visual areas.
In agreement with previous findings from V1 L2/3, we found
that pairs of cells with higher signal correlations were more
likely to be connected (Ko et al., 2011, 2013; Cossell et al.,
2015). This general principle held not just in V1 L2/3, but
also in higher visual areas and for inter-area feedforward and
feedback projections.

Second, we were able to take advantage of the dense re-
construction to ask questions about functional specificity at
the axonal scale that would be difficult to address with any
other data. We found that axons are more likely to co-travel
with dendrites of similarly-tuned neurons, even for long-
range axons spanning areas. The dense reconstruction also
allowed us to compute a set of null distributions for the ex-
pected synaptic connectivity between neurons based on axon-

bioRxiv | 9


https://doi.org/10.1101/2023.03.13.531369
http://creativecommons.org/licenses/by/4.0/

630

635

640

645

650

655

660

665

670

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.13.531369; this version posted October 15, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

c -, 0.6

RNN -2 I connected =

input % all neurons <

20.05 8

9 2

readout © s

E :

0 =

El w2 § :
S € 02

o aQ

£ s}

before training trained

-0.5

signal correlation

before training
-o-trained

0

d 1 e I connected M expected
0.010 ool
c
g c 2
5 o8
8 EQ
= £8
2 = = - ablate random ’3 ©
= 06 ablate like-to-like 85’
@
T T T 0 Lt -
0.5 0 10 before training  trained

5
percent connections ablated

Figure 6. Like-to-like connectivity in an RNN. a, A vanilla RNN was provided images as inputs and weights were trained so that a readout of the final state identifies
the input’s label. b, Mean signal correlations among all (blue) and connected (black) neuron pairs for the same RNN before (left) and after (right) training. Neurons
were classified as connected when their weights exceeded a fixed threshold. ¢, Connection probability as a function of signal correlation for the same network before
(gray) and after (black) training. d, Test accuracy of the network as a function of the number of connections ablated when ablating random (dashed) or like-to-like
(solid) connections. Connections were classified as like-to-like whenever the weight and signal correlation both exceeded a fixed threshold. e, Mean post-post signal
correlations and the expected post-post signal correlation given a pairwise model similar to Fig. 5¢ before and after training.

dendrite proximities. These controls enable us to distinguish
whether the relationships we observed between connectivity
and function are due to the overall geometry of axonal and
dendritic arbors in the volume, or whether they reflect a more
precise connectivity rule at the level of individual synapses.
For example, it is only with the inclusion of both same region
and ADP controls that we are able to observe the diverging
findings of axon trajectory level selectivity for receptive field
center distance (Fig. 3 d, e, f) and synaptic level selectivity
for feature weight similarity (Fig. 3 a, b, ¢). These different
controls can be mapped onto potential developmental or adult
plasticity mechanisms that may shape the coarse axon trajec-
tory and fine-scale synaptic connectivity across the brain.

Finally, our deep learning neural predictive modeling ap-
proach enabled us to comprehensively characterize the tun-
ing function of a neuron, factorize it into spatial and feature
tuning components, and facilitate in silico exploration with
neural responses to novel visual stimuli. The digital twin
model allowed us to measure signal correlations over a much
larger set of naturalistic videos, resulting in better connec-
tivity predictions compared to in vivo measurements from a
smaller stimulus set (Supplemental Fig. 6). Moreover, the
model’s factorized architecture provided a unique opportu-
nity to discover distinct synaptic organizing principles for
two interpretable components of neuronal tuning: what the
neuron is tuned to and where its receptive fields are located.
Notably, the digital twin model demonstrated excellent out-
of-training-set performance (Supplemental Fig. 2) even for
novel stimulus domains (Supplemental Fig. 4). This gener-
alization ability opens exciting possibilities for future in sil-
ico visual experiments, although validation experiments re-
main essential when studying the digital twin model with
new stimulus domains. Currently we treat this model as a
black box, but future models could constrain the architec-
ture in order to make internal model parameters more inter-
pretable. Additionally, recent studies have shown that behav-
ioral states and task variables explain a substantial portion
of neural responses, even in sensory cortices (Stringer et al.,
2019; Musall et al., 2019). Future digital twins could incor-
porate additional behavioral measurements that enable us to
study more general relationships between structure and func-
tion, beyond visual processing.

Many of the analyses described in this paper evaluated pair-
wise relationships between one presynaptic neuron and one

10 | bioRxiv

675

680

685

690

695

700

705

710

715

Ding, Fahey, Papadopoulos et al. |

postsynaptic or control neuron. While our experiment in
an RNN toy model shows that a pairwise like-to-like rule
can have important functional consequences for task perfor-
mance (Fig. 6), there is still a question of whether there exist
higher-order functional motifs beyond simple, pairwise rela-
tionships. We explored one such higher-order pattern in our
analysis of functional similarity among postsynaptic neurons
sharing at least one common input (Fig. 5). This investiga-
tion revealed functionally similar postsynaptic cohorts, sug-
gesting the presence of more complex organizational princi-
ples. Other studies have looked at functional similarity in
presynaptic cells converging on a single common postsynap-
tic neuron (Bock et al., 2011; Wertz et al., 2015; Rossi et al.,
2020). As proofreading in the MICrONS volume contin-
ues, it will become possible to test motifs of much higher
order and complexity and their relationship to more complex
functional properties. In addition to a more complete con-
nectivity graph, another route to discovery may be to study
more richly-colored graphs that include additional modali-
ties about each neuron, including features such as morpho-
logical or transcriptomic information, or local ultrastructure.
Alternatively, it may be important to investigate functional
connectivity rules operating at the scale of sub-cellular com-
partments, for example looking at synapse clustering on den-
drites.

Just as pairwise relationships might only partially reveal rules
at play in higher-order motifs, the principle of "like-to-like"
may only partially capture more complicated principles relat-
ing structure and function. For example, Wertz et al. found
that for some networks (multiple presynaptic neurons con-
verging onto a single postsynaptic output), the similarity of
inputs differed depending on layer origin, a phenomenon they
termed "feature-variant" networks (Wertz et al., 2015). Sev-
eral studies have also found that there is an interplay between
the geometric relationship of receptive field positions and
feature preferences (Rossi et al., 2020; Marques et al., 2018;
Oldenburg et al., 2024). For example, Rossi et al. found
that the spatial offset between the receptive fields of exci-
tatory and inhibitory inputs matched the postsynaptic cell’s
direction selectivity (Rossi et al., 2020). Future work could
further discriminate along the relevant feature dimensions to
find more precise rules.

Like-to-like connectivity is a recurring theme in theoretical
models of neural circuit function, including Hebb’s theory of

Functional connectomics reveals general wiring rule in mouse visual cortex
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neural assemblies (Hebb, 1949), Hubel and Wiesel’s theory
of receptive field formation (Hubel and Wiesel, 1962), and
later work by Hopfield (Hopfield, 1982) and others (Khona
and Fiete, 2022b) on attractor based models. Like-to-like
connectivity is often assumed a priori or emerges due to Heb-
bian plasticity in these models, but our analysis of a vanilla
RNN trained by gradient descent shows that like-to-like con-
nectivity — in addition to higher order connectivity motifs
observed in our data — can arise naturally from optimizing a
recurrent system for a simple visual task (Fig. 6). Theory-
driven experiments will allow us to move beyond correla-
tional to causal understanding of biological systems. Future
works could study these connectivity rules further in artificial
systems with greater complexity or biological realism.

Our work provides a first glimpse of principles of corti-
cal organization that can be discovered with large datasets
combining detailed functional characterization with synaptic-
scale connectivity. While the incredible accuracy of machine
learning-based reconstruction methods has rightly increased
optimism about the potential discoveries that can be made
from large EM volumes — especially when combined with
functional characterization — we should also not forget the
magnitude of the challenge contained in even a 1mm? vol-
ume of cortex in a single mouse. The analyses in this pa-
per are based on only a small number of manually proofread
neurons, but even this limited view of the dataset represents
an impressive volume of axonal and dendritic reconstruction.
Ongoing investments in proofreading, matching, and exten-
sion efforts within this volume will have exponential returns
for future analyses as they yield a more complete functional
connectomic graph, and reduce or eliminate potential biases
in the connections. As more large-scale datasets like MI-
CrONS are publicly released, there will be much more to dis-
cover about the organizing principles relating structure and
function in other brain areas (Kuan et al., 2024) and even
other model organisms (Wanner et al., 2016). Our hope is
that this dataset, including both the structural anatomy and
the immortalized digital twin for ongoing in silico experi-
ments, will be a community resource that will yield concrete
insights as well as inspiration about the scale of investigation
that is now possible in neuroscience.
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Methods

MICrONS Dataset. MICrONS dataset was collected in a
single animal as described in MICrONS Consortium et al.
(2021), including neurophysiological data collection, visual
stimulation, stimulus composition, EM data collection, au-
tomatic EM segmentation and reconstruction, manual EM
proofreading, volume coregistration, and manual soma-soma
matching between the functional and EM volumes. Neuro-
physiological experiments, Visual Stimulution,and Stimulus
Composition sections below are specific to additional exper-
iments described in Supplemental Fig. 7.

Neurophysiological experiments. All procedures were
approved by the Institutional Animal Care and Use Commit-
tee of Baylor College of Medicine. Ten mice (Mus mus-
culus, 3 female, 7 males, 78-190 days old at first experi-
mental scan) expressing GCaMP6s in excitatory neurons via
Slc17a7-Cre and Ail62 transgenic lines (recommended and
generously shared by Hongkui Zeng at Allen Institute for
Brain Science; JAX stock 023527 and 031562, respectively)
were anesthetized and a 4 mm craniotomy was made over the
visual cortex of the right hemisphere as described previously
(Reimer et al., 2014; Froudarakis et al., 2014).

Mice were head-mounted above a cylindrical treadmill
and calcium imaging was performed with a mesoscope
(Sofroniew et al., 2016) as described in release (MICrONS
Consortium et al., 2021), with surface power not exceeding
20 mW, depth constant of 220 um, and greatest laser power
of ~ 86 mW was used at approximately 400 um from the
surface.

The cranial window was leveled with regard to the objec-
tive with six degrees of freedom. Pixel-wise responses from
an ROI spanning the cortical window (3600 x 4000 pm, 0.2
px/um, 200 um from surface, 2.5 Hz) to drifting bar stimuli
were used to generate a sign map for delineating visual areas
(Garrett et al., 2014).

For the orientation tuning validation data in Supplemental
Fig. 7, our target imaging site was a 1200 x 1100um? area
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spanning L2-L5 at the conjunction of lateral primary visual
cortex (V1) and three lateral higher visual areas: anterolat-
eral (AL), lateromedial (LM), and rostrolateral (RL). This re-
sulted in an imaging volume that was roughly 50% V1 and
50% higher visual area. This target was chosen in order to
mimic the area membership and functional property distribu-
tion in the MICrONS animal. Each scan was performed at
6.3 Hz, collecting eight 620 x 1100um? fields per frame at
0.4 px/um xy resolution to tile a 1190 — 1200 x 1100 um?
FOV at four depths (two planes per depth, 40 — 50 um over-
lap between coplanar fields). The four imaging planes were
distributed across layers with at least 50 pm spacing, with two
planes in L.2/3 (depths: 180 um, 230 um), one in L4 (325 um),
and one in L5 (400 um).

Movie of the animal’s eye and face was captured throughout
the experiment. A hot mirror (Thorlabs FM02) positioned be-
tween the animal’s left eye and the stimulus monitor was used
to reflect an IR image onto a camera (Genie Nano C1920M,
Teledyne Dalsa) without obscuring the visual stimulus. The
position of the mirror and camera were manually calibrated
per session and focused on the pupil. Field of view was man-
ually cropped for each session. The field of view contained
the left eye in its entirety, 212-330 pixels height x 262-424
pixels width at 20 Hz. Frame times were time stamped in
the behavioral clock for alignment to the stimulus and scan
frame times. Video was compressed using Labview’s MJPEG
codec with quality constant of 600 and stored the frames in
AVl file.

Light diffusing from the laser during scanning through the
pupil was used to capture pupil diameter and eye movements.
A DeepLabCut model (Mathis et al., 2018) was trained on
17 manually labeled samples from 11 animals to label each
frame of the compressed eye video (intraframe only H.264
compression, CRF:17) with 8 eyelid points and 8 pupil points
at cardinal and intercardinal positions. Pupil points with like-
lihood >0.9 (all 8 in 69.8-99.2% of frames per scan) were fit
with the smallest enclosing circle, and the radius and center
of this circle was extracted. Frames with < 3 pupil points
with likelihood >0.9 (<1.1% frames per scan), or produc-
ing a circle fit with outlier > 5.5 standard deviations from
the mean in any of the three parameters (center X, center y,
radius, <0.1% frames per scan) were discarded (total <1.2%
frames per scan). Gaps were filled with linear interpolation.
The mouse was head-restrained during imaging but could
walk on a treadmill. Rostro-caudal treadmill movement
was measured using a rotary optical encoder (Accu-Coder
15T-01SF-2000NV1ROC-F03-S1) with a resolution of 8000
pulses per revolution, and was recorded at ~100 Hz in order
to extract locomotion velocity.

Visual stimulation. For the validation data in Supplemen-
tal Fig. 2, 4 and 7, monitor size and positioning relative to
the mouse were as described in MICrONS Consortium et al.
(2021), with the exception of replacing the dot stimulus for
monitor positioning with 10 x 10 grid tiling a central square
(approx 90 degrees width and height) with 10 repetitions of
200 ms presentation at each location.

12 | bioRxiv

900

905

910

915

920

925

930

935

940

945

950

Ding, Fahey, Papadopoulos et al.

A photodiode (TAOS TSL253) was sealed to the top left cor-
ner of the monitor, and the voltage was recorded at 10 KHz
and timestamped with a 10 MHz behavior clock. Simulta-
neous measurement with a luminance meter (LS-100 Kon-
ica Minolta) perpendicular to and targeting the center of the
monitor was used to generate a lookup table for linear inter-
polation between photodiode voltage and monitor luminance
in cd/m? for 16 equidistant values from 0-255, and one base-
line value with the monitor unpowered.

At the beginning of each experimental session, we collected
photodiode voltage for 52 full-screen pixel values from 0 to
255 for one second trials. The mean photodiode voltage for
each trial was collected with an 800 ms boxcar window with
200 ms offset. The voltage was converted to luminance using
previously measured relationship between photodiode volt-
age and luminance and the resulting luminance vs voltage
curve was fit with the function L = B+ A - PY where L is the
measured luminance for pixel value P, and the -y of the moni-
tor was fitas 1.73. All stimuli were shown without linearizing
the monitor (i.e. with monitor in normal gamma mode).
During the stimulus presentation, display frame sequence in-
formation was encoded in a 3 level signal, derived from the
photodiode, according to the binary encoding of the display
frame (flip) number assigned in-order. This signal under-
went a sine convolution, allowing for local peak detection
to recover the binary signal together with its behavioral time
stamps. The encoded binary signal was reconstructed for
>93% of the flips. Each flip was time stamped by a stimulus
clock (MasterClock PCle-OSC-HSO-2 card). A linear fit was
applied to the flip timestamps in the behavioral and stimulus
clocks, and the parameters of that fit were used to align stim-
ulus display frames with scanner and camera frames. The
mean photodiode voltage of the sequence encoding signal at
pixel values O and 255 was used to estimate the luminance
range of the monitor during the stimulus, with minimum val-
ues of approximately 0.003-0.60 cd/m? and maximum values
of approximately 8.68-10.28 cd/m?.

Preprocessing of neural responses and behavioral
data. Fluorescence traces from the MICrONS dataset and the
additional data for Supplemental Fig. 2, 4 and 7 were de-
trended, deconvolved, and aligned to stimulus and behavior
as described in Wang et al. (2024), and all traces were re-
sampled at 29.967 Hz. Possible redundant traces, where a
single neuron produced segmented masks in multiple imag-
ing fields, were all kept for downstream model training. We
elected to remove one of the 14 released scans from the anal-
ysis (session 7, scan_idx 4) due to compromised optics (water
ran out from under the objective for ~ 20 minutes), leaving
13 scans.

Model architecture and training of the digital twin
model. The model architecture and training for the digital
twin model used for assessing in silico signal correlation,
feature weight similarity, and receptive field center distance
is the same as the cvt-Istm model described in Wang et al.
(2024).

| Functional connectomics reveals general wiring rule in mouse visual cortex


https://doi.org/10.1101/2023.03.13.531369
http://creativecommons.org/licenses/by/4.0/

955

960

965

970

975

980

985

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.13.531369; this version posted October 15, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Briefly, the core network of the cvt-Istm models was trained
on 8 scans collected from 8 mice with natural movie stim-
uli to capture cortical representations of visual stimuli shared
across mice. The parameters of the core network are then
frozen, and the rest of the network parameters are trained for
each scan with trials where natural movies are shown in the
MICrONS dataset. Trials were excluded from model train-
ing if more than 25% of their pupil frames were untrackable.
This issue most commonly arose when the animal closed its
eye, rendering the functional relationship between neural ac-
tivity and the visible stimulus ambiguous. The number of
excluded trials varied across scans, ranging from 2 to 123 per
scan, representing 0.6-38.0% of total trials.

