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Vision is fundamentally context-dependent, with neuronal re-
sponses influenced not just by local features but also by sur-2

rounding contextual information. In the visual cortex, stud-
ies using simple grating stimuli indicate that congruent stim-4

uli—where the center and surround share the same orienta-
tion—are more inhibitory than when orientations are orthog-6

onal, potentially serving redundancy reduction and predictive
coding. Understanding these center-surround interactions in re-8

lation to natural image statistics is challenging due to the high
dimensionality of the stimulus space, yet crucial for decipher-10

ing the neuronal code of real-world sensory processing. Utiliz-
ing large-scale recordings from mouse V1, we trained convolu-12

tional neural networks (CNNs) to predict and synthesize sur-
round patterns that either optimally suppressed or enhanced14

responses to center stimuli, confirmed by in vivo experiments.
Contrary to the notion that congruent stimuli are suppressive,16

we found that surrounds that completed patterns based on natu-
ral image statistics were facilitatory, while disruptive surrounds18

were suppressive. Applying our CNN image synthesis method in
macaque V1, we discovered that pattern completion within the20

near surround occurred more frequently with excitatory than
with inhibitory surrounds, suggesting that our results in mice22

are conserved in macaques. Further, experiments and model
analyses confirmed previous studies reporting the opposite ef-24

fect with grating stimuli in both species. Using the MICrONS
functional connectomics dataset, we observed that neurons with26

similar feature selectivity formed excitatory connections regard-
less of their receptive field overlap, aligning with the pattern28

completion phenomenon observed for excitatory surrounds. Fi-
nally, our empirical results emerged in a normative model of30

perception implementing Bayesian inference, where neuronal
responses are modulated by prior knowledge of natural scene32

statistics. In summary, our findings identify a novel relationship
between contextual information and natural scene statistics and34

provide evidence for a role of contextual modulation in hierar-
chical inference.36

Correspondence: kafranke@stanford.edu, tolias@stanford.edu

Introduction38

Across animal species, the processing of sensory informa-
tion is context-dependent, which can result in varied per-40

ceptions of the identical stimulus under different conditions.
This adaptive mechanism allows for the flexible adjustment42

of sensory processing to changing environments and tasks.
In the domain of vision, the context is often defined by the44

global attributes of the broader visual scene. For instance, ef-
fective object detection relies not only on the integration of46

local object features such as contours or textures but also on
the visual context surrounding the object (Biederman et al.,48

1982; Hock et al., 1974). Physiologically, the responses of
visual neurons to stimuli within their center receptive field50

(RF) –— termed the classical RF –— are influenced by stim-
uli in their surround RF, known as the extra-classical RF. This52

center-surround contextual modulation is evident across vari-
ous levels of the visual system, ranging from the retina to the54

visual cortex (Mcilwain, 1964; Solomon et al., 2002; Hubel
and Wiesel, 1965; Knierim and Van Essen, 1992; Keller et al.,56

2020b; Jones et al., 2012; Rossi et al., 2001; Vinje and Gal-
lant, 2000; Angelucci et al., 2017; Polat et al., 1998; Nurmi-58

nen and Angelucci, 2014). It is thought to be mediated by
both lateral interactions and feedback from higher visual ar-60

eas (Nassi et al., 2013; Nurminen et al., 2018; Keller et al.,
2020a; Adesnik et al., 2012; Angelucci et al., 2017).62

Research on how context modulates visual activity has pre-
dominantly been using experimental settings with well-64

defined parametric stimuli, such as oriented gratings. These
studies, primarily conducted in non-human primates (see be-66

low) and more recently in mice (Keller et al., 2020a; Self
et al., 2014; Samonds et al., 2017; Keller et al., 2020b), have68

elucidated the mechanisms of center-surround modulations in
the primary visual cortex (V1). The most frequently observed70

phenomenon in these studies is suppression, where neuronal
responses to stimuli within the center RF are reduced by the72

presence of specific surrounding stimuli (Knierim and Van
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Essen, 1992; Levitt and Lund, 1997; Kapadia et al., 1999;74

Sceniak et al., 1999; Cavanaugh et al., 2002b,c; DeAngelis
et al., 1994; Blakemore and Tobin, 1972; Sillito et al., 1995).76

Suppression is weakest when the peripheral elements op-
pose the orientation of the central stimulus (Knierim and78

Van Essen, 1992; Cavanaugh et al., 2002c; Self et al., 2014;
DeAngelis et al., 1994), which has been linked, among other80

things, to the perception of object boundaries (Nothdurft
et al., 2000; Lamme, 1995). Surround facilitation, which82

is less frequently observed, typically occurs when localized,
iso-oriented, and collinearly aligned bars are presented in the84

neuron’s center and surround RF (Levitt and Lund, 1997; Po-
lat et al., 1998; Keller et al., 2020b), and might serve con-86

tour integration (Kapadia et al., 1995; Polat et al., 1998; Field
et al., 1993).88

Contextual modulation of visual responses is influenced by a
large array of stimulus features (Angelucci et al., 2017; Nur-90

minen and Angelucci, 2014), including the contrast and the
spatial resolution of the stimulus in the center and surround92

RF (Levitt and Lund, 1997; Kapadia et al., 1999; Sceniak
et al., 1999; Polat et al., 1998; Cavanaugh et al., 2002b), the94

orientation difference between center and surround stimuli
(Knierim and Van Essen, 1992; Cavanaugh et al., 2002c), and96

the spatial resolution of the surround pattern (Li et al., 2006).
Although these features interact (e.g. Kapadia et al., 1999),98

they are often studied independently due to constraints on du-
ration of the experiment. Furthermore, the use of parametric100

stimuli such as gratings may not optimally drive visual neu-
rons because many neurons in mouse V1 (Walker et al., 2019;102

Franke et al., 2022; Ustyuzhaninov et al., 2022; Fu et al.,
2022) and primate higher visual areas (Pasupathy and Con-104

nor, 2001; Bashivan et al., 2019) demonstrate strong selectiv-
ity for more complex stimuli, such as corners, checkerboards,106

or textures.
The strong dependence of contextual modulation on differ-108

ent stimulus features, coupled with the neurons’ preference
for complex visual stimuli, underscores the need for an ap-110

proach to characterize center-surround interactions that does
not make strong assumptions on neuronal selectivity and uses112

ecologically relevant stimuli. Historically, the high dimen-
sionality of natural stimuli and the complexity of interpret-114

ing neuronal responses to these stimuli have posed significant
challenges. Here, we overcome these challenges by employ-116

ing a recently developed modeling framework (Walker et al.,
2019) and systematically study center-surround modulations118

in mouse V1 using naturalistic stimuli. This approach in-
volves inception loops –— a closed-loop paradigm that inte-120

grates large-scale neuronal recordings, convolutional neural
network (CNN) models capable of accurately predicting re-122

sponses to diverse natural stimuli, in silico optimization of
non-parametric center and surround images, and in vivo ver-124

ification (Walker et al., 2019; Franke et al., 2022; Bashivan
et al., 2019).126

Using a data-driven CNN model trained on stimulus-response
pairs of experimentally recorded neurons, we synthesized128

non-parametric surround images that effectively modulated
the activity of mouse V1 neurons in response to their pre-130

ferred stimuli in the center RF, with subsequent in vivo ver-
ification. Notably, excitatory surrounds completed the spa-132

tial pattern of the center stimulus, resembling the spatial
correlation and congruence of natural scenes (Geisler et al.,134

2001; Sigman et al., 2001), while inhibitory surrounds dis-
rupted the central pattern. We quantified this by using136

a generative diffusion model to extrapolate natural image
statistics from a neuron’s preferred stimulus in the center to138

the surround, achieving high representational similarity with
the model-optimized excitatory surrounds. We additionally140

tested our approach on macaque V1 by training a CNN model
on macaque V1 responses to natural images (Cadena et al.,142

2023), then applying our synthesis method as well as tra-
ditional paradigms using grating stimuli. The synthesized144

non-parametric surrounds contained complex spatial struc-
tures, with completing patterns being more frequent in exci-146

tatory than inhibitory surrounds, as observed in mice. Impor-
tantly, in-vivo experiments in mouse V1 and in-silico anal-148

yses in macaque V1, respectively, using parametric stimuli
replicated previously established center-surround effects with150

grating stimuli.
Furthermore, to potentially explain the mechanistic basis152

for excitatory surround pattern completion we demonstrated
the presence of "like-to-like" anatomical connections among154

neurons with minimal RF overlap, employing the “MI-
CrONS” functional connectomics dataset (MICrONS Con-156

sortium et al., 2021). Finally, we showed that surround ex-
citation and inhibition, driven by pattern completion and dis-158

ruption, respectively, result as a natural consequence of per-
forming perception as Bayesian inference within a statistical160

generative model that interprets the stimulus as global ob-
jects comprised of local features, thus offering a normative162

account of the newly discovered center-surround effects.

Results164

Deep neural network model accurately predicts center-sur-
round modulation of visual responses in mouse primary vi-166

sual cortex We combined large-scale population imaging
and neural predictive modeling to systematically characterize168

contextual modulation in mouse primary visual cortex (V1).
The experimental and modeling setup was adapted based on170

(Walker et al., 2019). Specifically, we used two-photon imag-
ing to record the population calcium activity in L2/3 of V1172

(630x630 µm, 10 planes, 7.97 volumes/s) in awake, head-
fixed mice positioned on a treadmill, while presenting the an-174

imal with natural images (Fig. 1a,b). For each functional
recording, the center RF across all recorded neurons – esti-176

mated using a sparse noise stimulus (Jones and Palmer, 1987)
– was centered on the monitor (Fig. 1c). This ensured that the178

center RF of the majority of neurons was within the central
area of the monitor. To investigate center-surround interac-180

tions in V1 neurons, we presented two types of visual stim-
uli: full-field natural images (70 x 124 degrees visual angle)182

and masked natural images (48 degrees in diameter). While
the full-field images stimulated both the center (i.e. classical184

RF) and the surround RF (i.e. the extra-classical surround) of
the neurons, the masked images primarily activated the cen-186
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Fig. 1. Deep neural network approach captures center-surround modulation of visual responses in mouse primary visual cortex. a, Schematic of experimental
setup: Awake, head-fixed mice on a treadmill were presented with full-field and masked natural images from the ImageNet database, while recording the population calcium
activity in V1 using two-photon imaging. b, Example recording field. GCaMP6s expression through cranial window, with the borders of different visual areas indicated in
white. Area borders were identified based on the gradient in the retinotopy (Garrett et al., 2014). The recording site was chosen to be in the center of V1, mostly activated
by the center region of the monitor. The right depicts a stack of imaging fields across V1 depths (10 fields, 5µstep in z, 630x630µ, 7.97 volumes/s). c, Top shows heat
map of aggregated population RF of one experiment, obtained using a sparse noise stimulus. The dotted line indicates the aperture of masked natural images. The bottom
shows RF contour plots of n=4 experiments and mice. d, Raster plot of neuronal responses of 100 example cells to natural images across 6 trials. Trial condition (full-field
vs. masked) indicated below each trial. Each image was presented for 0.5s, indicated by the shaded blocks. e, Schematic of model architecture. The network consists of a
convolutional core, a readout, a shifter network accounting for eye movements by predicting a gaze shift, and a modulator predicting a gain attributed to behavior state of the
animal. Model performance was evaluated by comparing predicted responses to a held-out test set to observed responses. f, Distribution of normalized correlation between
predicted and observed responses averaged over repeats (maximal predictable variability) for an example model trained on data from n=7,741 neurons and n=4,182 trials.
Vertical lines indicate mean performance of other animals. g, Accuracy of model predictions of surround modulation for only full-field versus full-field and masked natural
images. Each test image was presented in both full-field and masked, allowing us to compute a surround modulation index per image per neuron. The modulation indices
across images were averaged per neuron. Left and right shows predicted vs. observed surround modulation indices for a model trained on only full-field images and full-field
and masked images, respectively. The model trained on both full-field and cropped images predicted surround modulation significantly better than the model trained on only
full-field images (p-value<0.001). The total number of training images was the same, and the data was collected from the same animal in the same session.

ter RF, with a smaller contribution of the surround. Please
note that the masked images were not designed to activate188

solely the center of each neuron without influence from the
surrounding area. Instead, using both types of images al-190

lowed us to vary the activation levels between the center and

surround components of the RF, thus facilitating the learning192

of surround effects by the model. We used the recorded neu-
ronal activity in response to full-field and masked natural im-194

ages to train a convolutional neural network (CNN) model to
predict neuronal responses as a function of visual input. The196
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model also incorporated eye movements and the modulatory
gain effect of the animal’s behavior on neuronal responses198

(Niell and Stryker, 2010) by using the recorded pupil and run-
ning speed traces as input to a shifter and modulator network200

(Fig. 1d; Walker et al., 2019). A model trained on an ex-
ample recording session (architecture shown in Fig. 1e) with202

7,741 neurons and 4,182 trials (i.e. images) yielded a noise-
corrected correlation between model predictions and mean204

observed responses of 0.73±0.20 (mean ± standard devia-
tion; Fig. 1f). This is comparable to state-of-the-art models206

of mouse V1 (Franke et al., 2022; Willeke et al., 2022; Lurz
et al., 2021). Importantly, masking half of the training im-208

ages as described above improved the model’s prediction of
contextual modulation (Fig. 1g): The prediction of how neu-210

ronal responses differ between a masked natural image and its
full-field counterpart significantly increased when using both212

full-field and masked natural images during model training
(for statistics, see figure legend). Together, this shows that214

our deep neural network approach accurately captures center-
surround modulation of visual responses in mouse primary216

visual cortex, allowing us to study contextual modulation in
the setting of complex and naturalistic visual stimuli.218

CNN model identifies non-parametric excitatory and in-
hibitory surround images of mouse V1 neurons We used220

the trained CNN model as a functional “digital twin” of the
mouse visual cortex to identify non-parametric surround im-222

ages that greatly modulate neuronal activity. For that, we fo-
cused on the most ’exciting’ and most ’inhibiting’ surround224

image, which enhances and reduces the response of a single
neuron to its optimal stimulus in the center, respectively. The226

rationale behind this approach was to identify surround im-
ages that maximally modulate the encoding of the neuron’s228

preferred visual feature in the center RF. Please note that the
terms ’excitatory’ and ’inhibitory’ used to describe optimized230

surround images do not imply specific synaptic mechanisms
but rather describe the functional impact on neuronal activ-232

ity to the optimal center stimulus. To identify the optimal
center stimulus per neuron, we first optimized the most ex-234

citing input (MEI) using gradient ascent as previously de-
scribed (Walker et al., 2019; Franke et al., 2022), correspond-236

ing to the non-linear center RF of the neuron. This non-
parametric approach of identifying the optimal center stim-238

ulus was required because most mouse V1 neurons are not
well described by Gabor filters (Fu et al., 2022; Walker et al.,240

2019). The MEI was optimized using a root mean square
(RMS) contrast budget that minimized clipping of pixel val-242

ues outside the 8-bit range, resulting in an RMS contrast of
12.15 ± 1.35 in 8-bit input space (0 to 255 pixel values). In244

comparison, the natural images presented during experiments
had an RMS contrast of 45.12 ± 17.78. We then used the246

MEI to define the center RF and consider all visual space be-
yond the MEI as RF surround (see below for a more detailed248

discussion on this choice).
To generate excitatory and inhibitory surround images, we250

held the MEI in the center fixed and only optimized pixels in
the surround, starting from Gaussian noise (Fig. 2a). We de-252

lineated the borders of the MEI by constructing an MEI mask

with smoothed edges. This was achieved through a process254

of thresholding the MEI at 1.5 standard deviations above the
mean, ensuring that the majority of the full-field RMS con-256

trast was encapsulated within the defined mask. During opti-
mization, the center (i.e. MEI mask) of the surround images258

remained unchanged while the contrast in the surround was
redistributed. The RMS contrast budget of the surround was260

twice the contrast budget we allowed for the MEI, resulting
in an RMS contrast of 15 ± 1.5 for the MEI with surround262

images. This optimization procedure yielded complex fea-
tures in the RF surround of V1 neurons (Fig. 2b), which were264

predicted by the model to either enhance or suppress visual
responses to optimal stimuli in the center RF (Fig. 2c).266

To verify the efficacy of the synthesized surround images in
vivo, we performed inception loop experiments (Walker et al.,268

2019; Bashivan et al., 2019): after model training and stimu-
lus optimization, we presented MEIs and the respective sur-270

rounds back to the same mouse on the next day while record-
ing from the same neurons, thereby testing whether they ef-272

fectively modulated neuronal responses as predicted by the
model. For a specific recording, we chose 150 neurons from274

the total population for closed-loop verification. This selec-
tion was based on their consistent responses to repeated im-276

age presentations and the accuracy of model predictions. We
found that the in silico predictions (Fig. 2c) matched the in278

vivo results (Fig. 2d, Suppl. Fig. 1): The responses of the
neuronal population significantly increased and decreased by280

the synthesized excitatory and inhibitory surround images,
respectively, compared to presenting the MEI alone. The282

greater variance in the observed responses compared to the
predicted ones likely stems from the deterministic nature of284

our model and the inherent trial-to-trial variability in neu-
ronal responses.286

We found that 55.1% of the neurons verified in vivo during
inception loop experiments were significantly inhibited by288

their inhibitory surround images across stimulus repetitions.
In contrast, only 28.4% of neurons were significantly facili-290

tated by their excitatory surround images. Critically, less than
3% of neurons were significantly modulated in the direction292

opposite to what the model predicted. We also performed a
subset of experiments using a higher contrast budget for cen-294

ter and surround MEIs (22.23± 3.38 for MEIs, 26.86± 3.65
and 29.22 ± 4.26 for MEI with excitatory and inhibitory sur-296

round, respectively), while keeping the ratio between center
and surround contrast unchanged (Suppl. Fig. 2a). While the298

strength of surround modulation decreased for higher con-
trast levels, excitatory and inhibitory surround MEIs still sig-300

nificantly modulated center responses of mouse V1 neurons
(Suppl. Fig. 2b). Together, these results from the incep-302

tion loop experiments demonstrate the accuracy of our CNN
model in synthesizing effective non-parametric modulatory304

surround images of mouse V1 neurons.

To investigate the ecological relevance of the center-surround306

modulation observed with non-parametric images, we exam-
ined if similar modulation occurs in mouse V1 neuronal ac-308

tivity with natural images (Suppl. Fig. 3). We specifically
targeted natural images that mimic the neuron’s preferred310
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Fig. 2. Modeling approach accurately
predicts non-parametric excitatory and in-
hibitory surround images of single neurons
in mouse V1. a, Schematic of the optimiza-
tion of surround images. b, Panel shows MEI,
excitatory surround with MEI, and inhibitory sur-
round with MEI for 6 example neurons. Since
the gradient was set to zero during optimiza-
tion for the area within the MEI mask, the cen-
ter remained the same as the MEI. c, Model
predicted responses to MEI and the excitatory
(left) and inhibitory (right) surround images (y-
axis), compared to the predicted responses to
the MEIs (x-axis). Responses are depicted in ar-
bitrary units, corresponding to the output of the
model. d, Recorded responses to the MEI and
excitatory (left) and inhibitory (right) surround (y-
axis), compared to the recorded responses to
the MEIs (x-axis). For each neuron, responses
are normalized by the standard deviation of re-
sponses to all images. Across the population,
the modulation was significant for both excita-
tory (n=6 animals, 960 cells, p-value=2.08×
10−8, 1.01× 10−22, 2.16× 10−18, 1.02×
10−9, 2.19× 10−20, 1.46× 10−5, Wilcoxon
signed rank test) and inhibitory surround images
(n=3 animals, 510 cells, p-value=2.13×10−23,
6.14×10−26, 1.48×10−24). e, Diameters of
RFs estimated using sparse noise ("center RF"),
MEIs, and MEIs with excitatory and inhibitory
surround. The means of center RF, MEI, MEI
& excitatory, MEI & inhibitory across all neurons
are (mean± s.e.m.): 23.4 degrees± 0.34 (n=4,
419 cells), 31.3 degrees± 0.20 (n=4, 434 cells),
51.4 ± 0.23 (n=4, 434 cells), 46.1 ± 0.23 (n=4,
434 cells).

center feature, akin to the optimized surrounds. For each neu-
ron, we screened 5,000 natural images masked with the neu-312

ron’s MEI mask, selecting those that elicited strong activa-
tion (>80% relative to the maximum excitatory input or MEI;314

Suppl. Fig. 3a). After replacing the center of these images
with the MEI and adjusting them to match the average size316

and contrast of the excitatory and inhibitory surrounds, we
evaluated the modulation strength by presenting these mod-318

ified natural images to both the model and the animal. We
then measured the in-silico and in-vivo responses, comparing320

them to the responses elicited by the MEI alone. Our findings
revealed that certain natural surrounds can either enhance322

or reduce V1 responses to the preferred visual feature, par-
alleling the effects seen with synthesized surrounds (Suppl.324

Fig. 3b,c). Generally, the modulation strength elicited by the
synthesized images exceeded that of the natural surrounds.326

These results strongly indicate that our model-derived sur-
rounds are ecologically relevant, effectively mimicking the328

modulation of V1 responses by natural image surrounds.
We performed a number of control experiments to verify that330

the observed response modulations indeed originated from
activating the surround of the neurons. As described above,332

we used the MEI as an approximation of the center RF and
defined visual space beyond the MEI as surround RF. To re-334

late our definition of center RF and surround to definitions
used previously, we first demonstrated that the synthesized336

surround images indeed extend beyond the center RF of the
neurons (Fig. 2e), identified using a well-established stim-338

ulus for RF mapping. Specifically, we estimated each neu-

ron’s center RF as the minimal response field (MRF) using340

a sparse noise stimulus (Jones and Palmer, 1987) and com-
pared its size to the size of the MEI and the excitatory and342

inhibitory surround, respectively. The MRF was, on average,
smaller than the MEI, suggesting that the MEI itself corre-344

sponds to an overestimation of the center RF. Lowering the
contrast of the sparse noise stimulus to more closely match346

the contrast of the MEI did not change the distribution of
MRF sizes (Suppl. Fig. 2c). Importantly, both the excita-348

tory and inhibitory surround were much larger than the MRF,
indicating that the modulatory effect on neuronal activity we350

observed by the surround images was indeed elicited by acti-
vating the surround component of V1 RFs.352

In line with this, in additional control experiments we showed
that the response modulation did not solely originate from354

the region directly adjacent to the MEI but further increased
both in silico and in vivo when considering the full surround356

region (Suppl. Fig. 4). Finally, we showed that increas-
ing the contrast in the center was more effective in driving358

the neurons than adding the same amount of contrast in the
surround of the image (Suppl. Fig. 5), consistent with the360

idea that the enhancement in neuronal response from the sur-
round is weaker than from the center (Allman et al., 1985;362

Cavanaugh et al., 2002a; Jones et al., 2001; Knierim and Van
Essen, 1992). Together, these results demonstrate that the ob-364

served response modulation by model-derived surround im-
ages originates from activating the surround RF of V1 neu-366

rons.
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Pattern completion and disruption shaped by natural image368

statistics characterize excitatory and inhibitory surround im-
ages Center-surround modulation of visual activity corre-370

sponds to a neuronal implementation for integrating visual in-
formation across space, thereby providing context for visual372

processing. So far, models of contextual modulation have
largely focused on parametric stimuli for visual cortex, such374

as gratings (but see e.g. Coen-Cagli et al., 2012), perhaps due
to the lack of tools that allow unbiased and systematic test-376

ing of such high-dimensional visual inputs. Here, we used
our data-driven model and the optimized surround images to378

systematically investigate the rules that determine contextual
excitation versus inhibition in a naturalistic setting.380