To assess orientation tuning similarity, we used a slightly dif-
ferent digital twin model with a conv-Istm architecture as de-
scribed in Wang et al. (2024). The core network of the conv-
Istm models was trained with the same 8 scans as the cvt-Istm
model. The rest of the network parameters are fine-tuned
with both natural movies and oriented noise stimuli available
from the MICrONS dataset to reach maximum alignment be-
tween in vivo and in silico orientation tuning.

Functional unit inclusion criteria. In order to focus our
analyses on neurons that are visually responsive and well
modeled by the digital twin, we applied a dual functional
threshold over two metrics (in vivo reliability and model pre-
diction performance) prior to all analyses related to signal
correlation, receptive field center distance, and feature weight
similarity.

In vivo reliability threshold.In order to estimate the reli-
ability of neuronal responses to visual stimuli, we com-
puted the upper bound of correlation coefficients for each
neuron(C'C, 4., Schoppe et al. 2016) across 60 seconds of
natural movie stimuli repeated 10 times across the stimulus
period (10 min total). C'C};, 4, Was computed as:

_ [NVar(y)—Var(y)
CCmaz = \/ (N-1)Var(y)

where y is the in vivo responses, and N is the number of
trials. A threshold of C'Cly, 4 > 0.4 was applied. Where more
than one two-photon functional unit was matched to a given
EM unit, the functional trace with the higher oracle score was
used for analysis.

Model prediction performance threshold.In order to focus
our analyses on neurons for which adequate model perfor-
mance indicated sufficiently accurate representation of the
neuronal tuning features, we computed the test correlation
coefficient on the withheld oracle test dataset, which was not
part of the training set. Test correlation coefficients (C'Clyps)
were computed as:

Cov(T,7)
VVar(@)\Var(m) '

where z is the in silico response and y is the in vivo response.
A threshold of C'Cyps > 0.2 was applied.

CCabs =
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144 out of 148 presynaptic neurons and 3920 out of 4811
postsynaptic neurons passed the dual functional unit inclu-
sion criteria.

Oracle score. The oracle score was computed for all units
as described in MICrONS Consortium et al. (2021). Oracle
score is later used to select presynaptic neurons for morpho-
logical proofreading (see below).

Two-photon/ Electron Microscopy Matching. The
matching between two-photon functional units and EM cells
aligns closely with table coregistration_manual_v4
(MICrONS Consortium et al., 2021) with some additional
restrictions applied. First, the matches to the excluded scan
described in Section Preprocessing of neural responses
and behavioral data were removed. Then, two thresholds
were applied directly to the table (residual < 20 and score >
-10).

Morphological Proofreading. While automation of the
EM segmentation has progressed to where dense reconstruc-
tion is possible at the millimeter scale, even state-of-the-art
methods still leave imperfections in the graph relative to hu-
man expert performance. The two categories of reconstruc-
tion error are false merges (the incorrect grouping of seg-
mented objects, such as including an axon or dendrite that
does not belong to a specific soma) and false splits (the incor-
rect separation of objects, such as excluding an axon or den-
drite that does belong to a specific soma). These errors lead
to incorrect associations between pre- and post-synaptic part-
ners and ultimately an incorrect connectivity graph. Proof-
reading corrects false merges by "cleaning" the reconstruc-
tion, i.e. removing incorrectly associated segments, and
corrects false splits by "extending" the reconstruction, i.e.
adding back missing segments. We used two proofreading
approaches in this study: manual and automatic. "Manual
proofreaders” were trained to both clean and extend recon-
structions to a high degree of accuracy, as validated by expert
neuroanatomists. All of the presynaptic cells in this study
were manually proofread. The manual proofreading protocol
can be found in the primary dataset paper, (MICrONS Con-
sortium et al., 2021). For the rest of the cells (postsynaptic
and control neurons), we used the NEURD package (Celii
et al., 2024) to perform automated proofreading. Automated
proofreading cleans reconstructions to a high degree of accu-
racy relative to manual proofreaders, but it does not extend
reconstructions.

Dendritic Proofreading. At baseline, reconstructed dendrites
were generally complete and required little extension (Elab-
bady et al., 2024). However, they often contained false
merges that required cleaning (Elabbady et al., 2024). The
dendrites of all of the presynaptic neurons were manually
cleaned and extended. The dendrites of other neurons were
cleaned with NEURD (Celii et al., 2024).

Axonal Proofreading. At baseline, reconstructed axons re-
quire both cleaning and extension (Elabbady et al., 2024).
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Only the axons of presynaptic neurons were manually
cleaned and extended. In order to balance morphological
completeness (per neuron) and coverage (across projection
types), we extended axons to varying degrees of comple-
tion. Specifically, we performed full manual proofreading on
a subset of neurons (n=84), which involved thoroughly clean-
ing and extending all axonal branches throughout the dataset.
For the remaining neurons (n=64), we applied partial proof-
reading, focusing exclusively on extending axonal branches
that were pre-screened to feedback from HVA to V1. The
full list of proofread presynaptic neurons, their area and layer
membership, and whether they were fully or partially proof-
read is included in Supplemental Table 1, and a subset of
proofread axons are shown in Supplemental Fig. 1.

Presynaptic Neuron Selection. Our approach for select-
ing presynaptic neurons for manual proofreading was de-
signed to enrich for higher-order connectivity motifs within
and (especially) across visual areas. Because connection
probability drops off with distance (Holmgren et al., 2003),
we elected to initially focus proofreading efforts on spatially
clustered cells in two cylindrical columns spanning cortical
layers 2-5, with the first column located in V1 and the sec-
ond located in RL. Column centers were chosen according to
retinotopic maps, as it has been shown that inter-areal pro-
jections are retinotopically matched (Wang and Burkhalter,
2007; Marques et al., 2018). During the proofreading process
we added an additional column in V1 and another spanning
the RL and AL border, to increase coverage of the volume.
Lastly, a few HVA cells that were postsynaptic to proofread
V1 cells were chosen to enrich for higher order motifs (n=9).
All neurons selected for proofreading had an oracle score
greater than 0.25 and model test correlation (model predic-
tive performance from an intermediate version of the digital
twin) greater than 0.15. The first 40 neurons were selected
by experienced neuroscientists unblinded to functional prop-
erties for an emphasis on functional diversity. All remaining
neurons were chosen blind to functional properties.

Anatomical controls. In order to control for anatomy at the
axonal scale, we recruited all visually responsive, well pre-
dicted, functionally matched excitatory neurons (C'Cpqs >
0.4, CCups > 0.2) that are located in the same region as the
postsynaptic target, but are not observed to form a synapse
with the presynaptic neuron (same region control). Area
membership labels per neuron were used from the MICrONS
release (MICrONS Consortium et al., 2021). Additionally,
control candidates that meet criteria for both the same region
control and the ADP control (described below) will only be
included in ADP control.

In order to control for anatomy at the synaptic scale, we re-
cruited all visually responsive, well predicted, functionally
matched excitatory neurons (CCjqr > 0.4, CCups > 0.2)
with a dendritic skeleton passing within 5um of the presy-
naptic neuron axonal synapse in the presynaptic axonal arbor
(3D euclidean distance), but which are not observed to form
a synapse with the presynaptic neuron (ADP control). Presy-
naptic axonal skeletons were computed using the pcg_skel
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package developed by collaborators at the Allen Institute
for Brain Science (Schneider-Mizell et al., 2024; Schneider-
Mizell and Collman, 2023). For postsynaptic dendritic skele-
tons, we used the automatically proofread and skeletonized
dendritic arbors as described in Celii et al. 2024.

To compute the axon-dendrite co-travel distance (Lg) be-
tween a pair of neurons, we first discretized both the axonal
skeleton of one neuron and the dendritic skeleton of the other
neuron so that no edge exceeded a length of 1 yum. Next,
we identified all pairs of vertices from the two skeletons
that were within 5 pum of each other by performing spatial
queries using KDTree’s query_ball_tree method from
the scipy.spatial module in SciPy (Virtanen et al.,
2020). From these proximal vertices ("proximity"), we iden-
tified the associated dendritic edges. The lengths of these
dendritic edges were summed to obtain L.

Synapses were obtained from Table synapses_pni_2
(MICrONS Consortium et al., 2021) and were assigned to
an axon-dendrite proximity if they were within 3 um of any
vertex in the proximity.

In the case of the joint area and layer analysis (Fig. 4), can-
didates in both the "same region" and "ADP" controls must
additionally match the same layer classification as the post-
synaptic target in order to be included. Layer assignment was
performed as in (Weis et al., 2024).

Measuring functional similarities.

In silico response correlations. To characterize the pair-wise
tuning similarity between two modeled neurons, we com-
puted the Pearson correlation of their responses to 2500 sec-
onds of natural movies. The natural movies were fed in to
the model as trials of 10 sec. Model responses were gener-
ated at 29.967 Hz and Pearson correlations were computed
after binning the responses into 500 msec non-overlapping
bins and concatenating across trials.

In silico feature weight similarity and receptive field cen-
ter distance. The digital twin model architecture includes a
shared core which is trained to represent spatiotemporal fea-
tures in the stimulus input, and a final layer where the spa-
tiotemporal features at a specific readout location are linearly
weighted in order to produce the predicted activity of a spe-
cific neuron at the current time point (Wang et al., 2024).
The readout location and linear feature weight are indepen-
dently learned for each neuron. In order to measure the fea-
ture weight similarity between two units, we extract the linear
feature weights from this final step as vector of length 512,
and take the cosine similarity between the two vectors. In
order to measure the receptive field center distance between
two units, we extract the readout location as 2D coordinates
on the monitor, and take the angle between them with respect
to the mouse’s eye, assuming the monitor is centered on, 15
cm away from, and normal to the surface of the mouse’s eye
at the closest point.

In silico difference in preferred orientation. 240 blocks of
parametric directional visual stimuli ("Monet") are shown

Functional connectomics reveals general wiring rule in mouse visual cortex
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to the model, with each fifteen-second block consisting of 1200

16 trials of equally distributed and randomly ordered unique
directions of motion between 0-360 degrees. A modeled
neuron’s direction tuning curve is computed as its mean re-
sponses to 16 directions averaged across blocks. We calcu-
lated the global orientation selectivity index (gOSI) and the
orientation selectivity index (OSI) from the modeled neuron’s
tuning curve as follows:

B Rpo + Rortho

ZRee%G
YRy

gOSI _ Rpo - Rortho

,OSI @)
where 6 is the direction of the stimulus, Ry is the mean
modeled response to the stimulus at direction 6, and R,
and R, are the mean modeled responses at the preferred
and orthogonal orientation, respectively. The gOSI metric is
based on the 1 — C'ircV ar metric in (Mazurek et al., 2014),
which is a vector-based method designed to reduce the un-
certainty in quantifying orientation selectivity of responses,
especially in cases where high throughput, unbiased record-
ing methods return many cells with low orientation selectiv-
ity, as is the case with calcium imaging. Only neurons with
gOS1T > 0.25 were included in the analyses in this paper. For
neurons selected with our gOSI threshold > 0.25, the com-
puted OSI ranges from 0.43 to 0.99, with mean of 0.56. For
both thresholds, the fraction of cells considered orientation
tuned (57.4% of coregistered V1 neurons has gOSI > 0.25,
62.7% of coregistered V1 neurons has OSI > 0.4) is similar
to those reported in other studies (72% in V1 layer 2/3 (Ko
et al., 2011), 62.9% in V1 layer 2/3 and 58.0% in V1 layer
4 (Kondo and Ohki, 2016).Unit-wise direction tuning curves
are then modeled by a bivariate von Mises function with an
offset:

f(Olp,k,p) = #O(H){pexp(mcos(@ — )
+ (1—p)exp(—rcos(d —p))} @)
+0b

where [ is the modified Bessel function, p is the preferred
direction, x measures the concentration of the two peaks
(larger x means higher peaks thus higher orientation selectiv-
ity), p measures the relative height of the two peaks (p = 0.5
means two peaks of the same height, when p approaches 0 or
1, the bi-modal distribution reduces to a uni-model von Mises
distribution), b is the offset. u, , p, and b are fit by minimiz-
ing least squared error. The preferred orientation of a neuron
is taken as the modulus of p to 180 degrees.

Validation of the digital twin model.

Validation of In silico signal correlations. To validate the in
silico signal correlations generated by our digital twin model,
we first established a benchmark for in vivo signal correla-
tions. We began by determining the optimal number of stimu-
lus repetitions for measuring in vivo signal correlations. Two
mice were presented with 6 unique 10-second natural movie
clips, each repeated 60 times over a 60-minute period. Based
on the results shown in Supplemental Fig. 2a, we determined
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that 10 repetitions per clip provided a reliable estimate of in
vivo signal correlation while maintaining a reasonable exper-
imental time for presenting a large number of clips in subse-
quent experiments.

With this optimal repetition count established, we conducted
experiments with three mice using an expanded set of visual
stimuli. These stimuli contained those presented in the MI-
CrONS dataset as described in MICrONS Consortium et al.
(2021), including natural movies, global directional paramet-
ric stimuli ("monet"), and local directional parametric stimuli
("trippy"). Additionally, we presented 36 unique 10-second
natural movie clips, each repeated 10 times, totaling 60 min-
utes of stimulation. To facilitate comparison with the MI-
CrONS dataset and establish a robust ground truth, we di-
vided these 36 clips into two sets: a benchmark set of 30
clips repeated 10 times, serving as our "ground truth" for sig-
nal correlation, and a MICrONS-equivalent set of 6 clips re-
peated 10 times, mimicking the amount of repeated natural
clip data available in the MICrONS dataset.

For each mouse, we trained a digital twin model using the
same architecture and training data as the MICrONS digi-
tal twin. This allowed us to generate three signal correla-
tion matrices for comparison: an in vivo matrix computed
from the MICrONS-equivalent set, an in silico matrix gen-
erated by the digital twin model using 250 novel natural
movie clips, and a benchmark matrix computed from the
30-clip set. To compare these matrices, we randomly sam-
pled submatrices of signal correlations between 1000 neu-
rons. We then performed hierarchical clustering using Ward’s
method on the benchmark matrix and used the resulting den-
drogram to sort neurons. This sorting was applied to the
MICrONS-equivalent and in silico matrices for visual com-
parison, as shown in Supplemental Fig. 2b. Following this
initial comparison, we calculated the Pearson correlation co-
efficient between the corresponding entries in the lower tri-
angles of the three matrices. To assess statistical signifi-
cance, we employed a resampling approach, performing 1000
random splits of the benchmark and MICrONS-equivalent
sets, from which we estimated the standard deviation and
resampling-based p-value of the Pearson correlations. This
comprehensive approach enabled us to evaluate how well our
digital twin model’s in silico signal correlations matched the
ground truth compared to in vivo measurements with limited
data, thus validating the model’s performance in replicating
neural response correlations.

Validation of receptive field center. To validate the receptive
field estimates of our digital twin model, we conducted ad-
ditional experiments and analyses comparing in vivo and in
silico silico receptive field measurements. We collected three
additional functional scans using an expanded set of visual
stimuli. These stimuli contained those presented in the MI-
CrONS dataset as described in MICrONS Consortium et al.
(2021), including natural movies, global directional paramet-
ric stimuli ("monet"), and local directional parametric stim-
uli ("trippy"). Additionally, we presented 57.6 minutes of
sparse noise stimuli. The sparse noise stimuli consisted of
bright (pixel value 255) and dark (pixel value 0) square dots,
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each approximately 6° in visual angle, presented on a grey
background (pixel value 127) in a randomized order. These
dots were presented at 12 positions covering 70° of visual an-
gle along both the horizontal and vertical axes of the screen.
Each presentation lasted 200 ms, and each condition was re-
peated 60 times.

We computed the in vivo spike-triggered average (STA) re-
ceptive fields by cross-correlating the visual stimuli with de-
convolved calcium traces. STAs for bright dots (on-STAs)
and dark dots (off-STAs) were estimated independently and
then combined by taking the pixel-wise maximum of the on-
and off-STAs. We then presented the same sparse noise stim-
uli to the digital twin model and computed in silico silico
STA receptive fields using the model responses. To assess
STA quality, we generated response predictions by multiply-
ing each neuron’s STA with the stimulus frames and com-
pared these predictions to either the in vivo trial-averaged
responses or model responses using Pearson correlation co-
efficients. Neurons with correlations greater than 0.2 were
considered well-characterized. We then extracted the STA
receptive field centers by fitting a 2D Gaussian to the STAs,
with fits yielding an r-squared value over 0.5 considered well-
fit. Our analysis revealed that 40% of all imaged neurons had
well-characterized, well-fit in vivo STAs.

Finally, we visualized the retinotopic maps measured with
either in vivo STA or in silico STA by converting the STA re-
ceptive field centers to azimuth and elevation angles, assum-
ing the mouse was looking at the center of the monitor. To
exclude partially measured STAs, we included only neurons
with fitted STA centers located in the central 8x8 square of
the entire 12x12 stimulus grid (27% of all imaged neurons)
for the analysis presented in Supplemental Fig. 4 a, b, and
c left. For the analysis in Supplemental Fig. 4 c right, we
included neurons with the bottom 25% of response correla-
tions.

Validation of orientation tuning. To validate in silico orien-
tation tuning with in vivo orientation tuning, we collected
three additional functional scans with an expanded set of
stimuli. These stimuli contained those presented in the MI-
CrONS dataset as described in MICrONS Consortium et al.
(2021), including natural movies, global directional paramet-
ric stimuli ("monet"), and local directional parametric stimuli
("trippy"). In addition, each stimulus contained an additional
40 minutes of trials, randomly intermixed, as follows:

e Unique Global Directional Parametric Stimulus
(""Monet'): 120 seeds, 15 seconds each, 1 repeat per scan,
30 minutes total. Seeds conserved across all scans.

* Oracle Global Directional Parametric Stimulus
("Monet'): 4 seeds, 15 seconds each, 10 repeats, 10
minutes total. Seeds conserved across all scans.

We characterized both the in vivo orientation tuning in re-

sponse to 30 minutes of global directional parametric stimu-

lus ("Monet", Supplemental Fig. 7a), as well as the in silico
orientation tuning as described above for digital twin models
with shared cores and readouts trained on neurons from the
same scans, in response to stimuli matching the composition
and duration of the MICrONS release scans (Supplemental
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Fig. 7b). When we applied a threshold of gOSI > 0.25,
we found that 95% of cells had an absolute difference be-
tween their in silico and in vivo preferred orientations less
than 9.77°.

Statistical analysis of mean signal correlations. We
employed paired t-tests to compare signal correlations be-
tween presynaptic neurons and three groups of potential tar-
get neurons: connected postsynaptic neurons, axon-dendrite
proximity (ADP) neurons, and same-region control neurons.
Our analysis focused on presynaptic neurons with more than
10 postsynaptic targets for each projection type to ensure ro-
bust comparisons. For each presynaptic neuron, we com-
puted mean signal correlations with its synaptically con-
nected postsynaptic targets, ADP neurons (neurons with den-
drites in proximity to the presynaptic axon but not synapti-
cally connected), and same-region control neurons (neurons
in the same brain region but without proximal axon-dendrite
contacts). We then performed paired t-tests to compare these
mean correlations. For example, to compare connected and
ADP neuron pairs, we conducted a paired t-test between each
presynaptic neuron’s mean signal correlation with its postsy-
naptic targets versus its mean signal correlation with ADP
neurons. This approach allowed us to control for variabil-
ity across presynaptic neurons while directly comparing their
correlations with different target groups. All statistical anal-
yses were performed using the scipy package in Python.
We set the significance level (o) at 0.05 for all tests. To ac-
count for multiple comparisons, we adjusted p-values using
the Benjamini-Hochberg (BH) procedure as implemented in
the stat smodels package.

Visualization of the relationship between L, N, /Ly
and the functional similarities.

Visualization of L . To quantify the changes in L, as a func-
tion of functional similarities, we restrict our analysis to neu-
ron pairs with no synaptic connections observed between
them. We then follow these steps:

1. We compute the mean L and mean functional similar-
ities for each presynaptic neuron across all other neu-
rons that no synaptic connections with the presynaptic
neuron were observed.

We subtract the presynaptic mean from each of the
pairwise L, and functional similarities between every
neuron pair to compute ALy and Asimilarity.

The neurons pairs are then binned by Asimilarity and
the average AL, is computed for each bin.

The standard deviation of average AL, is estimated by
bootstrapping . Specifically, we resampled the neuron
pairs 1000 times with replacement and repeated steps
1-3.

Only bins with more than 10 connected neuron pairs and
more than 10 presynaptic neurons are included in the visu-
alization.

Functional connectomics reveals general wiring rule in mouse visual cortex
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Visualization of Nsyn/L,.To quantify the changes in
Ngyn/Lq as a function of functional similarities, we restrict
our analysis to neuron pairs with positive L; observed be-
tween them. We then follow these steps:

1. We compute the mean Ny, /Lg and mean functional
similarities for each presynaptic neuron across all other
neurons that no synaptic connections with the presy-
naptic neuron were observed.

2. We subtract the presynaptic mean from each of the
pairwise Ngyn/Lg and functional similarities be-
tween every neuron pair to compute ANy, /Lg and
Asimilarity.

3. The neurons pairs are then binned by Asimilarity and
the average ANy /L is computed for each bin.

The standard deviation of average AL, is estimated
through bootstrapping. Specifically, we resampled the
neuron pairs 1000 times with replacement and repeated
steps 1-3.

Only bins with more than 10 connected neuron pairs and
more than 10 presynaptic neurons are included in the visu-
alization.

Statistical modeling of "like-to-like" rules for different
anatomical measurements.

Axon-dendrite co-travel distance (L ;). L, measures the dis-
tance dendrites of one neuron travel within 5 um from an-
other neuron’s axon. Most pairs of neurons’ axons and den-
drites never come into close proximity with each other, and
their Ly is zero. Thus, the L, distribution is a non-negative
continuous distribution with a substantial non-zero probabil-
ity measure at zero L,. Thus, we modeled L, as a random
variable following the Tweedie exponential dispersion family
(with Tweedie index parameter £ € (1,2)). Tweedie distri-
butions with such index parameters are Poisson mixtures of
gamma distributions, commonly used to model continuous
data with exact zeros. We assume two neurons’ axons and
dendrites travel within 5 ym at N proximity points, where
N ~ Pois(A*), A* is the mean number of axonal dendritic
proximal contacts of the Poisson distribution. When N > 0,
we assume the distance dendrites travel within five um at
each proximal point z; (i =1,...,N) follows a Gamma dis-
tribution Gam(u’qb). Under these assumptions, the total po-
tential synapsing distance

N
Lg=2%5112,

where L; = 0 when N = 0, follows a Tweedie distribution
with 1 < & < 2. We then model the relationship between L,
functional similarities Sim (e.g., signal correlation, feature
weight similarity, receptive field location distance between
two neurons), and projection types Proj using a Tweedie-
distributed generalized linear mixed model (GLMM) with a
log link function. For analysis at the brain area level, Proj
is a nominal variable with 4 categories: V1 intra-area, HVA
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intra-area projections, feedforward projections, and feedback
projections. For analysis at the brain area and layer level, we
apply GLMMs for modeling as they have been recommended
for accounting for multi-level data dependencies in datasets
(Yu et al., 2022), such as the projection types and presynaptic
neuron proofreading progress in our study. We specify the
model as follows:

log(La,;) = Bo+ B1Simij + B2 Projy . j)
+ B35imi; X Proji; ) +Ur(i,j).i
+ €55

where:

. Ldij is the axon-dendrite co-travel distance between
presynaptic neuron ¢ and postsynaptic neuron j

 Sim;; is the functional similarity between the neuron
pair

* Proji ;) is the projection type of the neuron pair
(4,])

e (1,09, and (3 are the fixed effect coefficients of the
functional similarity, projection type, and their interac-
tion term, respectively

¢ [ is the intercept

* Uk(i,5),i 18 the random effect accounting for the pro-
jection type k and the proofread status associated with
presynaptic neuron ¢

* ¢;; is the error term, following a Tweedie distribution

The coefficients 31, B2, and 3 represent how functional sim-
ilarities and projection types affect connectivity at the axonal
scale. We fit the models for each functional similarity inde-
pendently using the glmmTMB R package. The goodness-
of-fit of the estimated models is reported as Nakagawa’s R
squared, computed with the per formance R package. We
define the axonal-scale like-to-like coefficients for each func-
tional similarity and projection type as the estimated linear
association between each category of functional similarity
conditioned on the projection type. The coefficient estimates
and the corresponding significance tests are computed for
the fitted GLMM using the emt rends function from the
emmeans R package.

Number of synapses (Nsyn). Ny, measures the number of
synapses between two neurons. We model it as a Poisson-
distributed random variable and its relationship to functional
similarities as a GLMM model with the following specifica-
tions:

log(Nsyn,;) = Po + B1Simi; + B Projy i ;)
+ﬁ35imij X P?“Ojk(iyj) +Up(i )i
+ €55

where:
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e N, syn;; is the number of synapses between presynaptic
neuron ¢ and postsynaptic neuron j

* Sim,; is the functional similarity between the neuron
pair

* Projy () is the projection type of the neuron pair
(4,7)
e (1,082, and 3 are the fixed effect coefficients of the

functional similarity, projection type, and their interac-
tion term, respectively

* Bo is the intercept

* Up(i,j),i 18 the random effect accounting for the pro-
jection type k and the proofread status associated with
presynaptic neuron ¢

* ¢;; is the error term, following a Poisson distribution

The coefficients (1,32, and (33 estimate how the functional
similarities and projection types affect connectivity regard-
less of the spatial scales (i.e., axonal or synaptic). We fit
the models for each functional similarity independently us-
ing the g1lmmTMB R package. The goodness-of-fit of the es-
timated models is reported as Nakagawa’s R squared, com-
puted with the performance R package. We define the
axonal-scale like-to-like coefficients for each functional sim-
ilarity and projection type as the estimated linear association
between each category of functional similarity conditioned
on the projection type. The coefficient estimates and the
corresponding significance tests are computed for the fitted
GLMM using the emt rends function from the emmeans
R package.

Synapse conversion rate (Nsyn /Lg). Nsyn /Lq measures the
number of synapses per millimeter axon-dendrite co-travel
distance for each neuron pair. To quantify its relationship
to functional similarities, we adopted the following GLMM
model:

log(Nsyn,;) = o+ B1Simij + B2 Projm i)
+ B3Simij X Projr(. ;) + k(i j),i
+eij+log(Lay,)
where:

. Nsynij is the number of synapses between presynaptic
neuron ¢ and postsynaptic neuron j

. Ldij is the axon-dendrite co-travel distance between
the neuron pair

 Sim;; is the functional similarity between the neuron
pair

* Projmi,j is the projection type of the neuron pair
(4,5)

e (1,082, and 3 are the fixed effect coefficients of the

functional similarity, projection type, and their interac-
tion term, respectively
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* Bo is the intercept

® Up(q,j),; 18 the random effect accounting for the pro-
jection type k and the proofread status associated with
presynaptic neuron ¢

¢ is the error term, following a Poisson distribution

The above equation can be re-arranged to:

SYN;j

Ly

log = fo+ f1.Sim; —‘rﬁgP?“Ojk(i’j)

i
+ B35imij X Projyi,j) + tk(i,j),i
+ €55

Thus, (31,32, and 53 model how the functional similarities
affect synapse conversion rate (Ngyn/Lg) at the synaptic
scale. We fit the models for each functional similarity in-
dependently using the g1lmmTMB R package. The goodness-
of-fit of the estimated models is reported as Nakagawa’s R
squared, computed with the performance R package. We
define the like-to-like coefficients of each functional simi-
larity for each projection type as the estimated linear asso-
ciation between each category of functional similarity con-
ditioned on the projection type. The coefficient estimates
and the corresponding significance tests are computed for
the fitted GLMM using the emt rends function from the
emmeans R package. To avoid fitting models to projection
types with little data or dominated by few presynaptic neu-
rons, for all the models described above, we only include and
report like-to-like coefficients to projection types with more
than 30 synapses observed, more than 5 presynaptic neurons,
and with none of the presynaptic neurons contributing more
than half of all synapses observed.

Statistical analysis of functional similarities and
synaptic anatomy. We investigated the relationship be-
tween functional similarities of neurons and the anatomi-
cal features of their synaptic connections. Our analysis ac-
counted for the confounding effect of axon-dendrite co-travel
distance (Lg), which correlates with both functional simi-
larities and synaptic measurements. To isolate the effect of
synaptic anatomy on functional similarity, we employed a
two-step regression approach:

First, we condition our analysis on the effect of L; from the
functional similarity measure. This process involves:

1. Fitting a linear regression model with functional simi-
larity as the dependent variable and L, as the indepen-
dent variable.

Calculating the residuals from this model, which rep-
resent the variation in functional similarity that cannot
be explained by L alone.

These residuals become our new measure of functional simi-
larity, adjusted for the influence of L. Next, we constructed
a linear regression model using these residuals as the de-
pendent variable. The independent variables in this model

Functional connectomics reveals general wiring rule in mouse visual cortex
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included anatomical measurements of synaptic connections,
the total number of synapses between neuron pairs and the
mean synaptic cleft volume.

This approach allows us to test whether synaptic measure-
ments significantly predict functional similarities between
neurons, beyond what can be explained by their physical
proximity (as measured by Lg).

Common input analysis.

Functional similarity among all postsynaptic neurons shar-
ing one common input. For a connectivity graph GG, we define

j#iEkg (1,5) STk Nsyny; Nsyniy,

pa(i) =

)

2j#i%kg (i,5) Nsyng; Nsyn gy,

where 7 is a presynaptic neuron and j, k are any two neurons
in the volume. p measures the average similarity of all post-
synaptic neurons of the presynaptic neuron 7.

Estimation of p expected by pairwise "like-to-like" connec-
tivity rules. With the observed connectivity graph G, we esti-
mated the relationship between Ny, and the functional simi-
larities (in silico signal correlation, feature weight similarity,
and receptive field center distance) with GLMM similar to
the specifications for modeling the number of synapses de-
scribed above. Instead of modeling each functional similar-
ity independently, we included all functional similarities and
their interaction with projection types in a single model to ac-
count for as much pairwise connectivity rule as possible. We
then estimated the expected functional similarity among all
postsynaptic neurons sharing one common input ¢ as:

N/

i SYNik

Xj#i S kg (i,5) S 1Mk Niyn,

pe (i) =

)

S5k (i,5) Noyn,; Neyn,

where N‘éynij is the predicted number of synapses between

neurons ¢ and j given their functional similarities by the
GLMM.

RNN model. The RNN model used to produce the results
in Fig. 6 consisted of a vanilla RNN layer with 1000 hid-
den units and a hyperbolic tangent activation function simu-
lated over 20 time steps. Static inputs were obtained by pass-
ing MNIST images through a linear layer. Outputs were ob-
tained by passing the hidden activations at the last time step
through another linear layer. All three layers were trained for
10 epochs, a batch size of 512, the categorical cross entropy
loss function, and the Adam optimizer in PyTorch. A pre-
and post-synaptic neuron pair was classified as connected if
the associated weight was in the top 35" percentile of all
weights, specifically if the weight larger than 0.01. In Fig. 6d,
weights were chosen as candidates for ablation if the weight
was above 0.01 and the neurons’ signal correlation was above
0.2. About 10.5% of the weights met these criteria, and ab-
lated weights were selected randomly from this set. Chang-
ing the thresholds for weights and signal correlations did not
change our conclusions.
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Software. Experiments and analysis are carried out with cus-
tom built data pipelines. The data pipeline is developed
in Matlab, Python, and R with the following tools: Psy-
chtoolbox, Scanlmage, DeepLabCut, CAIMAN, and Lab-
view were used for data collection. DataJoint, MySQL, and
CAVE were used for storing and managing data. Mesh-
party, NEURD, and pcg_skel were used for morphology anal-
ysis. Numpy, pandas, SciPy, statsmodels, scikit-learn, Py-
Torch, tidyverse, glmmTMB, performance, and emmeans
were used for model training and statistical analysis. Mat-
plotlib, seaborn, HoloViews, Ipyvolume, and Neuroglancer
were used for graphical visualization. Jupyter, Docker, and
Kubernetes were used for code development and deployment.

Data availability. Al MICrONS data have already
been released on BossDB (https://bossdb.org/
project/microns-minnie, please also see https:
//www.microns—explorer.org/cortical-mm3
for details). Additional data including learned weights of
the digital twin model and in silico similarity metrics will
be made publicly available in an online repository latest
upon journal publication. Please contact the corresponding
authors for advance access.