We observed that excitatory surround images demonstrated
greater congruence with the MEI in the center compared to382

inhibitory surround images (Fig. 3a). Specifically, the spa-
tial patterns within the MEI, such as orientation (e.g., neu-384

rons 2 and 3), were predominantly preserved by the exci-
tatory surround, whereas the inhibitory surround tended to386

disrupt these patterns. This pattern completion and disrup-
tion was also evident for more complex spatial structures like388

grid patterns (neuron 1), which were completed by the exci-
tatory surround and fragmented by the inhibitory surround.390

Notably, the congruent patterns observed for MEIs with ex-
citatory surrounds echo the well-documented phenomenon392

wherein natural images frequently exhibit congruent struc-
tures that delineate object contours and create continuous394

patterns (Geisler et al., 2001; Sigman et al., 2001). Conse-
quently, we propose the hypothesis that MEIs accompanied396

by excitatory surrounds may share statistical characteristics
with, and appear perceptually similar to, natural images—–398

more so than MEIs with inhibitory surrounds. More broadly,
we suggest that the rules that govern surround excitation and400

inhibition may be described as completion and disruption of
spatial patterns according to natural image statistics.402

To evaluate our hypothesis, we extrapolated the spatial pat-
terns of the MEI from the center into the surround using404

a generative diffusion model (Pierzchlewicz et al., 2023)
trained on a dataset of natural images ((Fig. 3b); Dhariwal406

and Nichol, 2021). This process, known as “outpainting” in
computer vision, generated surround images based on the sta-408

tistical properties of natural images. It is crucial to note that
these outpainted surrounds solely relied on the statistics of410

natural images learned by the diffusion model. In particular,
they are independent of the CNN model employed to predict412

neuronal activity and optimize MEIs. This ensures that test-
ing our hypothesis was not influenced by the predictive model414

itself. For each neuron, we started with the MEI in the center
and outpainted the surround 40 times, resulting in 40 unique416

outpainted surround images per neuron through the diffusion
model’s stochastic sampling. We then masked the outpainted418

images using the surround MEI masks and adjusted the con-
trast, such that the outpainted surround images had the same420

size and contrast as the MEI with excitatory and inhibitory
surround, respectively.422

We found that the outpainted surround images, averaged
across the 40 unique images per neuron, qualitatively looked424

more similar to the excitatory than the inhibitory surrounds
(Fig. 3c), in line with our hypothesis stated above. To426

quantify the similarity of CNN-optimized and outpainted
surrounds, we computed the "representational similarity"428

(Kriegeskorte et al., 2008) for a given pair of images in the V1
neuronal response space. We chose to use representational430

similarity instead of pixel-wise correlation to quantify simi-
larity between images because (i) the representational space432

more closely mimics similarity at the representational level of
interest (mouse V1) and (ii) this process removes image fea-434

tures that are irrelevant to the visual system, such as high spa-
tial frequency noise. We performed closed-loop experiments436

and presented the outpainted surround images back to the an-
imal, in addition to the MEIs with excitatory and inhibitory438

surrounds as described above. For each presented image, we
obtained a vector of recorded neuronal responses, averaged440

across repeated trials and computed the cosine similarity be-
tween the mean response vectors of an image pair, i.e. we442

correlated the population response vectors of outpainted and
excitatory surround or the population response vectors of out-444

painted and inhibitory surround (Fig. 3d). We found that the
outpainted surround images exhibited a high representational446

similarity to the MEI with excitatory surrounds, while the
similarity to the MEI with inhibitory surrounds was much448

weaker (Fig. 3e). This trend was even more pronounced
when using the CNN-model predicted responses instead of450

the recorded responses for estimating the representational
similarity between outpainted and excitatory and inhibitory452

surround images (Fig. 3c). Please note that the representa-
tional similarity metrics derived from predicted responses of454

outpainted and inhibitory surrounds exhibited considerable
variability across images. Nonetheless, there was a signifi-456

cant correlation between the representational similarities de-
rived from predicted and recorded responses. The outpainted458

images displayed central spatial structures that resemble, but
are not identical to, the MEI, and given the model’s sensi-460

tivity to variations in its predicted MEIs, this could account
for the observed variability in predicted responses, while the462

recorded neuronal population may remain invariant to these
minor modifications.464

To further demonstrate that MEIs with excitatory surrounds
were indeed more closely aligned with natural images than466

those with inhibitory surrounds, we employed the representa-
tional similarity metric introduced earlier on natural images468

directly. For each neuron, we began by identifying highly
activating natural image crops located in the center RF. We470

then extended these images into the surround using the masks
from the CNN-optimized surround images, and adjusted the472

contrast to align with the optimized center-surround images.
We then presented both optimized and natural images to the474

model. In line with our predictions, this analysis showed that
natural surround images featuring the neuron’s preferred cen-476

ter exhibited greater similarity to MEIs with excitatory sur-
rounds than to those with inhibitory surrounds (Fig. 3f).478

To check whether excitatory and inhibitory surrounds are also
characterized by first order image statistics like mean lumi-480

nance, in addition to pattern completion and disruption, we
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Fig. 3. Completion and disruption of natural image statistics characterize excitatory and inhibitory surround images. a, MEI with excitatory and inhibitory surround of
four example neurons, illustrating that excitatory and inhibitory surround images complete and disrupt, respectively, spatial patterns of the MEI. b, Schematic illustrating how
we used a diffusion model with a natural image prior to outpaint spatial patterns of the MEI into the surround. The diffusion process included an additional loss function, which
minimized the difference between MEI and the generated image within the MEI mask (L2 norm). This resulted in a final image outpainted from the center, which includes MEI
features in the center and naturalistic features in the surround. The outpainted surround image was created independent on the neuron’s activation and instead maximized the
consistency between center and surround with respect to natural image statistics. c, MEI, optimized excitatory and inhibitory surrounds, and outpainted surrounds, masked
either using the excitatory or inhibitory surround mask, for three example neurons. d, Schematic illustrating how we estimated representational similarity of MEI and surround
images. We presented MEIs, optimized and outpainted surround images to the animal in closed loop experiments and obtained a population response for each presented
image (r). We then estimated representational similarity between outpainted and optimized surround images by estimating the Cosyne similarity between image pairs. e,
Representational similarity (as Pearson’s correlation coefficient between neuronal responses) of outpainted surround images to excitatory and inhibitory surround. The black
dots indicate data from in vivo closed-loop experiments (n=1 animal, 90 cells, p-value=4.20× 10−4, Wilcoxon signed rank test). The gray dots indicate data from in silico
experiments (n=2 animals, 300 cells, p-value=3.04×10−5). f, Representational similarity (as Pearson’s correlation coefficient between neuronal responses) of natural image
surround to excitatory and inhibitory surround. One exciting natural image and surround of one example neuron (left) and representational similarity (as Pearson’s correlation
coefficient, right; p-value=5.28×10−35, two-sided Wilcoxon signed rank test, n=3 animals, 219 neurons) of natural surround images with excitatory and inhibitory surround.
Each dot represents the mean across natural surrounds per neuron.

compared the distribution of pixel values of excitatory and482

inhibitory surround MEIs. This revealed that the pixel value
distributions of excitatory and inhibitory surround MEIs did484

not significantly differ from one another, suggesting that neg-
ative contrasts or not generally more exciting than positive486

contrasts. In addition, the mean pixel value of the excitatory
surround MEI was negatively correlated with the mean pixel488

value of the inhibitory surround MEI, indicating that excita-
tory and inhibitory surround MEIs have opposite mean lumi-490

nance. For example, if the excitatory surround MEI of a neu-
ron is dominated by negative contrast, then the inhibitory sur-492

round MEI is dominated by positive contrast, and vice versa.
This analyses on first order statistics complements our anal-494

ysis above on higher order natural image statistics.

Taken together, our results demonstrate that surround exci-496

tation and inhibition in mouse primary visual cortex can be
characterized by pattern completion and disruption, respec-498

tively, based on natural image statistics. This yields a novel
relationship between natural image statistics and modulation500

of neuronal activity in the visual system.

Iso- and ortho-oriented surround grating stimuli generally502

suppress center drifting grating responses Our findings
challenge the prevailing view that congruent spatial patterns,504

such as a surround grating matching the orientation of the
center grating, are generally more inhibitory than orthogo-506

nal spatial patterns (e.g. DeAngelis et al., 1994; Cavanaugh
et al., 2002c; Self et al., 2014), and that excitatory effects of508

the surround are rare (reviewed in Angelucci et al., 2017).
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Fig. 4. Surround suppression in mouse V1 using drifting grating stimuli. a, Schematic illustrating visual stimuli used in the grating experiment, including center-only,
center with iso-oriented surround and center with orthogonal surround. b, Scatter plot of surround modulation by iso-oriented and ortho-oriented surround. For each neuron,
the responses to center-surround stimuli are normalized by responses to the center stimulus alone. Both iso-oriented and orthogonal surround are more suppressive, with
the iso-oriented surround eliciting lower neuronal responses (Wilcoxon signed rank test, p-value=3.22×10−50).

However, it is important to note that surround effects appear510

to be influenced by numerous factors, including the contrast
of the center and surround stimuli, the type of stimulus used,512

and others (reviewed in Angelucci et al., 2017). For exam-
ple, unlike our study, which uses natural images and a non-514

parametric approach to identify modulating surround images,
most research on contextual modulation in the visual cortex516

has relied on well-defined parametric stimuli, such as drifting
gratings. To investigate the extent to which the discrepancies518

between our results and previous studies could be attributed
to differences in the types of visual stimuli used, we con-520

ducted experiments presenting both sinusoidal drifting grat-
ings and natural images to the same set of mouse V1 neu-522

rons. Specifically, we presented drifting gratings with prede-
termined spatial and temporal frequencies (0.05 cpd and 1.2524

Hz, based on Self et al. (2014)) at the screen’s center (diam-
eter 20 degrees visual angle), either in isolation or accompa-526

nied by iso- or orthogonal-oriented gratings in the surround,
maintaining the same frequencies as the center stimulus (Fig.528

4a). Concurrently, we presented both masked and unmasked
natural images to the same neurons, as detailed above. This530

approach enabled a direct comparison between the effects of
surround modulation induced by drifting gratings and natural532

images. In our analysis, we focused exclusively on neurons
with RFs centered on the screen, directly overlapping with534

the stimulus area of the center drifting grating. Our find-
ings indicate that both iso- and orthogonal-oriented surround536

gratings generally suppress the neuronal response to central
drifting gratings, although there was considerable variability538

across individual neurons (Fig. 4b). In addition, iso-oriented
gratings were on average more effective in suppressing cen-540

ter responses than orthogonal oriented gratings. Crucially,
for anatomically matched neurons across stimuli, our model542

trained on responses to natural images predicted the excita-
tory and inhibitory surround modulation patterns described544

above (Fig. 4c). Our results using grating stimuli thus align
with previous research, suggesting an interplay between stim-546

ulus statistics and neuronal response modulation. This under-
scores the importance of employing a variety of visual stimuli548

to fully understand the dynamics of contextual modulation in

the visual cortex.550

Predictive model trained on macaque V1 responses to nat-
ural images reproduces center-surround interactions dis-552

covered in mice Next, we investigated whether the center-
surround effects observed in mouse primary visual cortex are554

also present in macaque visual cortex, where much of the
previous research has been conducted. We used an existing556

dataset of macaque V1 single neuron spiking activity to nat-
ural images (n=458 neurons, n=2 macaques, Cadena et al.558

(2023)) and trained a CNN model to predict spiking activity
in response to these images (Fig 5a,b). Our model achieved a560

mean correlation of 0.74 with trial-averaged experimentally
recorded responses (Fig 5c), slightly outperforming existing562

models for macaque V1 (Cadena et al., 2023). We focused
further analysis on the best-predicted neurons, those exceed-564

ing an inclusion threshold of 0.75 correlation between pre-
dicted and trial-averaged measured activity (n=252 neurons).566