Code availability. Custom developed code used in the anal-
ysis including digital twin architecture will be made publicly
available in an online repository latest upon journal publica-
tion. Please contact the corresponding authors for advance
access.
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Supplemental Figure 1. Example proofread presynaptic axons in EM cortical space and their connected, ADP, and same
region controls. The axon for every presynaptic (presyn) neuron is shown twice, once as a "local" projection type and again as a "long-
range" type (even if the neuron has no local or long-range projections). The six digit ID from Table “nucleus_detection_v0" (MICrONS
Consortium et al., 2021) is displayed above both plots. For each plot, the soma centroids of connected neurons, ADP controls, and
same region controls are plotted in black, red, and blue, respectively. Gray dots are soma centroids of all other functionally matched
neurons not used as controls for that presyn. The dashed gray line represents the V1-HVA boundary. Scale bar = 100um. a, Example
fully proofread presynaptic axons with somas in V1. “Fully proofread” neurons are those where a proofreader attempted to extend
every axonal branch to completion. b, Example fully proofread presynaptic axons with somas in HVA ¢, Example partially proofread
presynaptic axons with somas in HVA. “Partially proofread” neurons are those where a proofreader only extended axonal branches that
were pre-screened for whether they projected inter-areally (specifically to enrich for feedback connections).
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Supplemental Figure 2. The digital twin signal correlations align better with the in vivo benchmark than in vivo signal corre-
lations generated with less data. a, Correlation of in vivo signal correlations generated with 6 video clips and varying numbers of
repeats to in vivo signal correlations generated with 6 clips and 30 repeats, for two animals. 10 repeats (red marker) reasonably ap-
proximates the saturation point and is the number used for all other analyses. b, Signal correlation matrices of 1000 neurons generated
from in vivo responses to 6 video clips (left), in vivo responses to 30 video clips (benchmark, middle) and digital twin responses to 250
video clips (in silico, right). The benchmark matrix is ordered by ward’s hierarchical clustering. The in vivo and in silico signal correlation
matrices are ordered in the same order as the benchmark matrix. The fine structure of the in silico matrix is qualitatively more similar
to the benchmark than the in vivo matrix generated with 6 video clips is to the benchmark. ¢, 2D heatmaps of signal correlations from
the benchmark (same benchmark as in b) vs in vivo responses to 6 video clips (left) and in silico responses to 250 clips (right). The
correlation of in silico signal correlations to the benchmark is higher than the correlation of in vivo signal correlations generated with 6
video clips to the benchmark (0.69 vs 0.40). Colorbar: 2D bin counts in log scale. d, The correlation of in silico signal correlations to
the benchmark vs the correlation of in vivo signal correlations generated with 6 video clips to the benchmark for three animals. Error
bars are standard deviations estimated through resampling. All data points are in the upper left corner indicating that in silico signal
correlations outperform in vivo signal correlations generated with 6 video clips. (p-value < 0.001 for all three animals)
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Supplemental Figure 3. Synaptic connectivity increases with empirical signal correlations measured directly in vivo rather
than via the digital twin. a, Mean in vivo signal correlation is different (mean 4+ sem, paired t-test) for connected pairs, ADP controls,
and same area controls for all projection types, as in Fig 2d. b, Axon-dendrite co-travel distance (umL,) increases in a graded fashion
with in vivo signal correlation for all projection types, as in Fig 2e. ¢ Synapse density (Nsyrn/mmLg) increases in a graded fashion
with signal correlation, for all projection types, as in Fig 2f. The shaded regions in b and ¢ are bootstrap-based standard deviation. d,
Synapse size (logig cleft volume in voxels) is positively correlated with in vivo signal correlation after regressing out L, (p-value by
linear regression), as in Fig 2h. e, In vivo signal correlations increases with number of synapses after regressing out L (p-values by
linear regression), as in Fig 2j. (For all panels, * = p-value < 0.05, *x = p-value < 0.01, %% = p-value < 0.001, multiple comparison

correction by BH procedure)
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Supplemental Figure 4. Model readout center aligns with receptive field center measured in vivo with sparse noise stimuli.
a, Visual comparison of STAs generated from in vivo responses to a sparse noise stimulus (left) vs STAs generated from in silico
responses to the same stimulus (right) for three animals (blue, orange, and green). The black cross represents the model readout
location. Examples are randomly chosen from the top =~ 40% of neurons remaining after a threshold on in vivo STA quality is applied.
b, Model readout location vs in vivo STA center for azimuth coordinate (left) and elevation coordinate (right). ¢, Retinotopic maps for
animal id: 29755. Left: Maps generated with top ~ 40% of neurons after an in vivo STA quality threshold is applied. Right: Maps for
the bottom =~ 25% of neurons. Top row: maps generated from in vivo STA’s centers. Bottom row: maps generated from the digital
twin model readout location. The maps generated from the model are qualitatively less noisy, even for maps generated from neurons
with poor STA quality. Colorbar: degree of visual angle for both azimuth and elevation coordinates. Anatomical axes: A = anterior, P =
posterior, M = medial, L = lateral. Scale bar: 100 um.
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Supplemental Figure 5. Postsyns with a common input are more similar to each other than expected by a pairwise like-to-like
rule at both axonal and synaptic scale. a, Mean pre-post signal correlations in the data (dark gray, "observed") and the model (blue,
"expected") are not significantly different, indicating that the model reproduces the expected pairwise like-to-like rule b, Mean pairwise in
silico signal correlation of postsyns, reproduced from Fig 5¢. The observed data shows significantly higher postsyn to postsyn similarity
than predicted by the model fit with only a pairwise rule, for three out of four projection types. ¢, As in a, but at “Axonal" scale. d, As in
b, but at “Axonal" scale. e, As in ¢, but at “Synaptic" scale. f, As in d, but at “Synaptic" scale.
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Supplemental Figure 6. Performance of various functional metrics in predicting axon-dendrite co-travel distance (L, Axonal
scale) or synapse density (Nsy, /mmL 4, Synaptic scale). Model performance of GLMMs (Nakagawa’s conditional RQ) for predicting
axon-dendrite co-travel distance (Ly): a, b, ¢ and synapse density (Nsyn/mmLg): d, e, f, for all coregistered neurons: a, d, all visually
responsive, well predicted neurons: b, e, and neurons tuned to oriented stimuli: ¢, f. The GLMMs are fit to predict axon-dendrite
co-travel distance or synapse density independently with each functional metric, the projection type, and the interaction between the
two while considering the interaction term of projection type and presynaptic neuron identity as random effects. The baseline models
were not fitted with information about functional metrics. They predict axon-dendrite co-travel distance or synapse density with the
projection type alone while considering the interaction term of projection type and presynaptic neuron identity as random effects.
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Supplemental Figure 7. In silico orientation tuning is consistent with in vivo orientation tuning a, Sample frame from global
directional parametric stimulus ("Monet") used to characterize orientation and direction selectivity. Directional motion was orthogonal to
orientation, and was tested at 22.5¢intervals. b, Schematic of domain validation experimental design. In a single scan in a new animal,
neuronal responses are collected in response to sufficient stimuli to both train the digital twin model (natural stimuli) and characterize
orientation tuning (Monet) from in vivo responses. Later, in silico orientation tuning is extracted from model responses to parametric
stimuli, and compared against in vivo orientation tuning for the same neurons. ¢, Comparison of in silico and in vivo mean responses
per stimulus direction (mean 4+ SEM), fitted tuning curves (lines), and extracted preferred orientation (dotted lines) for three neurons. d,
95th percentile difference in preferred orientation between in silico and in vivo fitted responses as a function of gOSI threshold. Dotted
lines correspond to gOSI > 0.25 threshold applied for all analyses and resulting 95th percentile difference in preferred orientation
~ 9.77° across all three animals imaged. Lines correspond to individual animals (gray) or cumulative across all animals (black). e, f,
Two-dimensional histogram of in silico versus in vivo preferred orientation for all neurons across three animals (e) and only neurons
with gOSI > 0.25 (f).
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Supplemental Figure 8. Analysis repeated with in silico orientation preference. a,
derived from in silico responses to parametric stimuli for tuned (gOSI > 0.25) neurons along with both feature weight similarity and
receptive field center distance (reproduced from Fig 3) at axonal scale. b, same as in a, at synaptic scale. ¢, Area/ layer joint
membership breakout as in Fig 4 for in silico A ori at axonal scale. d, As in ¢ but at synaptic scale. All analyses are centered per
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Supplemental Figure 9. Distribution of in silico orientation preference and comparison to previous literature. a, Distribution
of orientation preference of tuned neurons (gOSI > 0.25) derived from in silico responses to parametric stimuli (see Methods). Note
the cardinal bias in orientation preference distribution, in which orientation preference for 0 and 90 degree angles is overrepresented.
Gold: presynaptic neurons, Gray: all other neurons. b, As in a but for tuned neurons in V1 L2/3. Difference in preferred orientation
(A Orientation) for neurons in V1 L2/3 for connected pairs (¢, f), unconnected pairs (d, g), and the ratio of connected / unconnected
(“connection probability", e, h) for our study vs Lee et al. 2016 (c-e) and vs Ko et al. 2011 (f-h). The connected V1 L2/3 neurons in
our study show a strong like-to-like effect, consistent with both Lee et al. 2016 and Ko et al. 2011 (c, f), however unlike Lee et al. 2016
and Ko et al. 2011, the unconnected neurons in our study also show a strong like-to-like effect (d, g) indicating that the like-to-like
effect seen in connected pairs results from an orientation preference bias. This bias likely explains why we do not observe significant a
like-to-like effect between V1 L2/3 neurons at axonal scale or synaptic scale in Supplemental. Fig 8, (i.e. when pairs are tested against
region-matched controls).
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Supplemental Figure 10. Distribution of pairwise functional measurements. Density distribution of connected pairs (black), ADP
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Supplemental Figure 11. Pairwise functional measurements across varying levels of model predictive performance. Mean of
in vivo signal correlations (a), in silico signal correlations (b), feature weight similarity (¢), and RF center distance (d) for all projection
types across 4 quantiles of model predictive performance (CC,s). All panels share a base filtering for visual responsiveness (C'Craz
> 0.4, 90% of neurons pass this threshold). Presynaptic neurons are filtered to CC,;,s > 0.2 (4 did not pass this threshold).
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Supplemental Figure 12. Signal correlation distributions for connected neurons vs all neurons in the RNN before and after

training.
a, Signal correlation distribution for connected neurons vs all neurons in the RNN before training. A neuron pair was classified
50 percentile of all weights. b, Same as a except after training.
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Supplemental Table 1. Proofread presynaptic neuron nucleus ID’s, area, layer, and proofreading strategy. nucleus_id’s are from CAVE
table nucleus_detection_v0

Ding, Fahey, Papadopoulos et al.

index nucleus_id area layer proofreading strategy
1 189149 V1 L2/3 full cleaning and extension
2 222998 V1 L2/3 full cleaning and extension
3 223037 V1 L2/3 full cleaning and extension
4 224565 V1 L2/3 full cleaning and extension
5 225498 V1 L4 full cleaning and extension
6 230236 V1 L5 full cleaning and extension
7 236197 V1 L6 full cleaning and extension
8 255217 V1 L2/3 full cleaning and extension
9 256443 V1 L2/3 full cleaning and extension
10 256576 V1 L2/3 full cleaning and extension
11 258307 V1 L2/3 full cleaning and extension
12 259167 V1 L2/3 full cleaning and extension
13 262773 A%t L4 full cleaning and extension
14 264870 V1 L4 full cleaning and extension
15 269247 V1 L6 full cleaning and extension
16 269380 V1 L6 full cleaning and extension
17 271518 V1 L6 full cleaning and extension
18 292676 V1 L2/3 full cleaning and extension
19 292685 V1 L2/3 full cleaning and extension
20 292713 V1 L2/3 full cleaning and extension
21 294484 V1 L2/3 full cleaning and extension
22 294545 V1 L2733 full cleaning and extension
23 294657 V1 L2/3 full cleaning and extension
24 294776 V1 L2/3 full cleaning and extension
25 294858 V1 L2/3 full cleaning and extension
26 294897 V1 L2/3 full cleaning and extension
27 296726 V1 L2/3 full cleaning and extension
28 300763 V1 L5 full cleaning and extension
29 301095 V1 L5 full cleaning and extension
30 301189 V1 L5 full cleaning and extension
31 327859 V1 L2/3 full cleaning and extension
32 330079 V1 L4 full cleaning and extension
33 330326 \%! L4 full cleaning and extension
34 331945 V1 L5 full cleaning and extension
35 332199 Vi L4 full cleaning and extension
36 335175 V1 L5 full cleaning and extension
37 460053 RL L4 full cleaning and extension
38 460391 RL L5 full cleaning and extension
39 487512 RL L2/3 full cleaning and extension
40 489675 RL L2/3 full cleaning and extension
41 493419 RL L5 full cleaning and extension
42 493806 RL L5 full cleaning and extension
43 493885 RL L5 full cleaning and extension
44 493968 RL L4 full cleaning and extension
45 516758 RL L2/3 full cleaning and extension
46 517056 RL L2/3 full cleaning and extension
47 518848 RL L2/3 full cleaning and extension
48 518853 AL L2/3 full cleaning and extension
49 518898 RL L2/3 full cleaning and extension
50 520364 RL L4 full cleaning and extension
51 522656 RL L4 full cleaning and extension
52 524491 RL L5 full cleaning and extension
53 525405 RL L5 full cleaning and extension
54 525498 RL L5 full cleaning and extension
55 525758 RL L5 full cleaning and extension
56 553325 RL L2/3 full cleaning and extension
57 554200 AL L2/3 full cleaning and extension
58 554741 RL L2/3 full cleaning and extension
59 554833 RL L4 full cleaning and extension
60 554921 RL L2/3 full cleaning and extension
61 556823 RL L4 full cleaning and extension
62 557030 RL L4 full cleaning and extension
63 557121 RL L4 full cleaning and extension
64 558684 RL L5 full cleaning and extension
65 558709 RL L4 full cleaning and extension
66 559081 RL L5 full cleaning and extension
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Supplemental Table 1. Proofread presynaptic neuron nucleus ID’s, area, layer, and proofreading strategy

index nucleus_id area layer proofreading strategy
67 559381 RL L5 full cleaning and extension
68 560109 RL L5 full cleaning and extension
69 560217 RL L5 full cleaning and extension
70 560530 RL L5 full cleaning and extension
71 560732 RL L5 full cleaning and extension
72 562808 RL L5 full cleaning and extension
73 581967 AL L2/3 full cleaning and extension
74 582056 AL L2/3 full cleaning and extension
75 582129 AL L2/3 full cleaning and extension
76 582210 AL L2/3 full cleaning and extension
77 583848 AL L2/3 full cleaning and extension
78 583961 RL L2/3 full cleaning and extension
79 585723 RL L4 full cleaning and extension
80 587426 AL L4 full cleaning and extension
81 588839 RL LS full cleaning and extension
82 588983 AL L5 full cleaning and extension
83 610498 AL L2/3 full cleaning and extension
84 616159 AL L5 full cleaning and extension
85 516621 RL L2/3 full cleaning and partial axonal extension
86 516988 RL L2/3 full cleaning and partial axonal extension
87 517993 RL L2/3 full cleaning and partial axonal extension
88 518004 RL L2/3 full cleaning and partial axonal extension
89 518134 RL L2/3 full cleaning and partial axonal extension
90 518224 RL L2/3 full cleaning and partial axonal extension
91 518312 RL L2/3 full cleaning and partial axonal extension
92 518623 RL L2/3 full cleaning and partial axonal extension
93 518632 RL L2/3 full cleaning and partial axonal extension
94 519746 RL L2/3 full cleaning and partial axonal extension
95 520027 RL L4 full cleaning and partial axonal extension
96 520182 RL L2/3 full cleaning and partial axonal extension
97 551802 RL L2/3 full cleaning and partial axonal extension
98 553216 RL L2/3 full cleaning and partial axonal extension
99 553283 RL L2/3 full cleaning and partial axonal extension
100 553321 RL L2/3 full cleaning and partial axonal extension
101 553339 RL L2/3 full cleaning and partial axonal extension
102 553360 RL L2/3 full cleaning and partial axonal extension
103 553469 RL L2/3 full cleaning and partial axonal extension
104 553556 RL L2/3 full cleaning and partial axonal extension
105 553585 RL L2/3 full cleaning and partial axonal extension
106 553589 RL L2/3 full cleaning and partial axonal extension
107 554734 RL L2/3 full cleaning and partial axonal extension
108 554775 RL L2/3 full cleaning and partial axonal extension
109 554891 RL L2/3 full cleaning and partial axonal extension
110 554900 RL L2/3 full cleaning and partial axonal extension
111 555010 RL L2/3 full cleaning and partial axonal extension
112 580774 AL L2/3 full cleaning and partial axonal extension
113 580826 AL L2/3 full cleaning and partial axonal extension
114 580905 AL L2/3 full cleaning and partial axonal extension
115 580948 RL L2/3 full cleaning and partial axonal extension
116 580988 AL L2/3 full cleaning and partial axonal extension
117 581988 AL L2/3 full cleaning and partial axonal extension
118 581998 AL L2/3 full cleaning and partial axonal extension
119 582011 AL L2/3 full cleaning and partial axonal extension
120 582091 AL L2/3 full cleaning and partial axonal extension
121 582294 AL L2/3 full cleaning and partial axonal extension
122 582313 RL L2/3 full cleaning and partial axonal extension
123 582353 AL L2/3 full cleaning and partial axonal extension
124 582388 RL L2/3 full cleaning and partial axonal extension
125 582390 RL L2/3 full cleaning and partial axonal extension
126 582409 RL L2/3 full cleaning and partial axonal extension
127 582412 RL L2/3 full cleaning and partial axonal extension
128 582414 RL L2/3 full cleaning and partial axonal extension
129 582444 RL L2/3 full cleaning and partial axonal extension
130 582468 RL L2/3 full cleaning and partial axonal extension
131 582471 RL L2/3 full cleaning and partial axonal extension
132 583659 AL L2/3 full cleaning and partial axonal extension
133 583739 AL L2/3 full cleaning and partial axonal extension
134 583741 AL L2/3 full cleaning and partial axonal extension
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Supplemental Table 1. Proofread presynaptic neuron nucleus ID’s, area, layer, and proofreading strategy

Ding, Fahey, Papadopoulos et al.

index nucleus_id area layer proofreading strategy
135 583792 AL L2/3 full cleaning and partial axonal extension
136 583891 RL L2/3 full cleaning and partial axonal extension
137 584004 RL L2/3 full cleaning and partial axonal extension
138 608166 AL L2/3 full cleaning and partial axonal extension
139 608213 AL L2/3 full cleaning and partial axonal extension
140 610396 AL L2/3 full cleaning and partial axonal extension
141 610403 AL L2/3 full cleaning and partial axonal extension
142 610434 AL L2/3 full cleaning and partial axonal extension
143 610535 AL L2/3 full cleaning and partial axonal extension
144 610607 AL L2/3 full cleaning and partial axonal extension
145 610615 AL L2/3 full cleaning and partial axonal extension
146 612143 AL L2/3 full cleaning and partial axonal extension
147 612266 AL L2/3 full cleaning and partial axonal extension
148 612352 AL L2/3 full cleaning and partial axonal extension
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Supplemental Table 2. Pairwise comparison of the presynaptic mean in silico signal correlation between different neuron pair popu-
lations. For each comparison, a pairwise t-test was performed to test the null hypothesis that for each presynaptic neuron, the mean
in silico signal correlation is the same between two postsynaptic populations. adjusted p-value is the adjusted p-value through the BH
multicomparison correction procedure.
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ADP vs Same region HVA->HVA 0.015 5.30e-05 7.96e-05 4.405 53
ADP vs Same region HVA->V1 0.007 1.14e-02 1.14e-02 2.661 39
ADP vs Same region VI->HVA 0.011 3.12e-03 3.41e-03 3475 17
ADP vs Same region V1->Vl 0.009 3.18e-05 5.45e-05 4.793 35
Connected vs ADP HVA->HVA 0.026 3.58e-08 2.15e-07 6.460 53
Connected vs ADP HVA->V1 0.029 7.85e-06 1.57e-05 5.168 39
Connected vs ADP VI->HVA  0.023 1.25¢-03 1.50e-03 3.908 17
Connected vs ADP V1->V1 0.030 7.33e-06 1.57e-05 5.285 35

Connected vs Same region HVA->HVA 0.042 3.37e-10 4.04e-09 7.733 53
Connected vs Same region HVA->V1 0.036 5.77e-06 1.57e-05 5.266 39
Connected vs Same region VI1->HVA 0.034 9.21e-05 1.23e-04 5.175 17
Connected vs Same region V1->V1 0.039 4.05e-07 1.62e-06 6.253 35
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Supplemental Table 3. Number of neurons and neuron pairs invovled in the visualization of the correlation between in silico signal
correlation and L / neuron pair (synapses excluded) in different projection types across brain areas.