Similar to our approach with mice, we regarded the model as
a functional “digital twin” of macaque V1 and employed it568

for detailed in-silico analysis of contextual modulation of vi-
sual responses. It is important to note that all further analyses570

are performed in the model, and not directly in experiments
with the animals.572

We validated our model’s accuracy in capturing well-known
center-surround interactions in macaque V1 through a se-574

ries of experiments with established parametric grating stim-
uli (Fig 5d). We mapped each neuron’s RF using a sparse576

noise stimulus and identified its preferred spatial frequency
and orientation via presentation of full-field sinusoidal grat-578

ings (gratings spanned pixel values between 102 and 127
in 8-bit range). We then conducted a size tuning experi-580

ment, presenting gratings of the preferred orientation and
spatial frequency to each selected neuron, masked by a disk582

of increasing radius centered on the sparse noise RF. This
revealed that most neurons exhibited surround suppression,584

where their response initially increased as the radius of the
grating expanded, then decreased again. We defined the586

grating summation field (GSF) as the smallest grating that
elicited 95% of the maximum activation (Cavanaugh et al.,588

2002c), which was typically larger (mean across neurons 0.96
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Fig. 5. Predictive model trained on
macaque V1 responses to natural im-
ages reproduces center-surround interac-
tions discovered in mice. a, Schematic
of experimental setup: awake, head-fixed
macaques were presented with grey-scale nat-
ural images from the ImageNet database at
a parafoveal eccentricity while focusing on a
fixation spot. Neuronal spiking activity was
recorded using linear probes. Data from (Ca-
dena et al., 2023). b, Schematic of model
architecture. A ConvNext CNN model was
trained on the collected experimental data to
predict the spike rate of the recorded neurons
to natural images. c, Histogram of correla-
tion of model predictions to trial averaged re-
sponses of held out test-dataset. Only neurons
with correlation above the inclusion thresh-
old of 0.75 are considered for the subsequent
in-silico experiments. d Results of classical
experiments performed in-silico for two neu-
rons. From left to right: Gaussian fitted sparse
noise RF, optimal full-field grating, size tun-
ing curve, grating summation field (GSF) and
GSF in the center, with iso- and ortho-oriented
surround gratings (orientation contrast). e,
Scatter plot summarizing results of orienta-
tion contrast experiment. Plot shows model
predicted responses to GSF with ortho- and
iso-oriented surround gratings, normalized per
neuron based on the firing rate to the GSF
alone. f, Optimized MEI and excitatory and in-
hibitory surround stimuli with MEI for 3 exam-
ple neurons. Scatter plots show model pre-
dicted responses to MEI versus to MEI with
surround images. g, Images on the left illus-
trate quantification of pattern completion and
disruption for excitatory and inhibitory surround
stimuli with MEI: local patches (data) at the bor-
der of center and surround are extracted from
the optimized stimuli and then fitted with a Ga-
bor (fit). The right panel displays the percent-
age or local patches with good Gabor fit. A 0.3
MSE threshold was chosen to discriminate be-
tween good Gabor fits (corresponding to MEI
pattern continuation in surround) and poor Ga-
bor fits (corresponding to MEI pattern disrup-
tion in surround). h MEI with maximally in-
hibitory surround of example neuron obtained
from a simulated dataset and a Heeger model
of divisive normalization (Heeger, 1992). We
simulated 10,000 linear-non-linear simple cells
as Gabor filters, with randomly sampled posi-
tion and orientation.

degrees) than the sparse noise estimated RFs (mean across590

neurons 0.61 degrees; Fig 5d). Further, we performed an ori-
entation contrast experiment, presenting each selected neu-592

ron with stimuli composed of its GSF paired with either an
iso-oriented or ortho-oriented grating in the surround, sepa-594

rated from the center by a moat of 0.23 degrees visual angle
(Fig 5d, top right). This experiment demonstrated, on av-596

erage, stronger suppression for iso-oriented than for ortho-
oriented surrounds, and revealed surround facilitation for598

ortho-oriented surrounds in a small subset of neurons. These
findings align with previous research conducted in macaque600

V1 (reviewed in Angelucci et al., 2017), confirming that our
CNN model accurately learns and reproduces classic experi-602

ments on center-surround interactions.

We next focused on identifying non-parametric surround im-604

ages that optimally inhibit and excite, respectively, each neu-
ron’s firing to its preferred visual feature in the center RF,606

following the same approach to that previously detailed in
our mouse experiments. First, we identified each neuron’s608

MEI using optimization in pixel space, with a pixel standard
deviation approximately matching the standard deviation of610

the gratings used in the above experiments. Consistent with
earlier findings (Fu et al., 2022), the majority of macaque612

V1 MEIs resembled Gabor patterns (Fig 5f, Suppl. Fig. 6).
The size of the MEIs (mean across neurons 0.88 degrees) was614

larger than the sparse noise RF and comparable to that of
the GSF, suggesting that the MEI provides a reliable approx-616

imation of the neuron’s center RF extent. Subsequently, we
synthesized modulatory surround images by keeping the MEI618

fixed and optimizing only the surrounding pixels to either in-
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crease (excitatory) or decrease (inhibitory) the neuron’s re-620

sponse to the MEI in the center (Fig 5f, , Suppl. Fig. 6).
The excitatory surround patterns typically continued the Ga-622

bor pattern present in the center (e.g. neurons 1 and 3), partic-
ularly along the axis of the preferred orientation in the center.624

For many neurons, the excitatory surround additionally in-
cluded local Gabor-like features with a different orientation626

along the flanking sides of the MEI. Those were often or-
thogonal with respect to the MEI orientation, thereby adding628

complexity to the pattern (e.g. neuron 2). Conversely, in-
hibitory surrounds often displayed a texture-like grid pattern630

that tended to disrupt the central Gabor pattern. We quanti-
fied pattern completion and disruption for excitatory and in-632

hibitory surrounds by taking advantage of the fact that most
individual macaque V1 neurons’ MEIs are well-described by634

a Gabor filter. Specifically, we extracted local patches from
the optimized images at the border between MEI and the sur-636

round and fitted these patterns with Gabor functions (Fig 5g
left panel). The reasoning behind this analysis is as follows:638

if we can fit the local patch at the border between MEI and
surround with a Gabor function with little error, this indicates640

pattern continuation in the near surround adjacent to the MEI.
Conversely, if Gabor patterns present in the MEI do not con-642

tinue in the near surround, the Gabor fit on the respective
local patch will be poor, suggesting pattern disruption. Our644

results indicate that such local Gabor pattern continuation oc-
curs much more frequently for the excitatory surround than646

for the inhibitory one (see Fig 5g, right and Suppl. Fig. 6).

Previous research has indicated that the inhibitory surround648

of V1 neurons is influenced by the collective activity of a
diverse array of V1 neurons, potentially facilitating divisive650

normalization—a mechanism that standardizes each neuron’s
responses relative to its neighboring activity (Heeger, 1992;652

Carandini and Heeger, 2011). Accordingly, we hypothesized
that the texture-like patterns frequently observed in inhibitory654

surround images could correspond to stimuli that optimally
drive a population of Gabor neurons characterized by varying656

orientation preferences and spatial positions. To investigate
this hypothesis, we constructed a model comprising a pop-658

ulation of simple cells represented as linear-non-linear (LN)
neurons featuring Gabor-shaped RFs, with random variations660

in position and orientation. Subsequently, we implemented a
simple divisive normalization model (Heeger, 1992) centered662

on an LN simple cell, wherein the response is divisively nor-
malized by the activity of the neuron population. This pro-664

cess yielded both the MEI and its corresponding maximally
inhibitory surround of this LN simple cell (Fig. 5h). The re-666

sultant image exhibited pattern disruption and a texture-like
appearance reminiscent of the inhibitory surrounds observed668

in macaque V1 neurons. Our findings lend support to the
notion that the patterns evident in most inhibitory surrounds670

could emerge from the cumulative activity of a population
of neurons, potentially serving divisive normalization mech-672

anisms.

These insights from mouse and macaque V1 suggest that674

within the framework of natural images as visual stimuli
and a non-parametric analytical approach, pattern comple-676

tion and disruption drive surround excitation and inhibition,
respectively, in the primary visual cortex of both mice and678

macaques. That being said, in macaques, there is a great
diversity of surround patterns, particularly within excitatory680

surrounds, including the frequent appearance of orthogonally
oriented features. By integrating both established parametric682

stimuli and innovative non-parametric methods, our findings
not only align with but also significantly enhance the existing684

understanding of surround interactions in V1.

Circuit-level dissection using the MICrONS dataset identi-686

fies ”like-to-like” connections across broad spatial scale
as potential mechanism of pattern completion To further688

understand the mechanisms at the circuit level contributing
to the established rules governing contextual modulation in690

mouse V1, we integrated functional recordings with anatom-
ical analyses. For that, we used the “MICrONS” dataset,692

which includes responses of over 75,000 neurons to full-field
natural movies along with reconstructed sub-cellular connec-694

tivity from electron microscopy data (MICrONS Consortium
et al., 2021). Crucially, a ”dynamic” model–a recurrent neu-696

ral network (RNN) representing a digital twin of this portion
of the mouse visual cortex–demonstrates not only high pre-698

dictive accuracy for responses to natural movies but also ro-
bust out-of-domain performance with other stimulus classes700

such as drifting Gabor filters, directional pink noise, and ran-
dom dot kinematograms. This allows for the presentation702

of novel stimuli to the digital twin model, facilitating a de-
tailed exploration of how specific functional properties cor-704

relate with the underlying neuronal connectivity and anatom-
ical characteristics.706

Here, we evaluated whether the dynamic model trained on the
MICrONS dataset accurately replicates the center-surround708

effects observed in our experiments, thereby serving as a
tool for circuit-level analysis of these interactions. We used710

the MICrONS dynamic model to simulate responses to both
full-field and masked natural images used during our exper-712

iments (Fig. 6a), then trained a model on these predicted
responses and used it to optimize MEIs and their excita-714

tory and inhibitory surrounds for the neurons (”dynamic to
static”). Our findings revealed that the excitatory and in-716

hibitory surround images, respectively, complete and disrupt
the spatial patterns present in the MEI, in line with our ex-718

perimental results (Fig. 6a, right). To ensure that this ”dy-
namic to static” approach indeed generates surround images720

that accurately modulate neuronal activity as predicted, we
conducted additional closed-loop experiments. These ex-722

periments are essential for verifying the model’s predictions
with new visual stimuli not included in the original training724

set. We recorded neuronal responses to static natural images
and the same natural movies used in the MICrONS dataset.726

We subsequently trained two CNN models: one directly on
the recorded responses to natural images, and another on re-728

sponses predicted by a dynamic model that had been trained
from scratch on recorded responses to natural movies. The730

MEIs and surround images derived from these two mod-
els showed remarkable perceptual similarity (Fig. 6b, left).732

When these MEIs and their corresponding surround images
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Fig. 6. . a, Schematic shows the MICrONS functional connectomics dataset (MICrONS Consortium et al., 2021), which includes responses of >75k neurons to full-field
natural movies and the reconstructed sub-cellular connectivity of the same cells from electron microscopy data. We used the MICrONS digital twin (Wang et al., 2023) trained
on natural movies ("dynamic" model) to predict responses to natural images used in our experiments. We then trained a new model based on these predictions ("dynamic
to static") and optimized MEIs and surround images. b, Verification of center-surround effects of the MICrONS digital twin (panel (a)). Left shows MEIs and excitatory and
inhibitory surround images for two example neurons, optimized using our baseline model used for all mouse experiments and the "dynamic to static" pipeline described in panel
(a). Neurons were matched across natural movie and image recordings based on their position in a high-resolution 3D stack. MEIs and surround images were presented
to the animal in closed-loop experiments. Right shows observed MEI responses plotted versus observed responses to MEI with excitatory and inhibitory MEI, using the
"dynamic to static" method for image synthesis. Surround modulation was significant for both excitatory surround (n=1 animal, 200 cells, p-value=2.12× 10−9, Wilcoxon
signed rank test) and inhibitory surround (n=1 animal, 200 cells, p-value=8.87× 10−32). c, Left shows schematic illustrating hypothesis. Anatomical connections between
adjacent neurons with high functional similarity ("like-to-like") could underlie pattern completion for the excitatory surround. To investigate this, we split pairs of neurons in V1
L2/3 with proof-read connectivity from the MICrONS dataset into groups based on the amount of overlap between their MEI masks (middle). We then compared the feature
similarity among pairs with different amounts of MEI overlap (right). The significance is derived from Welch’s t-test and p values are corrected for multiple-test correction.
Asterisks indicate p-value < 0.05. We used a Poisson generalized linear model to predict number of synapses from mask overlap and feature similarity. This revealed that
both mask overlap and feature similarity are significantly larger than zero, while the weight for the interaction between mask overlap and feature similarity is not significantly
different from zero.

were presented back to the animal, the ”dynamic to static”734

generated surrounds modulated neuronal activity in expected
ways—increasing activity with excitatory surrounds and de-736

creasing it with inhibitory surrounds (Fig. 6b, right). This
shows that our results are applicable to natural movie data,738

thus validating the use of the MICrONS dataset to explore
neuronal circuits that underlie center-surround interactions.740

Prior studies have established that excitatory cortical neurons
are more likely to form anatomical connections if they ex-742

hibit functional similarities, a phenomenon described as like-
to-like connections (Ko et al., 2011; Cossell et al., 2015; Lee744

et al., 2016; Scholl et al., 2021). Our observation that a com-
pleting surround pattern is excitatory suggests that neurons746

with similar functional characteristics are inclined to con-
nect even when their RFs do not overlap. For instance, a748

neuron preferring feature A would likely receive excitatory
connections from other feature A-preferring neurons in the750

surrounding area, effectively completing the central pattern
(Fig. 6c, left). To evaluate this hypothesis, we analyzed the752

RF overlap and functional similarity of neuron pairs within
the MICrONS dataset, consisting of 624 neurons and 793754

synapses. These pairs were either anatomically connected
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Fig. 7. Explaining observed center-surround effects by Bayesian inference. a, Schematic illustrating theories about the functional role of surround modulation. Weaker
suppression by ortho- than iso-oriented gratings in the surround has been linked to redundancy reduction and efficient coding. Here, we propose that pattern completion
and disruption by the excitatory and inhibitory surround, respectively, could emerge from perception through hierarchical Bayesian inference of global features. b, Schematic
illustrating the visual system as a generative model of the stimulus, I. g represents high-level features (e.g. objects), and x represents low-level features (e.g. oriented
edges). All three variables are multidimensional. Shaded circles denotes observed, open circles inferred variables. Inferring the posterior over x entails combining likelihood
(feedforward), and prior expectations driven the belief about which high-level features are present (feedback). c, RFs of both g and x neurons. RFs of g neurons represent
full objects, spanning all pixels in the image, I. RFs of x neurons represent local features. Some x represent the center (green border) and others the surround. d, Illustration
of information flow during inference. Each dimension in g represents a neuron in visual areas downstream to V1, each encoding the presence of an object. Each dimension
in x represents a neuron in V1, each encoding the presence of a specific local feature. Feedback signals from a single gi boost compatible xj . e, Four example MEIs shown
with their corresponding completing surround, and disrupting surround (see Methods section for details on how they are constructed). f-g, Scatterplots of simulated neural
activity during inference of MEI vs completing and disruptive surrounds respectively. Our model consisted of 10 textures/objects (g) and 90 V1 neurons, (x), with the RFs of
10 neurons at the center of the image, and 80 neurons with RFs in their surround. Scatterplots show responses from all 10 center neurons. Each dot (·) corresponds to the
firing rate during a single simulated trial and each star (?) corresponds to one center neuron’s average firing rate. h, Marginal response distribution over higher-ordered g
neurons for an example experiment.

(’connected’) or randomly pooled from the dataset, irrespec-756

tive of their connectivity (’control’). We approximated each
neuron’s RF using the MEI and assessed the functional sim-758

ilarity between neuron pairs by measuring the cosine simi-
larity of the neuron-specific feature weights of the dynamic760

model. In alignment with existing literature, our results
demonstrated that connected neuron pairs displayed greater762

functional similarity compared to control pairs. Furthermore,
our analysis revealed the persistence of this effect across a764

spectrum of RF overlaps. Notably, even neuron pairs with
minimal RF overlap (0-20%) exhibited higher functional sim-766

ilarities relative to control pairs. To further quantify these re-
lationships, we applied a generalized linear model to model768

the synaptic connectivity based on functional similarity and
RF overlap, as well as their interaction. We found that func-770

tional similarity and RF overlap independently predicted the
number of synapses between neuron pairs, since the inter-772

action term between functional similarity and RF overlap
did not significantly contribute to predicting synapse num-774

bers. This suggests that functionally similar neurons are more
likely to form synapses than control pairs, irrespective of776

their RF overlap. This observation supports the presence of
an excitatory completing surround pattern and offers valuable778

insights into the circuit-level mechanisms involved in such
neuronal interactions.780

Perception as Bayesian inference explains observed center–
surround effects Finally, we linked our observed center-782

surround effects to normative, first-principles theories of per-
ceptual inference — specifically posterior inference, where784

the brain updates its internal beliefs (posterior) in light of
new sensory input (evidence) against prior beliefs or expe-786

riences (prior probabilities). The primary goal of percep-
tion is to infer useful features from the environment. Due788

to the inherent ambiguity and noise in sensory stimuli it is
advantageous to integrate the information from sensory stim-790

uli with pre-existing knowledge or beliefs about the environ-
ment (Von Helmholtz, 1867). A principled way to accom-792

plish this integration is through Bayesian inference on rele-
vant world variables (latent features) that are part of a statisti-794

cal generative model of the world (Knill and Richards, 1996;
Kersten et al., 2004; Lee and Mumford, 2003; Fiser et al.,796

2010). The theory does not claim that the brain maintains a
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generative model itself, but that neuronal activity represents798

the result of the process of “inverting” a generative model,
that is, inferring possible world configuration that could have800

led to the transmitted sensory signals from, e.g., the retina. In
statistical terms, this can be formalized by computing a pos-802

terior over the world variables given the sensory evidence.
Here, we show that surround excitation and inhibition elicited804

by completing and disrupting surround patterns respectively,
are a natural consequence of performing Bayesian inference806

in a generative model of the stimulus that explains the stimu-
lus as global objects consisting of local features (Fig 7a-c).808

Our hierarchical generative model is similar to ones previ-
ously proposed (Haefner et al., 2016; Bányai et al., 2019)810

(Fig 7b,c). In the generative model, we assume that V1 neu-
rons represent the presence of local spatial features (x) neu-812

rons and higher order areas represent the presence of objects
or larger textures (g). The goal of this model visual system814

is to infer the presence of local spatial features and hierar-
chically, the presence of objects or textures. In other words,816

the goal is to perform joint probabilistic posterior inference
over x and g given an image. As a consequence, inference818

p(x,g|I) ∝ p(x|g) ·p(I|x) over the intermediate variables x
— representing V1 neurons — and global variables g — rep-820

resenting higher order neurons — combines two types of in-
formation: feedforward p(I|x) from the input image I, and822

feedback p(x|g) from higher level areas reflecting expecta-
tions resulting from the current belief about which global fea-824

ture is present (Fig 7b-d).

To quantify the center-surround interactions in this model,826

we presented the following three sets of stimuli tailored to
the V1 neurons whose RFs are located in the center of vi-828

sual space (Fig. 7c, RFs with green border): (1) the MEI of
the V1 neurons, (2) the MEI with a spatially completing pat-830

tern in the surround, and (3) the MEI with a spatially dis-
rupting pattern in the surround (Fig. 7e). These three condi-832

tions match the pattern completion and disruption that char-
acterize the contextual modulations we found in mouse and834

primate visual cortex. For each stimulus condition, we per-
formed joint posterior inference in the generative model, i.e.,836

computed the posterior distribution p(g,x|I) and obtained
the responses of both g and x neurons. Subsequently, we838

compared the responses of the center-aligned V1 neurons to
their respective MEIs with the responses elicited by (1) the840

MEIs with the completing surround and (2) the MEIs with
the disrupting surround. The model responses reproduced our842

key experimental results (Fig. 7f-g): the MEI with the spa-
tially completing surround drives the center-aligned V1 neu-844

rons stronger than its MEI alone, and the MEI with the spa-
tially disrupting stimulus inhibits the responses of the neu-846

rons compared to the MEI presented alone.

The key driver of excitation and inhibition in our probabilis-848

tic model is the top-down signal resulting from beliefs about
the presence or absence of large-scale features. A V1 neu-850

ron’s response is boosted when its feedforward input is con-
gruent with the brain’s beliefs about what that input should852

be. This belief is strongest when image center and surround
are congruent (completing surround) and indicative of the854

same global feature. On the other hand, it is weakened when
the surround is incongruent with the center (disrupting sur-856

round). In particular, when only the MEI is present, the cor-
responding global feature may be inferred to be present with858

an intermediate probability (0.63 in the example in Fig 7h,
top row). When a congruent surround is added, this proba-860

bility increases (0.75, Fig 7h, middle row). However, when
an incongruent surround is added, this probability decreases862

(0.04, Fig 7h, bottom row). Consequently, the activity of the
corresponding V1 neuron is enhanced for the congruent sur-864

round, and suppressed for the incongruent surround, relative
to the MEI-only condition.866

Discussion
Our study discovered a novel rule of surround modulation868

in primary visual cortex: Completion (or extension) of natu-
ralistic visual spatial patterns in the center RF governed sur-870

round excitation, whereas disruption (or termination) of cen-
ter features produced inhibition. The non-linearity of neu-872

ronal responses to natural images, which reside in a high-
dimensional space, has made it challenging to accurately874

characterize the center RF properties and to model the inter-
actions with the RF surround in the context of natural visual876

inputs. Our accurate digital twin models allowed us to cap-
ture the non-linearity both within and beyond the center RF,878

and to predict the best modulating stimuli in the surround,
without parametric assumptions about their underlying sta-880

tistical structure. We verified the predictions from the model
experimentally in a closed-loop manner. Our results demon-882

strate that contextual modulation in mouse primary visual
cortex is driven by pattern completion and disruption shaped884

by natural image statistics. Additionally, our results suggest
that a similar mechanism of excitatory surround pattern com-886

pletion is also present in the macaque primary visual cor-
tex. This type of surround facilitation by congruent structures888

emerged within a simple hierarchical model that modulates
neuronal responses based on prior knowledge of the world,890

i.e. natural scene statistics. This may potentially enhance
the encoding of prominent features in the visual scene, such892

as contours and edges, especially when the sensory input is
noisy and uncertain.894

Relationship between surround modulation and stimulus
statistics Previous studies using oriented stimuli such as896

gratings and bars have explored spatial patterns of contex-
tual modulation in the primary visual cortex of monkeys (All-898

man et al., 1985; Levitt and Lund, 1997; Kapadia et al., 1999;
Sceniak et al., 1999; Cavanaugh et al., 2002b,c; Nassi et al.,900

2013; Nurminen et al., 2018; Michel et al., 2018; Knierim
and Van Essen, 1992; Polat et al., 1998). These investigations902

predominantly identified suppression, particularly from con-
gruent surround stimuli, as the dominant modulation form of904

surround modulation, with the strength of suppression wan-
ing as surround stimulus congruency decreases (Knierim and906

Van Essen, 1992; Kapadia et al., 1999). Our results in the
macaque V1 model are consistent with these findings, con-908

firming that suppression is the predominant effect of iso- and
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ortho-oriented gratings in the surround RF. However, it is im-910

portant to note that the surround modulation dynamics vary
significantly with the stimulus configuration. Previous stud-912

ies have shown that at lower contrast and with specific ar-
rangements such as co-linear bars adjacent to the center RF914

instead of full-field gratings, congruent stimuli in the RF
surround can elicit excitation (Polat et al., 1998; Lee and916

Nguyen, 2001). As a whole, the literature on surround mod-
ulation in primate visual cortex suggests that details of the918

stimulus like contrast, size and location greatly influence both
the strength as well as the effect of surround modulation on920

neuronal responses (reviewed in Angelucci et al., 2017).