£ Z

3 5

g R N

g 5 3 8 & g

- g = S 3 @ Z )

g s 2 B g5 % g, g
& 2 2 g g B £ o g2 9 =
z 2 g g S & g a S g £
= I s 2 Y 2 < S = g
o 2 7 a2 Ay L i } ) < ~
2 e £ g2 g E @2 2 s £ 3
3 2z 3 & < 3 & & & 7 N
> = 5 % s B B B s B =
& < * % * % % #* #* =
Vi—->V1 -0.30--020 27 O 427 27 O 570 1518 0 14.618620
Vi—-V1 -020--0.10 36 0 3624 36 0 8358 22716 0 235.352922
Vi—->V1 -0.10--0.00 36 0 5939 36 0 31843 82271 0 943.324036
Vi—->V1 -0.00 - 0.10 36 0 5575 36 0 22037 53619 0 704.008419
Vi—>V1 0.10-0.20 36 0 3884 36 0 8136 18497 0 268.080820
Vi—>V1 0.20 - 0.30 36 0 1938 36 0 2662 5310 0 86.811831
Vi—->V1 0.30-0.40 36 0 754 36 0 862 1373 0 29.303881
Vi—>V1 0.40 - 0.50 34 0 245 27 O 256 350 0 8.436686
HVA—HVA -030--020 100 O 737 98 0 2642 9566 0 76.177507
HVA— HVA -020--0.10 102 0 2207 102 0O 13596 36699 0 417.557033
HVA— HVA -0.10--0.00 102 0 2593 102 0 29335 70079 0 994.561220
HVA— HVA -000-0.10 102 0 2549 102 0 24611 58614 0 853.487712
HVA— HVA 0.10-0.20 102 0 2264 102 0 13152 29881 0 484.795597
HVA— HVA 020-0.30 102 0 1677 102 0 5266 10534 0 203.187307
HVA— HVA 0.30-040 102 0 828 102 0 1469 2700 0 57.001171
V11— HVA -020--0.10 29 O 958 29 0O 1430 7995 0  30.452029
V1— HVA -0.10--0.00 29 0 2203 29 O 5725 32680 O 141.454788
V11— HVA -0.00 - 0.10 20 0 2027 29 0 4825 23561 0O 123.475999
V1— HVA 0.10-0.20 20 0 1038 29 0O 1541 7314 0  38.443692
V11— HVA 0.20 - 0.30 290 0 348 29 O 398 1794 0 9.596663
HVA—-V1 -0.30--020 87 O 450 87 O 731 8861 0 13.161841
HVA—-V1 -020--0.10 92 0 2834 92 0 6850 88153 0O 123.501498
HVA—V1 -0.10--0.00 92 0 5315 92 0 17932 245585 0 345.186645
HVA—-V1 -0.00 - 0.10 92 0 4582 92 0 13701 180600 0O 279.289998
HVA—V1 0.10-0.20 92 0 2753 92 0 5823 70851 O 119.710286
HVA—-V1 0.20 - 0.30 92 0 1345 92 0 2135 21317 0 44995031
HVA—V1 0.30-0.40 92 0 479 92 0 616 5487 0 13.275195
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Supplemental Table 4. Number of neurons and neuron pairs invovled in the visualization of the correlation between in silico signal
correlation and Nsyn /mm L in different projection types across brain areas.

£ Z

= g

g P &

= : § £ &

£ S = 5 & ’

15} 5 3 o 5 5

= 2 = = 0o ® Z &
© g g 3 E 5 3 g &
s 3 £ £ 5% z &5 E 3 2
= ° = g S 2 A 3 2
g S > & A o =9 < & & E
g 2 5 ¢ 82§ Tu :
3 z 8 & < & & & & = =
2 = 5 B s % B T B © E
& < * % * # % *= #® % 2
Vi—V1 -0.30--020 25 14 519 0 14 723 0 15 18.799029
Vi—=Vl -0.20--0.10 36 205 3928 0 214 9922 0 232 283.947056
Vi—V1 -0.10--0.00 36 736 5943 0 850 33384 0 945 1018.234754
ViVl -0.00-0.10 36 664 5534 0 767 21646 O 881 721.429779
Vi—>Vi 0.10-0.20 36 305 3713 0 337 7791 0 392 267.558394
Vi—Vl 0.20 - 0.30 36 135 1817 0 145 2574 0 182 86.912818
Vi—>Vi1 0.30-0.40 36 46 693 0 47 823 0 54 29.728849
Vi—V1 0.40 - 0.50 29 27 220 O 27 256 0 32 8.926083
HVA— HVA -030--020 92 49 830 0 52 3241 0 59 94.472855
HVA—HVA -020--0.10 99 285 2252 0 328 14928 0 359 481.976078
HVA—HVA -010--0.00 99 624 2596 0 778 30495 0 836 1077.808884
HVA— HVA -000-0.10 99 584 2538 0 755 24558 0 841 893.638912
HVA— HVA 0.10-0.20 99 324 2231 0 392 12399 0 440 472.381883
HVA— HVA 0.20-0.30 99 160 1590 0 169 4537 0 194 180.483568
HVA— HVA 030-040 95 52 714 0 54 1168 0 59 49.267130
V1— HVA -0.20--0.10 28 38 1053 O 38 1684 O 39 37.691653
V1—- HVA -0.10--0.00 29 187 2231 0 200 6180 0 226 156.738585
V1— HVA -0.00-0.10 29 159 1975 0 169 4723 0 194 126.623281
V11— HVA 0.10-0.20 28 76 938 0 80 1468 0 94 38.089134
V11— HVA 0.20 - 0.30 26 24 301 0 24 368 0 26 9.252531
HVA—V1 -0.30--020 69 13 531 O 13 879 0 13 15.455242
HVA—=V1 -0.20--0.10 90 133 3029 O 138 7559 O 150 142.347339
HVA—V1 -0.10--0.00 90 364 5363 O 385 18588 0 425 370.298550
HVA—V1 -0.00-0.10 90 327 4534 0 349 13530 0 370 281.465665
HVA—V1 0.10 - 0.20 90 142 2648 0 146 5607 O 168 118.052918
HVA—V1 0.20 - 0.30 90 67 1257 O 70 2008 O 77 43.367913
HVA—V1 0.30-040 76 25 423 0 27 559 0 38 12.949679
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Supplemental Table 5. Estimated marginal means of linear trends for the effect of in silico signal correlation on L; / neuron pair
(synapses excluded) in different projection types across brain areas. z and p-value are the z statistics and p-value of the marginal mean
linear trends estimated from the fitted GLMMs. adjusted p-value is the adjusted p value through the BH multicomparison correction
procedure.
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Vi—>Vi 1.125 5.18e-160 2.59e-160 36 0 6237 36 0 O 74829 185807
HVA— HVA 1109 4.24e-278 1.06e-278 99 0 2635 99 0 0 89611 212583
V11— HVA 1.101  5.36e-25 536e-25 29 0 2525 29 0 O 14126 74633
HVA—-V1 0.872 1.48e-82 1.11e-82 90 0 6148 90 O O 47811 608388
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Supplemental Table 6. Estimated marginal means of linear trends for the effect of in silico signal correlation on Ny /mm Ly in
different projection types across brain areas. z and p-value are the z statistics and p-value of the marginal mean linear trends estimated
from the fitted GLMMs. adjusted p-value is the adjusted p value through the BH multicomparison correction procedure.
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Supplemental Table 7. Number of neurons and neuron pairs invovled in the visualization of the correlation between in vivo signal
correlation and L / neuron pair (synapses excluded) in different projection types across brain areas.
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Vi—>V1 -0.10--0.00 36 0 6114 36 0 23976 60410 0O 728.386124
Vi—=>Vl -0.00 - 0.10 36 0 5449 36 0 15642 37077 O 501.565276
Vi—>Vi 0.10-0.20 36 0 4178 36 0 9062 20187 0 296.744655
Vi—=V1 0.20 - 0.30 36 0 2902 36 0 4947 10613 O  158.206795
Vi—=>V1 0.30 - 0.40 36 0 1800 36 0 2584 5761 0O 82.535045
Vi—>V1 0.40 - 0.50 36 0 1091 36 0 1399 3143 0 45.476341
Vi—>V1 0.50 - 0.60 35 0 625 35 O 768 1571 0 24.006232
Vi—>V1 0.60 - 0.70 31 0 317 29 O 384 747 0 12.507211
HVA—HVA -040--030 65 0 225 64 O 446 1904 0 11.872237
HVA— HVA -030--020 104 0 1212 104 O 4695 15354 0 141.825146
HVA— HVA -020--0.10 106 0 2805 106 O 20166 54570 0 653.240105
HVA—HVA -010--0.00 106 0 2972 106 O 32117 79749 0 1072.653987
HVA— HVA -000-0.10 106 0 2910 106 O 22291 56261 0O 763.312753
HVA—HVA 0.10-0.20 106 0 2621 106 O 12457 31246 0 436.743130
HVA— HVA 0.20-0.30 106 0 2107 106 O 6603 15249 0  235.733457
HVA—HVA 030-040 106 0 1408 106 O 3156 6797 0  120.009172
HVA— HVA 040-0.50 106 0 842 106 0 1479 2788 0 57.110029
HVA—HVA 0.50-0.60 9 0 417 95 0 575 977 0 24.809982
V11— HVA -0.30--020 29 O 381 29 O 472 3237 0 11.502273
V11— HVA -0.20--0.10 29 O 1740 29 0 3188 17931 O 77.885536
V11— HVA -0.10--0.00 29 0 2299 29 0O 5273 29111 O 131.740088
V11— HVA -0.00 - 0.10 20 0 1896 29 0 3584 17887 O 87.290731
V11— HVA 0.10 - 0.20 29 0 1232 29 0 1850 8793 0 46.915050
V11— HVA 0.20 - 0.30 20 0 706 29 O 915 4306 0 23.142961
V11— HVA 0.30 - 0.40 29 0 376 29 O 432 2088 0 9.855496
V11— HVA 0.40 - 0.50 20 0 212 29 O 253 1004 0O 6.288603
HVA—=V1 -0.30--020 92 0 1188 92 0 1960 24054 O 34.934123
HVA—V1 -0.20--0.10 94 0 4640 94 0 12391 153177 O 234.769489
HVA—=V1 -0.10--0.00 94 0 5673 94 0 17333 227262 0 341.230850
HVA—V1 -0.00 - 0.10 94 0 4812 94 0 11544 145012 0 230.704006
HVA—-V1 0.10-0.20 94 0 3291 94 0 6244 75588 0 127.891275
HVA—-V1 0.20 - 0.30 94 0 1974 94 0 3115 37057 O 64.396003
HVA—V1 0.30 - 0.40 94 0 1167 94 0 1611 17422 0 31.785912
HVA—=V1 0.40 - 0.50 94 0 578 94 0 699 7804 0O 14.966269
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Supplemental Table 8. Number of neurons and neuron pairs invovled in the visualization of the correlation between in vivo signal
correlation and Nsyn /mm L in different projection types across brain areas.
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Vi—=>V1 -0.30--0.20 34 101 2202 O 104 4393 0 116 120.196380
Vi—->V1 -0.20--0.10 36 483 5747 0 520 20983 0 569 614.701246
Vi—V1 -0.10--0.00 36 588 6111 0 657 23822 0 734 749.965351
Vi—->V1 -0.00 - 0.10 36 477 5353 0 525 15389 0 582 510.116138
Vi—>Vi1 0.10-0.20 36 299 4038 0 327 8806 0O 382 301.521896
Vi—>V1 0.20-0.30 36 205 2774 0 223 4735 0 263 160.163966
Vi—>Vi1 0.30-0.40 36 111 1665 0 112 2461 0 135 82.914655
Vi—>V1 0.40 - 0.50 36 64 1006 O 66 1325 0O 79 43.172834
Vi—->V1 0.50 - 0.60 35 29 571 0 32 723 0 42 24.178848
Vi—->V1 0.60 - 0.70 30 21 286 0 22 367 0 33 12.753262
HVA— HVA -040--030 50 13 332 0 13 742 0 15 20.548477
HVA— HVA -030--020 99 87 1393 0 93 5788 0 103 180.512305
HVA— HVA -020--0.10 105 406 2837 0 471 21472 0 509 716.812856
HVA— HVA -010--0.00 105 688 2969 0 872 32905 0 947 1142.705436
HVA— HVA -000-0.10 105 552 2911 0 661 22349 0 715 794.109314
HVA— HVA 0.10-0.20 105 304 2599 0 344 12079 O 391 435.790667
HVA— HVA 0.20-0.30 105 173 2058 0 188 6251 0 218 234.891093
HVA— HVA 0.30-0.40 105 104 1345 0 109 2938 0 126 117.834260
HVA— HVA 0.40-0.50 101 46 781 0 48 1315 0 51 51.536756
HVA— HVA 0.50-0.60 83 20 376 0 20 519 0 24 23.481751
V1— HVA -0.30--020 24 18 450 O 18 593 0 21 14.369431
V11— HVA -0.20--0.10 29 117 1875 0 123 3741 O 140 95.546797
V11— HVA -0.10--0.00 29 168 2317 0 175 5532 0 196 141.870319
V11— HVA -0.00 - 0.10 29 121 1822 0 125 3417 0 140 86.935079
V11— HVA 0.10 - 0.20 29 69 1139 0 71 1715 0 78 44.698868
V1i— HVA 0.20 - 0.30 26 44 661 0 44 889 0 50 23.830929
V1i— HVA 0.30-0.40 27 25 358 0 26 449 0 31 10.845062
V11— HVA 0.40 - 0.50 25 11 195 0 11 237 0 13 6.017091
HVA—V1 -0.30--020 85 46 1263 0 46 2180 O 50 40.028150
HVA—V1 -0.20--0.10 93 211 4711 0 220 12816 0O 242 248.419138
HVA—-V1 -0.10--0.00 93 375 5690 O 400 17857 O 434 361.524099
HVA—V1 -0.00 - 0.10 93 291 4804 O 305 11709 O 333 241.200378
HVA—-V1 0.10-0.20 93 159 3250 O 164 6214 0 181 129.824307
HVA—V1 0.20 - 0.30 93 96 1933 0 98 3084 O 116 65.574084
HVA—-V1 0.30-0.40 91 44 1119 0 45 1531 0 49 31.773139
HVA—V1 0.40 - 0.50 82 30 549 0 30 689 0 33 15.452123
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Supplemental Table 9. Estimated marginal means of linear trends for the effect of in vivo signal correlation on L, / neuron pair
(synapses excluded) in different projection types across brain areas. z and p-value are the z statistics and p-value of the marginal mean
linear trends estimated from the fitted GLMMs. adjusted p-value is the adjusted p value through the BH multicomparison correction
procedure.
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Vi—Vi1 0.779 1.96e-210 4.89%-211 36 0 6807 36 0 0 80703 204150
HVA— HVA 0698 3.51e-198 1.75¢-198 105 O 3010 105 O O 103839 262309
V11— HVA 0.624  1.60e-23 1.60e-23 29 0 2887 29 0 0 16164 85137
HVA—=V1 0.428 5.69e-43 427e43 93 0 6720 93 0 O 55313 685610
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Supplemental Table 10. Estimated marginal means of linear trends for the effect of in vivo signal correlation on Ngyn/mm Ly in
different projection types across brain areas. z and p-value are the z statistics and p-value of the marginal mean linear trends estimated
from the fitted GLMMs. adjusted p-value is the adjusted p value through the BH multicomparison correction procedure.
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Vi—=V1 1.126  3.66e-30 9.16e-31 36 1865 6807 2947 2600 83303