So far, the spatial patterns driving surround excitation versus922

inhibition in mouse V1 are less conclusive compared to pri-
mates. Some previous studies have reported suppression and924

facilitation of mouse V1 neurons by congruent and incon-
gruent parametric surround stimuli (Keller et al., 2020a; Self926

et al., 2014), respectively, consistent with the results in pri-
mates. However, there seems to be a large variability across928

neurons, where surround stimuli that have the same orien-
tation as the center stimulus can be either excitatory or in-930

hibitory (Samonds et al., 2017) and different orientations of
the surround relative to the center can be excitatory (Keller932

et al., 2020b). Here, we have confirmed those results by us-
ing iso- and ortho-oriented drifting grating stimuli. In part,934

this variability across neurons might be related to the fact
that parametric stimuli like gratings and bars drive mouse V1936

neurons sub-optimally, due to the fact that mouse V1 neu-
rons are selective for more complex visual features (Walker938

et al., 2019). It is well established that contextual modulation
depends on the center stimulus features (Knierim and Van940

Essen, 1992; Kapadia et al., 1999) and it might therefore be
critical to condition surround stimuli on the optimal stimu-942

lus in the center RF, corresponding to the MEI (Walker et al.,
2019).944

Our results, obtained using naturalistic stimuli and a data-
driven approach that minimizes strong assumptions about946

stimulus selectivity, revealed a novel principle of surround
modulation in the mouse primary visual cortex. We discov-948

ered that the most excitatory surround stimuli are congruent
with the optimal center stimuli, thus completing patterns ac-950

cording to natural image statistics, as shown using a gener-
ative diffusion model. Conversely, the most inhibiting sur-952

round stimuli are incongruent, thereby disrupting these pat-
terns. Our findings establish a consistent rule of pattern com-954

pletion and disruption, which leads to surround facilitation
and suppression. We further demonstrated that this principle956

also applies to macaque V1, particularly in the near surround
where excitatory surround images more frequently complete958

patterns compared to inhibitory ones, reminiscent of collinear
facilitation reported using bars and gratings (Levitt and Lund,960

1997; Polat et al., 1998; Keller et al., 2020b). However, un-
like prior research which indicated facilitation for very spe-962

cific stimulus configurations, our study proposes a new uni-
versal rule—pattern completion—that consistently leads to964

surround facilitation, both in mouse and primate V1 neurons,
and is related to the spatial statistics of natural images that go966

beyond collinearity. For example, in mouse V1, the most ex-
citing images are not typically Gabors, thus making it unclear968

how collinearity would apply or what an optimal surround
would be when the optimal center stimulus is a texture, for970

example, or a corner. The use of an image synthesis approach
revealed that the non-parametric excitatory surround patterns972

of macaque V1 neurons incorporate complex patterns with
varying orientations, often reflective of natural scene config-974

urations. This suggests that the facilitation by collinear struc-
tures might represent a simplification of our newly identified976

rule, underscoring the effectiveness of the digital twin model
in conducting exhaustive in-silico experiments. These exper-978

iments explore both non-parametric and parametric stimuli,
helping to reconcile the diverse effects of contextual modula-980

tion observed under different stimulus conditions.
Overall, our findings complement previous studies that noted982

suppressive effects from iso- and ortho-oriented surround
gratings in both mouse and macaque V1, which we replicated984

and analyzed in our experiments. Our work enhances the
understanding that contextual modulation is critically influ-986

enced by the statistical properties of stimuli. It shows that for
a non-parametric approach, surround modulation is driven by988

pattern completion and disruption. This mechanism, shaped
by natural scene statistics in mice, is also suggested to be990

present in macaques.
A recent study by Pan et al. (2023) utilized a similar non-992

parametric approach to synthesize surround images for hid-
den units in artificial neural networks, finding that congru-994

ent spatial patterns in the center and surround are most sup-
pressive. This appears to contradict our results, suggesting a996

potentially intriguing divergence between natural visual sys-
tems and current artificial neural networks. Notably, the find-998

ings reported by Pan et al. (2023) vary significantly depend-
ing on the network layer and its architecture. Exploring these1000

differences between various artificial neural network archi-
tectures and digital twins of the brain represents a promising1002

direction for future research, and promises to uncover uni-
versal principles of visual information processing conserved1004

across both animal species and artificial vision systems.

Circuit-level mechanism of contextual modulation in visual1006

cortex Mechanistically, surround suppression in V1 can be
partially accounted for by feedback projections from higher1008

visual areas. In monkeys, inactivation of feedback from V2
and V3 reduces surround suppression induced by large grat-1010

ing stimuli (Nassi et al., 2013; Nurminen et al., 2018) and
also results in an increase in RF size (Nurminen et al., 2018).1012

In mice, feedback from higher visual areas also strongly
modulates V1 responses to stimuli in the RF center and even1014

elicits strong responses without any stimulation of the center,
thereby creating a feedback RF (Keller et al., 2020b; Shen1016

et al., 2022). The cellular substrate of surround modulation
has been predominantly studied in mice, benefiting from ge-1018

netic tools for cell-type specific circuit manipulations. Dif-
ferent types of inhibitory neurons have been identified as1020

key players of surround modulation, including somatostatin
(SOM)- and vasoactive intestinal peptide (VIP)-expressing1022

cells, which inhibit each other as well as excitatory V1 neu-
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rons and are further modulated by feedback (Adesnik et al.,1024

2012; Keller et al., 2020a; Shen et al., 2022). Based on these
results, surround suppression in mouse V1, and likely pri-1026

mate V1, is dependent on the exact balance between the exci-
tatory input from feedforward and feedback projections and1028

the inhibitory inputs from locally present inhibitory neuron
types.1030

To further elucidate surround modulation of individual visual
neurons in relation to local and long-range network connec-1032

tivity, recent advancements in functional connectomics of-
fer significant opportunities. These advances combine large-1034

scale neuronal recordings with detailed anatomical infor-
mation at the scale of single synapses. Utilizing the MI-1036

CrONS functional connectomics dataset (MICrONS Consor-
tium et al., 2021) and its functional digital twin (Wang et al.,1038

2023), we investigated circuit-level mechanisms that could
underlie the pattern-completion governed surround facilita-1040

tion observed in our data. This dataset encompasses re-
sponses from over 75,000 neurons to natural movies, along1042

with the reconstructed sub-cellular connectivity of these cells
from electron microscopy data. Our analysis identified ’like-1044

to-like’ anatomical connections among neurons with similar
feature selectivity but minimal RF overlap, which likely facil-1046

itates the completion of naturalistic patterns observed in ex-
citatory surround images. Furthermore, our modeling results1048

suggest that inhibitory surround modulation may be driven by
the collective activity of a functionally diverse group of neu-1050

rons, aligning with earlier studies (DeAngelis et al., 1992;
Morrone et al., 1982) and pointing to an additional circuit1052

motif underlying surround suppression in the visual cortex.
As connectomics proofreading efforts for the MICrONS1054

dataset proceed, aiming to reconstruct the connectome
among tens of thousands of excitatory and inhibitory neurons1056

across various cortical layers and visual areas, we anticipate
gaining a much more comprehensive understanding of the1058

circuit-level mechanisms behind contextual modulation. This
progression will enable us to extend our connectivity analysis1060

from excitatory neurons within V1 to higher cortical areas to
explore feedback projections, and to interneurons to exam-1062

ine feature-specific inhibitory inputs to projection neurons,
akin to studies performed on the fly visual system connec-1064

tome (Sebastian Seung, 2024). The creation of a functional
digital twin of the MICrONS dataset (Wang et al., 2023) and1066

our demonstration of its utility in studying the circuit-level
mechanisms of neuronal computations, showcased here for1068

center-surround interactions, promise significant progress in
understanding both structure and function of neuronal cir-1070

cuits.

Theoretical implications of surround facilitation Here, we1072

demonstrated that surround facilitation is a prominent fea-
ture of contextual modulation in the primary visual cortex,1074

thereby highlighting that center-surround interactions cannot
simply be explained by suppression of sensory responses.1076

Importantly, excitatory surround images with the optimal
center stimulus exhibited a high representational similarity1078

with natural images, indicating that congruent patterns fre-
quently present in natural scenes (Geisler et al., 2001; Sigman1080

et al., 2001) strongly drive neuronal responses, through exci-
tatory surround pattern completion. Excitation by congruent1082

surround structures relative to the center may be explained
by preferential long-range connections between neurons with1084

co-linearly aligned RFs described in mice (Iacaruso et al.,
2017) and higher mammals (Bosking et al., 1997; Schmidt1086

et al., 1997; Sincich and Blasdel, 2001) and might serve per-
ceptual phenomena like edge detection, contour integration1088

and object grouping observed in humans and primates (Ka-
padia et al., 1995; Geisler et al., 2001).1090

Our empirical results of surround facilitation are surprising
in light of a long line of theoretical work that explains sen-1092

sory responses using principles like redundancy reduction
(Barlow et al., 1967) or predictive coding (Rao and Ballard,1094

1999). The idea that neurons should minimize redundancy
has given rise to contrast normalization models (Schwartz1096

and Simoncelli, 2001) that were recently expanded to a
flexibly-gated center-surround normalization model (Coen-1098

Cagli et al., 2015) most relevant to our data. The key idea
behind the latter model is to only normalize (typically reduce)1100

center activation when the surround is similar, and otherwise
ignore the surround. This proposal cannot explain our empir-1102

ical findings. Analogously, predictive coding proposes that
neuronal activity reflects prediction errors, and that therefore1104

the center activation should be lower when it can be well
predicted from the surround (Rao and Ballard, 1999; Keller1106

and Mrsic-Flogel, 2018) – again in contradiction to our find-
ing that excitatory surrounds appear to “complete” the center1108

stimulus, and frequently occur in natural scenes.

In contrast, our results are consistent with an alterna-1110

tive framework for understanding sensory neurons: percep-
tual (Bayesian) inference (Von Helmholtz, 1867; Knill and1112

Richards, 1996). In this model, sensory responses calculate
beliefs about latent variables within a hierarchical structure,1114

where higher-level variables represent broader, more com-
plex image features and act as priors for lower-level variables.1116

These lower variables represent specific parts of the image
and receive feedback from higher levels (Lee and Mumford,1118

2003). In such a model, global image structure can increase
or decrease responses of neurons with localized RFs, depend-1120

ing on whether the global structure increases or decreases the
probability of the local feature being present in the image1122

(Haefner et al., 2016; Bányai et al., 2019; Lange and Haefner,
2022). In fact, our probabilistic model which qualitatively1124

reproduces our empirical findings is an example of such a
model. Our approach of characterizing contextual modula-1126

tion in a data-driven way for arbitrary stimuli, without any
assumptions about neuronal selectivity, has revealed a novel1128

relationship between surround modulation and natural image
statistics that challenges classic theories of redundancy re-1130

duction and predictive coding, instead providing evidence a
contextual modulation expected from models of hierarchical1132

inference in which neurons represent beliefs about the out-
side world.1134

It is possible that different computational objectives may co-
exist and operate under different input regimes. At high cer-1136

tainty (e.g., high contrast), the efficiency achieved by redun-
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dancy reduction might be most important. Conversely, in1138

high uncertainty scenarios (e.g., low contrast), maximizing
information by incorporating prior knowledge of the world1140

by Bayesian inference might be more advantageous.