HVA— HVA 0667 196e-09 9.79%-10 105 1566 3010
V11— HVA 0.857 1.63e-04 1.63e-04 29 522 2887
HVA—-V1 0.861 9.53e-08 7.15e-08 93 1116 6720

cooco

W
O\ —
Q=
O &

[\e)
o
S @
0 R

—_
- o
o
J &
o Q
A\ —
cococo

1445 1315 56628

44 | bioRxiv Ding, Fahey, Papadopoulos etal. | Functional connectomics reveals general wiring rule in mouse visual cortex


https://doi.org/10.1101/2023.03.13.531369
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.13.531369; this version posted October 15, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Supplemental Table 11. Number of neurons and neuron pairs invovled in the visualization of the correlation between feature weight

similarity and L, / neuron pair (synapses excluded) in different projection types across brain areas.
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Vi—=Vl -0.30--020 36 0 1072 36 O 1295 3229 0 36.335238
Vi—V1 -0.20--0.10 36 0 4396 36 0 9834 25779 0 285.168739
Vi—=V1 -0.10 - 0.00 36 0 5808 36 0 25602 67324 0 768.876584
Vi—=V1 0.00 - 0.10 36 0 5735 36 0 25230 62013 0  783.990533
Vi—V1 0.10 - 0.20 36 0 4410 36 0 10333 22756 0  335.696665
Vi—=V1 0.20 - 0.30 36 0 1629 36 0 2112 4129 0 69.293019
Vi—V1 0.30 - 0.40 36 0 301 35 0 318 436 0 10.072933
HVA—HVA -030--020 102 0 815 102 0 1392 4489 0 41.334690
HVA— HVA -020--0.10 102 0 2359 102 0 10985 31232 0 335521478
HVA— HVA -0.10-0.00 102 0 2619 102 0 30066 78862 0O 988.398935
HVA— HVA 0.00-0.10 102 0 2600 102 0 31946 74147 0 1124.617864
HVA— HVA 0.10-0.20 102 0 2358 102 O 13356 27119 O  493.620990
HVA— HVA 020-0.30 102 0 1339 102 0 2686 4189 0  109.398149
HVA— HVA 030-040 9 0 250 76 O 289 358 0 14.959203
V11— HVA -0.20--0.10 29 0 1136 29 0 1620 8739 0 40.188636
V1— HVA -0.10 - 0.00 29 0 2146 29 0 5204 28801 O 128.424763
V11— HVA 0.00 - 0.10 29 0 2122 29 0O 5175 26929 O 126.070146
V1— HVA 0.10-0.20 29 0 1134 29 0 1729 8279 0 43.275205
V11— HVA 0.20 - 0.30 29 0 224 29 O 248 1072 0 6.141092
HVA—-V1 -0.20--0.10 92 0 3143 92 0 5593 78638 0 104.073655
HVA—-V1 -0.10 - 0.00 92 0 5364 92 0 17167 231272 0 327.750993
HVA—-V1 0.00 - 0.10 92 0 5214 92 0 17054 220016 0O 341.745469
HVA—-V1 0.10 - 0.20 92 0 3111 92 0 6369 73731 0 132.250047
HVA—=V1 0.20 - 0.30 92 0 846 92 0 1111 10568 0 24.540542
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Supplemental Table 12. Number of neurons and neuron pairs invovled in the visualization of the correlation between feature weight
similarity and Nsyn /mm Lg in different projection types across brain areas.
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Vi—V1 -0.30--020 36 36 1182 0 36 1509 0 38 43.620452
Vi—Vl1 -0.20--0.10 36 230 4537 0 237 10895 0 258 322.934569
Vi—V1 -0.10-0.00 36 630 5812 0 708 27056 0 794 833.029064
Vi—=Vl1 0.00 - 0.10 36 729 5720 0 852 25425 0 969  819.256558
Vi—>Vi 0.10-0.20 36 388 4292 0 438 9940 O 509 337.394190
Vi—=V1 0.20-0.30 36 102 1496 0 112 2007 O 139 69.123548
Vi—>Vi1 0.30-0.40 33 24 259 0 24 294 0 31 10.411849
HVA—HVA -030--020 99 33 968 0 35 1852 O 37 55.775849
HVA— HVA -020--0.10 99 254 2421 0 276 12617 0 301 398.118425
HVA—HVA -0.10-0.00 99 663 2619 0 807 32094 0 876 1097.132235
HVA— HVA 0.00-0.10 99 649 2594 0 847 31140 0 926 1149.553761
HVA— HVA 0.10-0.20 99 386 2318 0 450 11911 O 514 461.647156
HVA— HVA 0.20-0.30 98 104 1189 0O 109 2216 O 128 98.577172
HVA— HVA 0.30-0.40 71 15 183 0 15 213 0 16 11.813672
V11— HVA -0.20--0.10 28 45 1187 0 47 1799 0 50 45.872386
V1— HVA -0.10-0.00 29 174 2162 0 179 5474 0 196 139.731979
V1—- HVA 0.00 - 0.10 29 196 2103 0 204 5296 0 242 132.939401
V11— HVA 0.10-0.20 29 67 1102 0 70 1684 0 80 44.564126
V11— HVA 0.20 - 0.30 27 13 196 0 13 227 0 14 5.948031
HVA—V1 -0.20--0.10 90 106 3354 0 109 6261 O 121 120.205383
HVA—V1 -0.10-0.00 90 370 5397 O 389 18035 0 429 355.383651
HVA—=V1 0.00-0.10 90 365 5192 0 396 16927 0 425 348.693858
HVA—V1 0.10 - 0.20 90 187 2962 0 195 5992 0 218 128.408223
HVA—V1 0.20-0.30 84 34 709 0 36 941 0 45 20.898991
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Supplemental Table 13. Estimated marginal means of linear trends for the effect of feature weight similarity on L, / neuron pair
(synapses excluded) in different projection types across brain areas. z and p-value are the z statistics and p-value of the marginal mean
linear trends estimated from the fitted GLMMs. adjusted p-value is the adjusted p value through the BH multicomparison correction

procedure.
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Vi—V1 0.947 3.48e-107 1.74e-107 36 0 6237 36 0 0 74829 185807
HVA— HVA 1702 0.00e+00 0.00e+00 99 0 2635 99 0 0 89611 212583
V11— HVA 0.701 5.01e-10  5.0le-10 29 O 2525 29 0 O 14126 74633
HVA—V1 1.109  3.18e-94 2.39%-94 90 O 6148 90 0 0 47811 608388
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Supplemental Table 14. Estimated marginal means of linear trends for the effect of feature weight similarity on Ny /mm Ly in
different projection types across brain areas. z and p-value are the z statistics and p-value of the marginal mean linear trends estimated
from the fitted GLMMs. adjusted p-value is the adjusted p value through the BH multicomparison correction procedure.
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Vi—=V1 2216 2.45e-35 6.12e-36 36 1719 6237 2744 2411 77240

HVA— HVA 1398 1.13e-13 5.64e-14 99 1396 2635
Vli— HVA 1.754 9.51e-05 9.51e-05 29 448 2525
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Supplemental Table 15. Number of neurons and neuron pairs invovled in the visualization of the correlation between receptive field
center distance and L, / neuron pair (synapses excluded) in different projection types across brain areas.
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Vi—>V1 -10.55--5.28 36 0 3587 36 0 13098 16616 0 504.444179
Vi—-V1 -5.28 - 0.00 36 0 5491 36 0 36890 71763 0 1189.389824
Vi—->V1 0.00-5.28 36 0 5010 36 0 19930 68768 0  498.660138
Vi—->V1 5.28 - 10.55 36 0 1599 36 0 4266 24166 O 86.320064
Vi—V1 10.55-15.83 36 0 211 36 0 538 4188 0 9.094726
HVA— HVA -1583--1055 44 0 513 44 0 1213 1456 0 53.734766
HVA— HVA -10.55--528 102 0 2281 102 0O 17614 26718 0 723.876676
HVA— HVA -528-0.00 102 0 2555 102 0 37564 77929 0 1331.043600
HVA— HVA 0.00-5.28 102 0 2449 102 0 25371 76129 0  770.831112
HVA— HVA 528-10.55 102 0 1177 102 0 7797 32087 O 202.978877
HVA— HVA 1055-15.83 102 0 254 102 O 1139 5848 0 25.291692
V1— HVA -10.55--5.28 29 0 985 29 0 2253 11576 0 58.076011
V11— HVA -5.28 - 0.00 29 0 1835 29 0 5668 26875 O 146.551732
V11— HVA 0.00 - 5.28 29 0 1623 29 0 4369 23177 O 104.541012
V11— HVA 5.28 - 10.55 29 0 620 29 O 1562 10214 0 33.327909
HVA—-V1 -10.55--5.28 92 0 3503 92 0 5944 68076 O 127.650382
HVA—-V1 -5.28 - 0.00 92 0 5412 92 0 20967 251016 O 422.868388
HVA—V1 0.00-5.28 92 0 4764 92 0 15792 226867 O 297.769153
HVA—V1 5.28 - 10.55 92 0 1734 92 0 4574 68340 O 82.355277
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Supplemental Table 16. Number of neurons and neuron pairs invovled in the visualization of the correlation between receptive field
center distance and Nsyn /mm Ly in different projection types across brain areas.
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Vi—>V1 -10.55--528 35 168 2274 O 178 5317 0O 194 210.846986
V-Vl -5.28 - 0.00 36 909 5290 0 1202 36735 0 1380 1313.420605
Vi—=>V1 0.00 - 5.28 36 695 5647 0 811 27327 0O 929  753.483234
Vi—>V1 5.28 - 10.55 36 173 2336 0 186 6783 0 204 142.873189
Vi—V1 10.55 - 15.83 34 30 406 O 32 1006 0 35 18.160384
HVA— HVA -1583--10.55 28 10 243 0 11 416 0 14 17.918761
HVA— HVA -1055--528 99 321 2096 0 378 11349 0 428 500.622918
HVA— HVA -528-0.00 99 774 2530 0 1107 37168 0 1220 1438.852620
HVA— HVA 0.00-528 99 609 2581 0 756 30304 O 827 980.251453
HVA— HVA 528-10.55 99 199 1584 0 246 10984 0 267 294.805748
HVA— HVA 1055-15.83 9 39 384 0 43 1765 0 45 39.990970
V1i— HVA -10.55--528 27 58 819 O 61 1816 0 66 47.293930
V11— HVA -5.28 - 0.00 290 203 1796 0 228 5917 0O 263 157.158156
V1i—- HVA 0.00 - 5.28 20 153 1809 O 158 4861 O 181 123.251450
V11— HVA 5.28 - 10.55 29 58 754 O 62 1775 0 67 40.294284
HVA—V1 -10.55--528 86 92 2385 O 93 3677 O 106 73.522190
HVA—V1 -5.28 - 0.00 90 494 5289 0 535 21967 0O 584 458.510473
HVA—V1 0.00 - 5.28 90 382 5185 0O 416 18503 0O 467 368.061118
HVA—-V1 5.28 - 10.55 90 85 1770 O 89 4319 0 91 80.279113
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Supplemental Table 17. Estimated marginal means of linear trends for the effect of receptive field center distance on L / neuron pair
(synapses excluded) in different projection types across brain areas. z and p-value are the z statistics and p-value of the marginal mean
linear trends estimated from the fitted GLMMs. adjusted p-value is the adjusted p value through the BH multicomparison correction
procedure.
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Vi=V1 -0.127  0.00e+00 0.00e+00 36 0 6237 36 0 0 74829 185807