Materials and Methods1142

Animals and surgical preparation. All experimental proce-
dures complied with guidelines of the NIH and were ap-1144

proved by the Baylor College of Medicine Institutional An-
imal Care and Use Committee (permit number: AN-4703),1146

expressing GCaMP6s in cortical excitatory neurons. Mice
used in this study (n=14, 7 males and 7 female, aged 2.51148

to 6 month) were heterozygous crosses between Ai162 and
Slc7a7-Cre transgenic lines (JAX #031562 and #023527, re-1150

spectively). To expose V1 for optical imaging, we performed
a craniotomy and installed a window that was 4mm in diam-1152

eter and centered at 3mm lateral to midline and 2mm ante-
rior to lambda (Reimer et al., 2014; Froudarakis et al., 2014).1154

Mice were housed in a facility with reverse light/dark cycle
to ensure optimal alertness during the day when experiments1156

were performed.

Neurophysiological experiments and data processing. We1158

recorded calcium signals using 2-photon imaging with a
mesoscope (Sofroniew et al., 2016) which was equipped with1160

a custom objective (0.6 numerical aperture, 21 mm focal
length). The imaging fields of each recording were 630×6301162

µm2 per frame at 0.4 pixels µm-1 xy resolution and were po-
sitioned in the center of V1 according to the retinotopic map1164

(Fig. 1b). Z resolution was 5 µm with a total of ten planes
from −200µm to −245µm relative to cortical surface. The1166

laser power increased exponentially as imaging plane moved
farther from the surface according to:1168

P = P0 e
z/Lz

Here P is the laser power used at target depth z, P0 is the
power used at the surface (19.71 mW ± 4.68, mean ± stan-1170

dard deviation), and Lz is the depth constant (220 µm). The
highest laser output was of 54.79 mW ± 13.67 and was used1172

at approximately 240 µm from the surface. Most scans did
not require more than 50 mW at maximal depth, except for1174

one mouse where the average laser power at the deepest scan-
ning field was 82.03 mW.1176

For each animal, we first performed retinotopic mapping
across the whole cranial window to identify the border of V11178

(Fig. 1b and c; Schuett et al., 2002). At the beginning of
each imaging session, we measured the aggregated popula-1180

tion RF to ensure precise placement of the monitor with re-
gard to the imaging site. We used stimuli consisting of dark1182

(pixel value=0) square dots of size 6 degrees in visual an-
gle on a white background (pixel value=255). The dots were1184

randomly displayed at locations on a 10 by 10 grid covering
the central region of the monitor and at each location the dot1186

was shown for 200 ms and repeated 10 times over the whole
duration of dot mapping. The mean calcium signal was de-1188

convolved and averaged across repeated trials to produce the

population RF. The monitor was placed such that the popula-1190

tion RF was centered on the monitor.
The full two-photon imaging processing pipeline is available1192

at (https://github.com/cajal/pipeline). Briefly, raster correc-
tion for bidirectional scanning phase row misalignment was1194

performed by iterative greedy search at increasing resolu-
tion for the raster phase resulting in the maximum cross-1196

correlation between odd and even rows. Motion correction
for global tissue movement was performed by shifting each1198

frame in x and y to maximize the correlation between the
cross-power spectra of a single scan frame and a template1200

image, generated from the Gaussian-smoothed average of
the Anscombe transform from the middle 2000 frames of1202

the scan. Neurons were automatically segmented using con-
strained non-negative matrix factorization, then traces were1204

deconvolved to extract estimates of spiking activity, within
the CalmAn pipeline (Giovannucci et al., 2019). Cells were1206

further selected by a classifier trained to separate somata ver-
sus artifacts based on segmented cell masks, resulting in ex-1208

clusion of 8.1% of the masks.
A 3D stack of the volume imaged was collected at the end1210

of each day to allow registration of the imaging plane and
identification of unique neurons. The stack was composed of1212

two volumes of 150 planes spanning from 50 µm above the
most superficial scanning field to 50 µm below the deepest1214

scanning field. Each plane was 500× 800 µm, together tiling
a 800 × 800 µm field of view (300 µm total overlap), and1216

repeated 100 times per plane.

Visual stimulation. Visual stimuli were displayed on a 31.8×1218

56.5 cm (height × width) HD widescreen LCD monitor with
a refresh rate of 60 Hz at a resolution of 1080 × 1920 pix-1220

els. When the monitor was centered on and perpendicular to
the surface of the eye at the closest point, this corresponded1222

to a visual angle of 2.2◦/cm on the monitor. We recorded
the voltage of a photodiode (TAOS TSL253) taped to the top1224

left corner of the monitor to measure the gamma curve and
luminance of the monitor before each experimental session.1226

The voltage of the photodiode is linearly correlated with the
luminance of the monitor. To convert from photodiode volt-1228

age to monitor luminance, we used a luminance meter (LS-
100 Konica Minolta) to measure monitor luminance for 161230

equidistant pixel values from 0-255 while recording the pho-
todiode voltage. The gamma value for experiments in this1232

paper ranged from 1.751 to 1.768 (mean = 1.759, standard
deviation = 0.005). The minimum luminance ranged from1234

0.23 cd/m2 to 0.97 cd/m2 (0.49 ± 0.25, mean ± standard de-
viation), and the maximum ranged from 84.11 cd/m2 to 86.041236

cd/m2 (85.07 ± 0.72, mean ± standard deviation).

ImageNet stimulus. Natural images were randomly selected
from the ImageNet database (Deng et al., 2009), converted to
gray scale, and cropped to the monitor aspect ratio of 16:9. To
probe center-surround interactions, we modified the images
using a circular mask that was approx. 48 degrees in visual
angle in diameter with smoothed edges. The mask radius was
defined as fraction of monitor width, i.e. raperture = 1 means
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a full-field mask. We used raperture = 0.2

r =
rpixel− raperture

α
+ 1

M =


1+cos(πr)

2 0< r < 1
1 r ≤ 0
0 otherwise

whereM is the mask, r is the radius, and α is the width of the1238

transition. We presented 5,000 unique natural images with-
out repetition during each scan, half of which were masked.1240

We also presented the same 100 images repeated 10 times
as full-field and 10 times as masked. The 100 images that1242

were repeated were conserved across experiments, while the
unique images varied across scans. Each trial consisted of1244

one image presented for 500 ms with a preceding blanking
period of 300 - 500 ms (randomly determined per trial).1246

Eye tracking. A movie of the animal’s eye and face was cap-
tured throughout the experiment. A hot mirror (Thorlabs1248

FM02) positioned between the animal’s left eye and the stim-
ulus monitor was used to reflect an IR image onto a camera1250

(Genie Nano C1920M, Teledyne Dalsa) without obscuring
the visual stimulus. The position of the mirror relative to the1252

camera was manually adjusted if necessary per session to en-
sure that the camera focuses on the pupil. The field of view1254

was manually cropped for each session. The field of view
contained the left eye in its entirety, 282-300 pixels height1256

× 378-444 pixels width at 20 Hz. Frame times were time
stamped in the behavioral clock for alignment to the stimulus1258

and scan frame times.
Light diffusing from the laser during scanning through the1260

pupil was used to capture pupil diameter and eye movements.
A DeepLabCut model (Mathis et al., 2018) was trained on1262

17 manually labeled samples from 11 animals to label each
frame of the compressed eye video with 8 eyelid points and1264

8 pupil points at cardinal and intercardinal positions. Pupil
points with likelihood >0.9 (all 8 in 93% ± 8% of frames)1266

were fit with the smallest enclosing circle, and the radius and
center of this circle was extracted. Frames with <3 pupil1268

points with likelihood >0.9 (0.7% ± 3% frames per scan),
or producing a circle fit with outlier >5.5 standard deviations1270

from the mean in any of the three parameters (center x, center
y, radius, <1.3% frames per scan) were discarded (total <3%1272

frames per scan). Trials affected by gaps in the frames were
discarded (<2% trials for all animals except one, where the1274

animal’s eye appeared irritated).

Registrations of neurons in 3D stack. We densely sampled1276

the imaging volume to avoid losing cells due to tissue defor-
mation from day to day. Therefore, some cells were recorded1278

in more than one plane. To select unique cells, we sub-
sampled our recorded cells based on proximity in 3D space.1280

Each functional scan plane was independently registered to
the same 3D structural stack. Specifically, we used an affine1282

transformation matrix with 9 parameters estimated via gradi-
ent ascent on the correlation between the sharpened average1284

scanning plane and the extracted plane from the sharpened
stack. Using the 3D centroids of all segmented cells, we it-1286

eratively grouped the closest two cells from different scans
until all pairs of cells are at least 10 µm apart or a further join1288

produces an unrealistically tall mask (20 µm in z). Sequential
registration of sections of each functional scan into the struc-1290

tural stack was performed to assess the level of drift in the
z dimension. The drift over the 2 to 2.5 hour recording was1292

4.70 ± 2.64, and for most of them the drift was limited to <5
µm.1294

Model architecture and training. The convolutional neural
network used in this study consisted of two parts: a core and1296

a readout. The core captured the nonlinear image representa-
tions and was shared among all neurons. The readout mapped1298

the features of the core into neuronal responses and contained
all neuron specific parameters.1300

Core. To get a rich set of nonlinear features, we used a deep
CNN as our core. We used a CNN with 3 layers and 32 fea-1302

ture channels per layer as previously described in (Walker
et al., 2019). These architectures were chosen with a hyper-1304

parameter search, with the objective of maximizing a valida-
tion score (see Training and evaluation). Each of the 2D1306

convolutional layers was followed by a batch normalization
layer and an ELU non-linearity.1308

Readouts. The goal of the readout was to find a linear-
nonlinear mapping from the output of the last core layer Φ(x)1310

to a single scalar firing rate for every neuron. We used a pyra-
mid readout, as described in Sinz et al. (2018). We computed1312

a linear combination of the feature activations at a spatial po-
sition, parameterized as (x,y) relative coordinates (the mid-1314

dle of the feature map being (0,0)). We then passed these
features through a linear regression and a non-linearity to ob-1316

tain the final neuronal responses.

Training and evaluation. Natural images in the training, val-1318

idation and test sets were all Z-scored using the mean and
standard deviation of the training set. The mean and standard1320

deviation for the cropped natural images were weighted by
the mask used to crop the images to avoid artificially lower-1322

ing the mean and standard deviation due to large gray areas
in the cropped images.1324

The networks were trained to minimize Poisson loss
1
m

∑m
i=1
(
r̂(i) − r(i) log r̂(i)) where m denotes the number1326

of neurons, r̂ the predicted neuronal response and r the ob-
served response. We implemented early stopping on the cor-1328

relation between predicted and measured neuronal responses
on the validation set: if the correlation failed to increase dur-1330

ing 10 consecutive epochs through the entire training set, we
stopped the training and restored the best performing model1332

over the course of training. After each stopping, we either
decreased the learning rate or stopped training altogether if1334

the number of learning-rate decay steps was reached. Net-
work parameters were optimized via stochastic gradient de-1336

scent using the Adam optimizer. Once training completed,
the trained network was evaluated on the validation set to1338

yield the score used for hyper-parameter selection.
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MEI and surround image generation. Because our neuronal1340

recordings were performed with dense sampling (Z spacing
= 5µm), we first needed to select unique neurons. We regis-1342

tered the planes of the functional experiments to the stack of
the volume (see Registration of neurons in 3D stack) and1344

identified unique neurons.
Then, we optimized the MEIs and the surround images in two1346

steps.