HVA— HVA -0080 0.00e+00 0.00e+00 99 0 2635 99 0 0 89611 212583

V1i—+HVA -0.022  1.01e-27 1.01e-27 29 0 2525 29 0 O 14126 74633

HVA—-V1 -0.027 8.19e-119 6.14e-119 90 0 6148 90 0 O 47811 608388
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Supplemental Table 18. Estimated marginal means of linear trends for the effect of receptive field center distance on Ngyn /mm Ly in
different projection types across brain areas. z and p-value are the z statistics and p-value of the marginal mean linear trends estimated
from the fitted GLMMs. adjusted p-value is the adjusted p value through the BH multicomparison correction procedure.
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Vi—V1 0.030 1.89e-09 4.72¢-10 36 1719 6237 0 2744 2411 77240 O
HVA— HVA 0010 1.54e-02 1.15e-02 99 1396 2635 0 2803 2543 92154 0
V11— HVA -0.002 8.34e-01 8.34e-01 29 448 2525 0 584 515 14641 O
HVA—-V1 -0.018 1.54e-02 9.65¢-03 90 974 6148 0 1255 1139 48950 O
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Supplemental Table 19. Number of neurons and neuron pairs invovled in the visualization of the correlation between in silico AOQri
and L, / neuron pair (synapses excluded) in different projection types across brain areas.
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Vi—>V1 -57.16--28.58 24 0 2307 24 0 5415 15129 0 171.067847
Vi—Vl1 -28.58 - 0.00 24 0 2537 24 0 8817 21968 0 295.986023
Vi—>V1 0.00 - 28.58 24 0 2743 24 0 7084 17610 O 221.974391
Vi—=Vl1 28.58 - 57.16 24 0 2059 24 0 5518 16021 O 162.495971
HVA— HVA -57.16--2858 60 0 1125 60 0 5729 13469 0 194.286636
HVA— HVA -2858-0.00 60 O 1175 60 0 6887 15960 0 235.669897
HVA— HVA 0.00-28.58 60 0 1179 60 0O 6905 16323 0 231.975979
HVA— HVA 2858-57.16 60 O 1129 60 0 5634 13479 0 185.273829
V1— HVA -57.16--2858 18 0 502 18 0 1017 4946 0 26.483564
V1—- HVA -28.58 - 0.00 18 0 663 18 0 1232 5295 O 35218815
V11— HVA 0.00 - 28.58 18 0 654 18 0 1179 5792 0 31.287205
V1— HVA 28.58 - 57.16 18 0 463 18 0 797 5100 O 20.293288
HVA—V1 -57.16--28.58 53 0 1937 53 0 3351 41162 0 66.825000
HVA—V1 -28.58 - 0.00 53 0 2540 53 0 5802 59529 0 120.864783
HVA—-V1 0.00 - 28.58 53 0 2630 53 0 5786 56326 0 123.706798
HVA—V1 28.58 - 57.16 53 0 2011 53 0 3495 41530 0 70.913483
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Supplemental Table 20. Number of neurons and neuron pairs invovled in the visualization of the correlation between in silico AOri
and Nsyn/mm Ly in different projection types across brain areas.
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Vi—V1 -57.16--28.58 24 184 2256 0 203 5252 0 254 171.406452
Vi—=Vl -28.58 - 0.00 24 302 2524 0 336 9435 0 394 329.222605
Vi—V1 0.00 - 28.58 24 217 2816 0 241 7546 0 268 245.866967
ViVl 28.58 - 57.16 24 144 1979 0 157 5538 0 180 166.321087
HVA— HVA -57.16--2858 52 134 1113 0 155 5274 0 169 190.852637
HVA— HVA -28.58-0.00 52 169 1165 0 180 6698 0 193 241.124324
HVA— HVA 0.00-28.58 52 157 1179 0 173 6701 O 181 240.263087
HVA— HVA 2858-57.16 52 129 1122 0 150 5299 0O 165 182.145706
V1— HVA -57.16--2858 16 39 479 0 40 854 0 48 23297975
V1—- HVA -28.58 - 0.00 16 35 655 0 36 1373 0 45 40.063947
V1— HVA 0.00 - 28.58 16 50 678 0 51 1216 O 54 34.018144
V1— HVA 28.58 - 57.16 16 28 481 0 30 925 0 33 24.334127
HVA—V1 -57.16--2858 46 73 1831 0 75 3198 0 81 66.090308
HVA—V1 -28.58 - 0.00 47 138 2502 0 140 5974 0 159 128.419254
HVA—=V1 0.00 - 28.58 47 140 2641 0 149 5964 0 158 129.941363
HVA—V1 28.58 - 57.16 47 63 1867 0 64 3187 0 69 67.486736
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Supplemental Table 21. Estimated marginal means of linear trends for the effect of in silico AOri on L, / neuron pair (synapses
excluded) in different projection types across brain areas. z and p-value are the z statistics and p-value of the marginal mean linear
trends estimated from the fitted GLMMs. adjusted p-value is the adjusted p value through the BH multicomparison correction procedure.
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Vi—V1 -0.001 1.22e-05 6.11e-06 24 0 3456 24 0 O 26834 70728
HVA— HVA -0.001 4.70e-02 4.70e-02 52 0 1222 52 0 0 23314 49735
V11— HVA -0.004 4.65e-08 1.16e-08 16 0 1123 16 0 0 4211 18313
HVA—=V1 0.001 3.02e-02 2.27e-02 47 0 3392 47 0 0 17907 174465
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Supplemental Table 22. Estimated marginal means of linear trends for the effect of in silico AOri on Ngyn/mm Ly in different
projection types across brain areas. z and p-value are the z statistics and p-value of the marginal mean linear trends estimated from
the fitted GLMMs. adjusted p-value is the adjusted p value through the BH multicomparison correction procedure.
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Vi—->V1 -0.004 1.12e-03 2.79e-04 24 739 3456 0 1096 937 27771 O
HVA— HVA 0000 936e-01 936e-01 52 452 1222 0 708 658 23972 0
V11— HVA -0.004 2.33e-01 1.75e-01 16 147 1123 0 180 157 4368 O
HVA—V1 -0.002 2.33e-01 1.68e-01 47 392 3392 0 467 428 18335 O
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Supplemental Table 23. Estimated marginal means of linear trends for the effect of in vivo signal correlation on L; / neuron pair
(synapses excluded) in different projection types across brain areas and layers. z and p-value are the z statistics and p-value of the
marginal mean linear trends estimated from the fitted GLMMs. adjusted p-value is the adjusted p value through the BH multicomparison
correction procedure.
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V1L2/3 — V1L2/3 1.074 2.49e-109 2.08e-110 20 0 2670 20 0O 0O 20511 44349
V1L2/3 — V1L4 0.341 1.52e-07 7.59e-08 19 0 2090 19 0 0 13791 32623
V1L2/3 - V1L5 0.580 6.10e-18 1.27e-18 20 O 1185 20 O O 11845 14652
V1L2/3 - HVAL2/3 1.210 1.21e-25 2.02e-26 15 0 1169 15 O 0O 4610 18075
V1L2/3 — HV AL4 0.798 1.26e-07 5.78e-08 14 0 856 14 0 0 3202 10900
V1L2/3 — HV AL5 1.136 1.84e-11 46le-12 13 0 429 13 0 0 2444 4028
V1L4 - V1L2/3 0.335 541e-03 451e-03 6 0 1784 6 0 0 3107 16451
V1L4 — V1L4 0.422 1.22e-04 8.12¢e-05 6 0 185 6 0 0 4503 10073
V1L4 — V1L5 0.435 1.04e-04 6.51e05 6 0 1138 6 0 O 3365 4636
V1L5 — V1L4 0.407 1.85e-04 131e-04 6 0 1769 6 0 O 3980 10686
V1L5 —- V1L5 0.523  6.94e-09 260e-09 6 0 1145 6 0 0 3721 4280
HVAL2/3 —V1L2/3 0.067  3.37e-01 3.09e-01 36 0 2626 36 0 0 12670 104893
HVAL2/3 - V1L4 -0.024  8.66e-01 8.30e-01 28 0 1882 28 0O O 5122 63511
HVAL2/3 — V1L5 0.361  4.28e-08 1.78¢-08 59 0 1172 59 0 0 12966 66476
HVAL2/3 — HVAL2/3 1.089 3.19e-121 1.33e-122 45 0 1264 45 0 0O 19194 48691
HVAL2/3 — HV AL4 0.831 391e42 4.89%-43 38 0 893 38 0 O 13326 24937
HVAL2/3 — HV AL5 0.280 1.10e-05 6.07e-06 62 0 439 62 0 O 13451 17560
HVAL4— HVAL2/3 0.633  5.28e-09 1.76e-09 12 0 1233 12 0 O 5899 12092
HVAL4A— HV AL4 0.679 1.93¢-09 5.62e-10 12 0 893 12 0 0 5266 6729
HVAL4— HVALS 0.355 7.93e-03 694e-03 11 0 434 11 O O 2992 2477
HVAL5 - V1L5 -0.013  9.11e-01 9.11e-01 14 0 1093 14 0 O 3539 15315
HVAL5 —- HVAL2/3 0.332 1.38e-03 1.04e-03 17 0 1236 17 0 0 7564 18063
HVAL5 — HVAL4 0.326 4.43e-03 3.51e-03 17 0O 8% 17 0 0 6110 11017
HVAL5 — HV AL5 0.458 1.10e-05 6.39¢-06 19 0 439 19 0 0 5390 4009
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Supplemental Table 24. Estimated marginal means of linear trends for the effect of in vivo signal correlation on Ngyn/mm Ly in
different projection types across brain areas and layers. z and p-value are the z statistics and p-value of the marginal mean linear trends
estimated from the fitted GLMMs. adjusted p-value is the adjusted p value through the BH multicomparison correction procedure.
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V1L2/3 — V1L2/3 1.110 2.08e-06 1.73e-07 20 604 2670 0 792 736 21247 O
V1L2/3 - V1L4 0.617 1.33e-01 8.35¢-02 19 197 2090 0 235 219 14010 O
V1L2/3 - V1L5 1.820 3.11e-19 1.29¢-20 20 311 1185 0 687 539 12384 O
V1L2/3 — HV AL2/3 0.618 2.18e-01 1.54e-01 15 176 1169 0 208 196 4806 O
V1L2/3 — HV AL4 1.080 1.33e-01 890e-02 14 80 86 0 8 82 3284 O
V1L2/3 — HV ALb 1.225 3.34e-02 1.81e-02 13 91 429 0 131 106 2550 O
V1L4 - V1L2/3 0.674 2.20e-01 1.65e-01 6 108 1784 0 120 110 3217 O
V1L4 — V1L4 1.162 1.10e-02 4.57¢e-03 6 141 1865 0 155 146 4649 O
V1L4 — V1L5 1.759 4.71e-05 7.85¢-06 6 101 1138 0 130 110 3475 O
V1L5 — V1L4 -1.058 2.24e-01 1.78e-01 6 64 1769 0 65 64 4044 O
V1L5 — V1L5 0916 2.64e-02 1.21e-02 6 103 1145 0 121 104 3825 O
HVAL2/3 —V1L2/3 0.880 8.21e-03 3.08¢-03 36 381 2626 0 436 411 13081 O
HVAL2/3 — V1L4 1.346 6.96e-02 4.06e-02 28 79 1882 0 88 81 5203 O
HVAL2/3 — V1L5 1.378 4.12e-05 5.16e-06 59 213 1172 0 324 278 13244 O
HVAL2/3 — HVAL2/3 -0.083 7.29¢-01 6.98¢-01 45 519 1264 0 801 732 19926 0
HVAL2/3 — HV ALA 1.223 4.13e-04 1.03e-04 38 204 893 0 301 258 13584 O
HVAL2/3— HVAL5 1.188 5.20e-05 1.08e-05 62 216 439 0 410 361 13812 O
HVAL4A— HVAL2/3 0.843 3.34e-02 1.70e-02 12 259 1233 0 334 316 6215 O
HVAL4 — HV AL4 1.349 8.21e-03 2.89¢-03 12 138 893 0 174 155 5421 O
HVAL4— HVALS 1.836 4.71e-03 1.37¢-03 11 89 434 0 108 97 3089 O
HVAL5 - V1L5 -0.416 6.32e-01 5.79%-01 14 59 1093 0 67 62 3601 O
HVAL5 - HVAL2/3 0.094 8.17e-01 8.17e-01 17 260 1236 0 331 308 7872 O
HV AL5 — HVAL4 0.672 3.11e-01 2.62¢-01 17 92 86 0 110 102 6212 O
HVAL5 — HVALS 0.460 3.11e-01 2.72¢-01 19 148 439 0 214 196 5586 O
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Supplemental Table 25. Estimated marginal means of linear trends for the effect of in silico signal correlation on L, / neuron pair
(synapses excluded) in different projection types across brain areas and layers. z and p-value are the z statistics and p-value of the
marginal mean linear trends estimated from the fitted GLMMs. adjusted p-value is the adjusted p value through the BH multicomparison
correction procedure.
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V1L2/3 — V1L2/3 1.692 6.20e-109 5.17e-110 20 0 2670 20 0O 0O 20511 44349
V1L2/3 — V1L4 0.632  9.58e-10  5.19¢-10 19 0 2090 19 0 0 13791 32623
V1L2/3 - V1L5 0.929 1.39e-17 5.23e-18 20 0 1185 20 O O 11845 14652
V1L2/3 - HVAL2/3 2276  544e-33 9.06e-34 15 0 1169 15 0 0 4610 18075
V1L2/3 — HV AL4 1.520 4.26e-10 2.13e-10 14 0 856 14 0 0 3202 10900
V1L2/3 — HV AL5 0.738 5.58e-03 4.65e-03 13 0 429 13 0 O 2444 4028
V1L4 - V1L2/3 0.551 7.48¢-03 654e-03 6 0 1784 6 0 0 3107 16451
V1L4 — V1L4 0.525 1.65e-03 1.25¢-03 6 0 185 6 0 0 4503 10073
V1L4 — V1L5 0.538 1.65e-03 1.31e-03 6 O 1138 6 0 O 3365 4636
V1L5 — V1L4 0.491 7.49e-03 687¢-03 6 0 1769 6 0 0 3980 10686
V1L5 —- V1L5 0.546 897e-04 598e-04 6 0 1145 6 0 0 3721 4280
HVAL2/3 —V1L2/3 -0.020  8.30e-01 8.30e-01 36 0 2626 36 0 0 12670 104893
HVAL2/3 - V1L4 0.473 1.45e-03 1.03e-03 28 0 1882 28 0 O 5122 63511
HVAL2/3 — V1L5 0973  7.73e-29 1.61e-29 59 0 1172 59 0 0 12966 66476
HVAL2/3 — HVAL2/3 2.087 3.32e-246 1.38e-247 45 0 1264 45 0 O 19194 48691
HVAL2/3 — HV AL4 1410 2.16e-69 2.70e-70 38 0 893 38 0 0 13326 24937
HVAL2/3 — HV AL5 0.116 1.45e-01 1.39e-01 62 0 439 62 0 O 13451 17560
HVAL4— HVAL2/3 1.264  2.34e-22 6.83e-23 12 0 1233 12 0 0 5899 12092
HVAL4A— HV AL4 0.975 1.87e-13  8.58e-14 12 0 893 12 0 0 5266 6729
HVAL4— HVALS 0.631 1.69e-04 1.05e-04 11 0 434 11 0 O 2992 2477
HVAL5 - V1L5 0.873  5.35e-07 3.12¢-07 14 0 1093 14 0 0 3539 15315
HVAL5 —- HVAL2/3 1.266  3.38e-24  8.45e-25 17 0 1236 17 0 0 7564 18063
HVAL5 — HVAL4 1.146 1.40e-16  5.83e-17 17 0 8% 17 0 0 6110 11017
HVAL5 — HV AL5 1.215 9.66e-22 322¢-22 19 0 439 19 0 0 5390 4009
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Supplemental Table 26. Estimated marginal means of linear trends for the effect of in silico signal correlation on Nsyn/mm Ly in
different projection types across brain areas and layers. z and p-value are the z statistics and p-value of the marginal mean linear trends
estimated from the fitted GLMMs. adjusted p-value is the adjusted p value through the BH multicomparison correction procedure.
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3 & g 2 8 &8 <§8 z B EE
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Al QO < [= TS I+ H*+  H* H* H* H* H*
V1L2/3 — V1L2/3 2.026 2.87e-09 3.58e-10 20 604 2670 0 792 736 21247 O
V1L2/3 - V1L4 2973 1.67e-07 3.47¢-08 19 197 2090 0 235 219 14010 O
V1L2/3 - V1L5 4,022 1.75¢-39 7.29e-41 20 311 1185 0 687 539 12384 O
V1L2/3 — HV AL2/3 0.808 3.52e-01 2.93e-01 15 176 1169 0 208 196 4806 O
V1L2/3 — HV AL4 2.167 9.18e-02 6.12¢-02 14 8 86 0 8 82 3284 O
V1L2/3 — HV ALb 3.941 3.48e-06 1.16e-06 13 91 429 0 131 106 2550 O
V1L4 - V1L2/3 1.097 2.48e-01 1.86e-01 6 108 1784 0 120 110 3217 O
V1L4 — V1L4 2.180 5.08e-04 1.90e-04 6 141 1865 0 155 146 4649 O
V1L4 — V1L5 3.194 7.21e-09 1.20e-09 6 101 1138 0 130 110 3475 O
V1L5 — V1L4 -1.271 3.52e-01 2.87e-01 6 64 1769 0 65 64 4044 O
V1L5 — V1L5 1.508 5.43e-02 2.94e-02 6 103 1145 0 121 104 3825 O
HVAL2/3 —V1L2/3 0.837 9.18e-02 5.90e-02 36 381 2626 0 436 411 13081 O
HVAL2/3 — V1L4 1.304 2.15e-01 1.52¢-01 28 79 1882 0 88 81 5203 O
HVAL2/3 — V1L5 2730 1.70e-10 1.42e-11 59 213 1172 0 324 278 13244 O
HVAL2/3 — HVAL2/3 -0.108 7.41e-01 7.19e-01 45 519 1264 0 801 732 19926 0
HVAL2/3 — HV ALA 1.585 9.99¢-04 4.16e-04 38 204 893 0 301 258 13584 O
HVAL2/3— HVAL5 1.834 2.24e-06 5.61e-07 62 216 439 0 410 361 13812 O
HVAL4A— HVAL2/3 1.203 2.36e-02 1.18¢-02 12 259 1233 0 334 316 6215 O
HVAL4 — HV AL4 2.515 2.28e-06 6.64e-07 12 138 893 0 174 155 5421 O
HVAL4— HVALS 2.154 5.01e-03 2.30e-03 11 89 434 0 108 97 3089 O
HVAL5 - V1L5 1.878 8.64e-02 5.04e-02 14 59 1093 0 67 62 3601 O
HVAL5 - HVAL2/3 0.308 5091e-01 5.17e-01 17 260 1236 0 331 308 7872 O
HV AL5 — HVAL4 0.248 7.41e-01 7.41e-01 17 92 86 0 110 102 6212 O
HVAL5 — HVALS 0.313 6.00e-01 5.50e-01 19 148 439 0 214 196 5586 O
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Supplemental Table 27. Estimated marginal means of linear trends for the effect of feature weight similarity on L, / neuron pair

(synapses excluded) in different projection types across brain areas and layers. z and p-value are the z statistics and p-value of the
marginal mean linear trends estimated from the fitted GLMMs. adjusted p-value is the adjusted p value through the BH multicomparison

correction procedure.
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2 2 = 353 B3 3®s 3 0%
v O & ST I 3 EE S I 3+
V1L2/3 - V1L2/3 1.005 8.4le-38 1.05e-38 20 0 2670 20 O 0O 20511 44349
V1L2/3 — V1L4 0.512  9.17e-07  4.59¢-07 19 0 209 19 0 0 13791 32623
V1L2/3 — V1L5 0.602  8.40e-08 3.85¢-08 20 O 1185 20 0 0 11845 14652
V1L2/3 — HVAL2/3 0.849 1.12e-05 6.97e-06 15 0 1169 15 0 0 4610 18075
V1L2/3 — HV AL4 0.804 1.27e-03 9.0le-04 14 O 85 14 0 0 3202 10900
V1L2/3 — HV AL5 0410  1.34e-01 1.28e-01 13 0 429 13 0 0 2444 4028
V1L4 — V1L2/3 0.257  2.09e-01 2.09¢e-01 6 0 1784 6 0 0 3107 16451
V1L4 — V1L4 0.769  1.79¢e-06 9.70e-07 6 0 185 6 0 0 4503 10073
V1L4 — V1L5 0.663 2.60e-04 1.73e-04 6 O 1138 6 0 O 3365 4636
V1L5 - V1L4 0465 1.66e-02 1.25¢02 6 0 1769 6 0 0 3980 10686
V1L5 — V1L5 0.361 3.27e-02 287¢e02 6 0 1145 6 0 O 3721 4280
HVAL2/3 —V1L2/3 0.251  2.75e-02  2.17e-02 36 0 2626 36 0 0 12670 104893
HVAL2/3 —V1L4 0.378  3.17e-02  2.64e-02 28 O 1882 28 0O O 5122 63511
HVAL2/3 - V1L5 1.078  5.07e-22  1.06e-22 59 0 1172 59 0 0 12966 66476
HVAL2/3 — HVAL2/3 2692 3.67e-248 1.53e-249 45 0 1264 45 0 0 19194 48691
HVAL2/3 - HV AL4 2013 5.69e-83 4.74e-84 38 O 893 38 0 O 13326 24937
HVAL2/3 — HVAL5 0.885 1.56e-17 5.20e-18 62 0 439 62 0 0 13451 17560
HVAL4— HVAL2/3 1.560 2.27e-24 3.78e-25 12 0 1233 12 0 O 5899 12092
HVAL4— HVAL4 1436 1.03e-21 2.57e22 12 0 893 12 0 0 5266 6729
HVAL4 — HVAL5 0.884  2.15e-06 1.25¢-06 11 0 434 11 0 0 2992 2477
HVAL5 - V1L5 1.169  1.05e-09 4.38e-10 14 0 1093 14 O O 3539 15315
HVAL5 - HVAL2/3 0.273  6.10e-02 55902 17 0 1236 17 0 0O 7564 18063
HVAL5 - HVAL4 1.195 3.89e-14 1.46e-14 17 0 86 17 0 0 6110 11017
HVAL5 —- HV AL5 1.306  1.37e-19 399-20 19 0 439 19 0 0 539 4009
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Supplemental Table 28. Estimated marginal means of linear trends for the effect of feature weight similarity on Nsyyn/mm Ly
in different projection types across brain areas and layers. z and p-value are the z statistics and p-value of the marginal mean linear
trends estimated from the fitted GLMMSs. adjusted p-value is the adjusted p value through the BH multicomparison correction procedure.
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Al QO < [= TS I+ H*+  H* H* H* H* H*
V1L2/3 — V1L2/3 1.840 6.63e-07 1.11e-07 20 604 2670 0 792 736 21247 O
V1L2/3 - V1L4 2.015 3.78e-03 1.57¢-03 19 197 2090 0 235 219 14010 O
V1L2/3 - V1L5 3.855 1.05e-25 4.39e-27 20 311 1185 0 687 539 12384 O
V1L2/3 — HV AL2/3 0.715 3.77e-01 3.45¢-01 15 176 1169 0 208 196 4806 O
V1L2/3 — HV AL4 -0.143 9.04e-01 9.04e-01 14 80 856 0 8 82 3284 O
V1L2/3 — HV ALb 3.330 4.87e-04 1.83e-04 13 91 429 0 131 106 2550 O
V1L4 - V1L2/3 1.005 3.28e-01 2.59e-01 6 108 1784 0 120 110 3217 O
V1L4 — V1L4 2416 4.52e-04 1.51e-04 6 141 1865 O 155 146 4649 O
V1L4 — V1L5 4,052 8.61e-08 7.18¢-09 6 101 1138 O 130 110 3475 O
V1L5 — V1L4 -1.410 3.11e-01 2.33e-01 6 64 1769 0 65 64 4044 O
V1L5 — V1L5 0.304 7.36e-01 7.05e-01 6 103 1145 O 121 104 3825 O
HVAL2/3 —V1L2/3 1.248 3.23e-02 1.89¢-02 36 381 2626 0 436 411 13081 O
HVAL2/3 — V1L4 3.178 8.70e-03 4.35¢-03 28 79 1882 0 838 81 5203 O
HVAL2/3 — V1L5 3.210 1.28e-07 1.59e-08 59 213 1172 0 324 278 13244 O
HVAL2/3 — HVAL2/3 0351 3.77e-01 3.44e-01 45 519 1264 0 801 732 19926 0
HVAL2/3 — HV ALA 2.861 7.44e-06 1.86e-06 38 204 893 0 301 258 13584 O
HVAL2/3— HVAL5 2452 3.18e-06 6.63e-07 62 216 439 0 410 361 13812 O
HVAL4A— HVAL2/3 1416 2.23e-02 1.21e-02 12 259 1233 0 334 316 6215 O
HVAL4 — HVAL4 2.614 1.54e-04 4.51e-05 12 138 893 0 174 155 5421 O
HVAL4— HVALS 2486 8.70e-03 4.12¢-03 11 89 434 0 108 97 3089 O
HVAL5 - V1L5 1.423 2.89e-01 2.05e-01 14 59 1093 0 67 62 3601 O
HVAL5 - HVAL2/3 0.794 2.51e-01 1.67¢e-01 17 260 1236 0 331 308 7872 O
HV AL5 — HVAL4 -0.926 3.54e-01 2.95e-01 17 92 86 0 110 102 6212 O
HVAL5 — HVALS 1.090 1.09e-01 6.81e-02 19 148 439 0 214 196 5586 O
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Supplemental Table 29. Estimated marginal means of linear trends for the effect of receptive field center distance on L / neuron pair
(synapses excluded) in different projection types across brain areas and layers. z and p-value are the z statistics and p-value of the
marginal mean linear trends estimated from the fitted GLMMs. adjusted p-value is the adjusted p value through the BH multicomparison

correction procedure.
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V1L2/3 - V1L2/3 -0.167  0.00e+00 0.00e+00 20 0 2670 20 O O 20511 44349
V1L2/3 — V1L4 -0.141  0.00e+00 0.00e+00 19 0 209 19 0 0 13791 32623
V1L2/3 - V1L5 -0.111  0.00e+00 0.00e+00 20 0 1185 20 O O 11845 14652
V1L2/3 — HVAL2/3 -0.032  7.3%-21 6.16e-21 15 0 1169 15 0 0O 4610 18075
V1L2/3 — HV AL4 -0.030 5.27e-14 4.83e-14 14 0 856 14 0 0 3202 10900
V1L2/3 — HV AL5 -0.014  4.94e-03 494e-03 13 0 429 13 0 0 2444 4028
V1L4 - V1L2/3 -0.097 1.11e-68 7.42-69 6 0 1784 6 0 0 3107 16451
V1L4 —-V1L4 -0.136  1.76e-189 5.14e-190 6 0 185 6 0 0 4503 10073
V1L4 — V1L5 -0.134 8.03e-134 4.0le-134 6 0 1138 6 0 0 3365 4636
V1L5 —-V1L4 -0.053  2.71e-27 2.14e-27 6 0 1769 6 0 0 3980 10686
V1L5 — V1L5 -0.092  1.19¢e-80 7.44e-81 6 0 1145 6 0 0 3721 4280
HVAL2/3 —V1L2/3 -0.015  7.37e-11  7.06e-11 36 0 2626 36 0 0 12670 104893
HVAL2/3 - V1L4 -0.031 1.82e-16  1.60e-16 28 0 1882 28 O O 5122 63511
HVAL2/3 — V1L5 -0.035  1.25e-46 93947 59 0 1172 59 0 0 12966 66476
HVAL2/3 — HVAL2/3 -0.099 0.00e+00 0.00e+00 45 0 1264 45 0 0 19194 48691
HVAL2/3 — HV AL4 -0.083  0.00e+00 0.00e+00 38 0 893 38 0 0O 13326 24937
HVAL2/3 — HV AL5 -0.047 1.4le-112 7.63e-113 62 0 439 62 0 0 13451 17560
HVAL4A— HVAL2/3 -0.084 4.83e-169 1.81e-169 12 0 1233 12 0 0 5899 12092
HVAL4— HV AL4 -0.093 2.33e-215 5.82e-216 12 0 893 12 0 0 5266 6729
HVAL4 — HVAL5 -0.109 5.56e-172 1.85e-172 11 0 434 11 0 0 2992 2477
HVAL5 - V1L5 -0.067 3.07e-53 2.18-53 14 0 1093 14 0 0O 3539 15315
HVAL5 —- HVAL2/3 -0.052  3.63e-86 2.12e-86 17 0 1236 17 0 0 7564 18063
HV AL5 - HV AL4 -0.071 8.03e-134 3.74e-134 17 0 89% 17 0 0 6110 11017
HV AL5 — HV AL5 -0.082 4.99e-159 2.08e-159 19 0 439 19 0 O 5390 4009
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Supplemental Table 30. Estimated marginal means of linear trends for the effect of receptive field center distance on Ngyn /mm Lgin
different projection types across brain areas and layers. z and p-value are the z statistics and p-value of the marginal mean linear trends
estimated from the fitted GLMMs. adjusted p-value is the adjusted p value through the BH multicomparison correction procedure.
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Al QO < [= TS I+ H*+  H* H* H* H* H*
V1L2/3 — V1L2/3 0.020 2.56e-01 4.26e-02 20 604 2670 0 792 736 21247 O
V1L2/3 - V1L4 0.050 5.19e-02 2.16e-03 19 197 2090 0 235 219 14010 O
V1L2/3 - V1L5 0.012 5.26e-01 2.27¢-01 20 311 1185 0 687 539 12384 O
V1L2/3 — HV AL2/3 0.008 8.34e-01 6.26e-01 15 176 1169 0 208 196 4806 O
V1L2/3 — HV AL4 0.014 8.18e-01 5.11e-01 14 8 86 0 8 82 3284 O
V1L2/3 — HV ALb 0.001 9.50e-01 9.50e-01 13 91 429 0 131 106 2550 O
V1L4 - V1L2/3 0.020 8.10e-01 4.59e-01 6 108 1784 0 120 110 3217 O
V1L4 — V1L4 0.060 6.82e-02 5.69e-03 6 141 1865 0 155 146 4649 O
V1L4 — V1L5 0.042 3.98e-01 8.30e-02 6 101 1138 0 130 110 3475 O
V1L5 — V1L4 -0.016 8.34e-01 6.22e-01 6 64 1769 0 65 64 4044 O
V1L5 — V1L5 0.034 5.26e-01 2.02e-01 6 103 1145 O 121 104 3825 O
HVAL2/3 —V1L2/3 -0.015 5.26e-01 2.19¢-01 36 381 2626 0 436 411 13081 O
HVAL2/3 — V1L4 0.004 9.39e-01 8.88¢-01 28 79 1882 0 838 81 5203 O
HVAL2/3 — V1L5 -0.020 5.26e-01 1.37e-01 59 213 1172 0 324 278 13244 O
HVAL2/3 — HVAL2/3 0.004 849e-01 6.74e-01 45 519 1264 0 801 732 19926 0
HVAL2/3 — HV ALA -0.002 9.39e-01 8.99¢-01 38 204 893 0 301 258 13584 O
HVAL2/3— HVAL5 -0.004 8.49e-01 7.08¢e-01 62 216 439 0 410 361 13812 O
HVAL4A— HVAL2/3 0.013 5.26e-01 2.41e-01 12 259 1233 0 334 316 6215 O
HVAL4 — HVAL4 0.014 6.51e-01 3.26e-01 12 138 893 0 174 155 5421 O
HVAL4— HVALS 0.048 1.25e-01 1.57¢-02 11 89 434 0 108 97 3089 O
HVAL5 - V1L5 0.016 8.34e-01 5.74e-01 14 59 1093 0 67 62 3601 O
HVAL5 - HVAL2/3 0.008 8.10e-01 4.72¢-01 17 260 1236 0 331 308 7872 O
HV AL5 — HVAL4 0.021 5.26e-01 2.11e-01 17 92 86 0 110 102 6212 O
HVAL5 — HVALS -0.004 8.78e-01 7.69e-01 19 148 439 0 214 196 5586 O
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Supplemental Table 31.

Estimated marginal means of linear trends for the effect of in silico AOri on L, / neuron pair (synapses

excluded) in different projection types across brain areas and layers. z and p-value are the z statistics and p-value of the marginal mean
linear trends estimated from the fitted GLMMs. adjusted p-value is the adjusted p value through the BH multicomparison correction

procedure.
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V1L2/3 - V1L2/3 -0.003 1.22e-10 7.6le-12 12 0 1409 12 0 O 6927 14702
V1L2/3 — V1L4 -0.004 3.52e-07 4.40e-08 9 0 1050 9 O O 4190 7845
V1L2/3 — V1L5 -0.001 5.15e-01 3.22e-01 12 0 701 12 O O 4527 4791
V1L2/3 - HV AL2/3 -0.006 3.69e-06 6.93e-07 7 0 487 7 0 O 1354 3258
V1L2/3 — HV AL5 -0.003 9.32e-02 421e-02 8 0 224 8 0 O 78 1249
HVAL2/3 - V1L2/3 0.003 4.97e-04 1.24e-04 20 0 1299 20 O 0 4401 31930
HVAL2/3 — V1L4 -0.000 9.42e-01 9.42e-01 16 0 85 16 0 O 1706 19798
HVAL2/3 — V1L5 0.001 9.32e-02 4.66e-02 30 0 689 30 0 0 4433 19345
HV AL2/3 — HVAL2/3 0.000 8.54e-01 7.47¢-01 17 0 557 17 0 0 4103 7038
HVAL2/3 — HV AL4 0.000 8.41le-01 6.83e¢-01 16 0 397 16 0 0 2812 4472
HVAL2/3 — HV AL5 -0.001 4.10e-01 2.31e-01 27 0 229 27 0 0 3420 3482
HVAL4— HVAL2/3 -0.001 6.16e-01 4.24e-01 7 0 499 7 0 0 1262 3344
HVAL4— HVAL5 -0.000 8.41e-01 6.74e-01 7 0 225 7 0 O 937 848
HVAL5 - V1L5 0.000 9.42e-01 922-01 9 0 603 9 0 O 1414 5725
HVAL5 — HVAL2/3 0.002 2.94e-02 9.20e-03 12 0 541 12 0 0 2307 55%
HVAL5 - HVAL5 -0.002 9.32e-02 4.49e-02 14 0 228 14 O O 2125 1430
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Supplemental Table 32. Estimated marginal means of linear trends for the effect of in silico AOri on Ngyn/mm Ly in different
projection types across brain areas and layers. z and p-value are the z statistics and p-value of the marginal mean linear trends
estimated from the fitted GLMMs. adjusted p-value is the adjusted p value through the BH multicomparison correction procedure.
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V1L2/3 - V1L2/3 -0.003 4.73e-01 1.80e-01 12 246 1409 0 296 272 7199 O
V1L2/3 - V1L4 0.005 4.73e-01 1.82¢-01 9 82 1050 O 91 83 4273 O
V1L2/3 - V1L5 -0.009 1.66e-03 1.04e-04 12 165 701 0 323 245 4772 O
V1L2/3 — HV AL2/3 0.001 8.89¢-01 8.89¢-01 7 52 487 0 54 53 1407 O
V1L2/3 — HV AL5 -0.014 8.07e-02 1.01e-02 8 38 224 0 51 40 826 O
HVAL2/3 —V1L2/3 -0.004 4.73e-01 2.37e-01 20 123 1299 0 134 129 4530 O
HVAL2/3 — V1L4 -0.012 4.04e-01 7.57¢-02 16 33 885 0 36 33 1739 0
HVAL2/3 — V1L5 -0.002 7.20e-01 6.06e-01 30 97 689 0 123 109 4542 O
HVAL2/3 — HVAL2/3 -0.001 7.20e-01 6.07e-01 17 145 557 0 192 177 4280 O
HVAL2/3 — HVAL4 0.002 7.31e-01 6.85¢-01 16 59 397 0 70 67 2879 O
HVAL2/3 — HV AL5 0.004 4.73¢-01 2.07¢-01 27 80 229 0 122 106 3526 O
HVALA— HVAL2/3 0.005 5.95e-01 3.35¢-01 7 55 499 0 59 59 1321 O
HVAL4— HV AL5 -0.009 4.73e-01 1.49¢-01 7 29 225 0 32 30 967 O
HVAL5 - V1L5 -0.003 7.20e-01 6.30e-01 9 25 603 O 31 26 1440 O
HVAL5 — HVAL2/3 -0.002 7.20e-01 5.38¢-01 12 87 541 0 106 98 2405 O
HV AL5 — HV AL5 -0.004 6.13e-01 3.83¢e-01 14 56 2280 0 71 67 2192 O
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Supplemental Table 33. Paired t-tests for comparing the mean presyn-postsyn functional similarity between observation in the
MICrONS dataset and values expected by GLMMs fit on the MICrONS dataset

Projection type ~ Comparison t-statistic ~ p-value adjusted p-value
HVA— HV A observed vs expected 660.0 7.92e-01 9.81e-01
HVA—-V1 observed vs expected 362.0 9.09e-01 9.81e-01
V1—HVA observed vs expected 62.0 5.17e-01 9.81e-01
Vi—V1 observed vs expected 313.0 9.81e-01 9.81e-01
HV A— HV A observed vs expected (synaptic scale) 675.0 8.99¢-01 9.81e-01
HVA—-V1 observed vs expected (synaptic scale) 349.0 7.63e-01 9.81e-01
V1— HVA observed vs expected (synaptic scale) 71.0 8.18e-01 9.81e-01
Vi—=V1 observed vs expected (synaptic scale) 280.0 5.76e-01 9.81e-01
HV A— HV A observed vs expected (axonal scale) 629.0 5.85e-01 9.81e-01
HVA—-V1 observed vs expected (axonal scale) 349.0 7.63e-01 9.81e-01
V11— HVA observed vs expected (axonal scale) 63.0 5.48e-01 9.81e-01
Vi—>Vi observed vs expected (axonal scale) 284.0 6.22e-01 9.81e-01
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Supplemental Table 34. Paired t-tests for comparing the mean postsyn-postsyn functional similarity between observation in the
MICrONS dataset and values expected by GLMMs fit on the MICrONS dataset

Projection type ~ Comparison t-statistic ~ p-value adjusted p-value
HVA— HVA observed vs expected 254.0 7.45e-05 1.79e-04
HVA—-V1 observed vs expected 46.0 1.39e-07 5.56e-07
V1—- HVA observed vs expected 53.0 2.84e-01 2.84e-01
Vi—=V1 observed vs expected 45.0 9.74e-07 2.92e-06
HV A— HV A observed vs expected (synaptic scale) 344.0 1.68e-03 2.52e-03
HVA—-V1 observed vs expected (synaptic scale) 125.0 2.00e-04 3.99¢-04
V1—- HVA observed vs expected (synaptic scale) 32.0 3.48e-02 4.64e-02
Vi—=V1 observed vs expected (synaptic scale) 197.0 5.35e-02 6.42e-02
HVA— HV A observed vs expected (axonal scale) 344.0 1.68e-03 2.52e-03
HVA—V1 observed vs expected (axonal scale) 19.0 2.23e-09 1.34e-08
V11— HVA observed vs expected (axonal scale) 53.0 2.84e-01 2.84e-01
Vi—>Vi observed vs expected (axonal scale) 5.0 5.82e-10 6.98e-09

68 | bioRxiv Ding, Fahey, Papadopoulos etal. | Functional connectomics reveals general wiring rule in mouse visual cortex


https://doi.org/10.1101/2023.03.13.531369
http://creativecommons.org/licenses/by/4.0/