MEI generation. We used regularized gradient ascent by solv-
ing the optimization problem defined as

x∗ = argmax
x
fi(x)

on our trained deep neural network models to obtain a maxi-
mally exciting input image for each neuron, given by x

x ∈ Rn×m

(Walker et al., 2019). We initialized with a Gaussian white1348

noise image. In each iteration of gradient ascent, we showed
the image to the model and calculated the gradients of the1350

image w.r.t. the model activation of a single neuron. We then
blurred the obtained gradient with Gaussian blurring, with a1352

Gaussian sigma of 1 pixel. Following this, we updated the
image with the resulting gradients. Finally, we calculated1354

the standard deviation of the resulting image and rescaled its
contrast to match a fixed RMS contrast constraint of 0.05 (in1356

z-scored response space). The contrast constraint was cho-
sen to minimize the number of pixel values falling outside1358

the range 0 and 255, which are the lower and upper bound
for pixel values displayed on the monitor. The RMS contrast1360

constraint of 0.05 for the full-field MEI images resulted in a
RMS contrast of 12.15 ± 1.35 in 8-bit input space (0 to 2551362

pixel values) within the MEI mask. For a subset of experi-
ment, we used a RMS contrast constraint of 0.1, resulting in1364

a RMS contrast of 22.23± 3.38 in 8-bit space within the MEI
mask. We used the Stochastic Gradient Descent (SGD) opti-1366

mizer with step size=0.1 and ran each optimization for 1,000
iterations.1368

Surround image generation. A tight mask (ranging between
0 and 1) around the MEI was computed by thresholding (see1370

below) which we used to define the ’center’ and set it apart
from the ’surround’ during the next step of optimization. By1372

applying the inverse MEI mask to the target image x, we op-
timized the surrounding area in the image by allowing more1374

contrast (RMS contrast = 0.1) outside of the MEI mask.
To define the center stimuli, we computed a mask around the1376

MEI for each neuron by thresholding at 1.5 standard devia-
tions above the mean. We then blurred the mask with Gaus-1378

sian σ= 1 pixel. We initialized an image with Gaussian noise
and cropped out the center of this image using the MEI mask1380

and added the MEI at a fixed contrast = 0.05. We set the
contrast for the area outside of the mask to 0.1. For the1382

high contrast experiments, the surround contrast was set to
0.2. A gradient was computed on the modified image and1384

we blurred the gradient with a Gaussian σ = 1. We used the
same SGD optimizer to update the image at each iteration.1386

Only pixels outside of the MEI mask were updated during
optimization (illustrated in Fig. 2a). We set the full-field im-1388

age contrast to an arbitrary value within the training image
regime (0.1) to prevent the pixel values from getting out of1390

range and this step was not differentiable. At the end of each
iteration, we normalized the contrast in the center and the sur-1392

round again to reach the optimal stimulus with correct con-
trast (MEI=0.05, surround=0.1 or MEI=0.1, surround=0.2).1394

We repeated these steps for 1,000 iterations. To generated
the extended mask for the MEI used in Suppl. Fig. 4, we set1396

the value between 1 and 0.001, i.e. in the blurred area, in the
original mask to 1 and blurred the new mask with the same1398

Gaussian filter that was applied to the MEI mask. We applied
the extended mask to the surround images to produced a new1400

set of masked surround images that were slightly smaller than
the original ones, and tested surround modulation restricted1402

only to the “near” surround region.

Closed-loop experiments1404

Selection of neurons for closed-loop. We ranked the neurons
recorded in one experiment based on response reliability and1406

model performance (test correlation). Specifically, we cor-
related the leave-one-out mean response with the remaining1408

single-trial response across repeated images in the test set to
obtain a measurement of neuronal response reliability. We1410

then computed an averaged rank score of each neuron from
its reliability rank and model test correlation rank. After re-1412

moving duplicate neurons following the procedure described
above, we selected the top 150 neurons according to the aver-1414

aged rank of the correlation between predicted response and
observed response averaged over repeats and the correlation1416

between the leave-one-out mean response of repeated test tri-
als to the left-out test trial response for closed-loop experi-1418

ments. Please note that due to this selection process, our con-
clusions are limited to the neurons in the dataset that demon-1420

strated reliable responses and were accurately predicted by
our model.1422

Stimulus presentation. We converted the images generated
by the model back to pixel space by reversing the Z-score step1424

with the stats of the training set. Each image was repeated
40 times. We shuffled all the images with repeats across1426

different classes (MEI, excitatory, inhibitory and outpainted
surrounds and contrast-matched MEI, masked surround con-1428

trols) and presented them at random orders. Each trial con-
sisted of one image presented for 500 ms with a preceding1430

blanking period of 300 - 500 ms (randomly determined per
trial).1432

Matching neurons across experiments. We matched neurons
from different experiments according to the spatial proximity1434

in the volume of the same anatomical 3D stack. Each func-
tional scan plane was registered to the 3D stacks collected af-1436

ter each day’s experiment. We chose the neurons that had the
highest matching frequency across all stacks, and included1438

them as a valid neuron in the closed-loop analysis.
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Estimation of center RF size To measure to size of the min-1440

imum response field (MRF) for each neuron, we presented
stimuli consisting of circular bright (pixel value=255) and1442

dark (pixel value=0) dots of size 7 degrees in visual angle
on a gray background (pixel value=128) in conjunction with1444

natural image stimuli. The dots were randomly shown at lo-
cations on a 9 by 9 grid covering 40% of the monitor in the1446

center along the horizontal edge, and at each location, the dot
was shown for 250 ms and repeated 16 times. The responses1448

were averaged across repeats, and a 2D Gaussian was fitted
to the On and Off response maps, respectively. The size of1450

the MRF was measured as the largest distance between points
on the border of the 2D Gaussian at 1.5 standard deviations1452

away for both On and Off responses.
To estimate the size of the MEIs and the excitatory and in-1454

hibitory surround, we first computed the mask for each im-
age as described in section MEI and surround image gen-1456

eration. The size was computed in pixels as the longest dis-
tance between points on the border of the mask. The size was1458

converted to degrees in visual angle according to the ratio
between pixel and degrees in visual angle.1460

Exciting natural image patches and natural surrounds All
natural images in the ImageNet dataset were first Z-scored1462

with the mean and standard deviation of the training dataset.
We then cropped the images with the MEI masks and nor-1464

malized to match the contrast of the MEI within the mask.
The images were presented to the model to get the predicted1466

response. Images that elicited activations above 80% of MEI
activation were chosen as the maximally exciting natural im-1468

age patches. Images used to train the specific model were
removed from this collection. For neurons with more than 101470

maximally exciting natural image patches, we replaced the
center of the natural image with the MEI and included the1472

surround region of the natural image to the same extend as
the average size of the excitatory and the inhibitory surround.1474

Representational similarity The maximally exciting natu-
ral image patches of a neuron plus the surround of the same1476

image were normalized to the same contrast as the excitatory
and the inhibitory surround images and were presented to the1478

model. The excitatory and the inhibitory surround images
were cropped with the average mask of the two to match the1480

size, contrast-adjusted and presented to the model. The acti-
vation of all neurons in the model were taken as an approx-1482

imation of the given image in “representational space”. We
computed Pearson correlation between a natural image patch1484

with surround and an image of the MEI with either excitatory
or inhibitory surround. The Pearson correlation is an estima-1486

tion of ’representational similarity’.

Diffusion outpainted surround images We performed out-1488

painting by drawing samples from the posterior p(y | x∗),
where x∗ is the MEI and y is the outpainted image. To gen-1490

erate samples from this posterior we use energy guided dif-
fusion (Pierzchlewicz et al., 2023), where the score of the1492

posterior is defined as:

∇y logp(y | x∗) =∇y logp(y) +∇y logp(x∗ | y). (1)

The prior is defined by the ablated diffusion model Dhariwal1494

and Nichol (2021) εθ(y) pre-trained on ImageNet acting as a
natural-image prior. The likelihood is defined by the energy1496

logp(x∗ | y) = E(x∗,y) = ‖x∗−My‖22 (2)

where M is the MEI mask. The images generated by the dif-
fusion model are square, thus we first increased the resolu-1498

tion of the MEI image from 36x64 to 144x256 by bi-linear
interpolation and then squarified by padding it with zeros1500

to achieve 256x256. The final sample is then cropped to
144x256 and down-scaled to 36x64 and masked by the ex-1502

citatory or inhibitory surround mask.

In-silico analysis of macaque V1 neurons1504

Macaque V1 digital twin model. We used a previously pub-
lished dataset (see details in (Safarani et al., 2021; Cadena1506

et al., 2023; Baroni et al., 2023)) for model training. In brief,
we measured the spiking activity of individual V1 neurons in1508

two awake, fixating rhesus macaques using a 32-channel lin-
ear array spanning multiple cortical layers, in response to tens1510

of thousands of grayscale natural images, covering 6.7◦ vi-
sual angle, presented in sequence over many trials. These im-1512

ages were sampled uniformly from the ImageNet (?) dataset
and displayed for 120 ms each without interleaving blanks.1514

Most of these images were shown only once (train-set) while
a selection of 75 images was repeated multiple times (test-1516

set). We isolated 458 V1 neurons from 32 sessions at ec-
centricities 2–3°. We centered the stimuli on the popula-1518

tion receptive field of the neurons. Finally, we obtained im-
age–response pairs by extracting spike counts in the window1520

40–160 ms after image onset. With these image–response
pairs, we fitted our models. Before presenting the images to1522

the model, we effectively cropped the images down to the
central 2.67°, corresponding to 93 by 93 px.1524

Like the digital twin for all the mouse models described in
this study, the neural predictive model for the macaque V11526

data consisted of two main parts: A pre-trained core that
computes image embeddings, i.e. a shared feature map given1528

an input images, and a readout that maps these features to
the neuronal responses of a single neuron. As a core, we se-1530

lected ConvNext-v2-tiny (Woo et al., 2023), a recently pub-
lished convolutional neural network model trained on Ima-1532

geNet. We used the original neural network weights obtained
from the transformers library of huggingface (Wolf et al.,1534

2019) and performed a hyperparameter search, which out-
put layer resulted in the best predictive performance, which1536

was stages-1-layers-0. As readout, we fit a Gaussian read-
out, described in detail in (Lurz et al., 2021), to transform1538

the core feature map into a scalar neural response for each
recording channel. Finally, a neuron-specific affine projec-1540

tion with ELU non-linearity gives rise to the scalar predicted
neuronal activity. The model is being trained by minimizing1542

the Poisson loss between recorded and predicted neuronal ac-
tivity, identically to the procedures described in Willeke et al.1544

(2023). Here, we first freeze the core weights and train the
readout for 20 epochs. Then, we reduce the initial learning1546

rate from 0.001 to 0.0001 and optimize the weights of both
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the convnext core and readout, using the AdamW optimizer1548

(Loshchilov and Hutter, 2017) for a total of 200 epochs. We
trained n=5 models with different random seeds and used1550

these as an ensemble by averaging the predictions of each
model. For all subsequent analyses, we used the ensemble1552

model and refer to it simply as model. The model perfor-
mance, measured as the correlation between model predic-1554

tions and the average neuronal response across repeats, was
0.74, evaluated on the held-out test set of 75 test images, out-1556

performing the best ResNet-based models (He et al., 2016)
which achieved a correlation of 0.66 (Cadena et al., 2023)1558

and the best purely data-driven, i.e. end-to-end trained model
(Baroni et al., 2023) with a correlation of 0.72.1560

Classical grating experiments. We conducted a list of in-
silico experiments on macaque V1 neurons. To identify RF1562

position and size we performed a sparse noise experiment.
Stimuli consisted of white or black squares of 4x4 pixels (cor-1564

responding to 0.11x0.11 degrees) on a mid-scale grey back-
ground. In order to obtain the RF for each neuron, we first1566

computed a polarity agnostic version of the stimuli (map-
ping black squares to white squares). Then we computed a1568

weighted average of the polarity-agnostic stimuli according
to responses after subtraction of the baseline response (re-1570

sponse to a midscale-grey background only). In this way, we
obtained an RF estimate showing areas of excitation and sup-1572

pression. Then, we clipped the output pixel values below 0,
in order to remove the suppression effect. Lastly, we fitted1574

the output with a 2D Gaussian. We estimated the neuron’s
RF position as the center of the Gaussian, and the RF radius1576

as the largest distance between points on the border of the 2D
Gaussian at 1.5 standard deviations. To ensure high precision1578

in all subsequent analyses, we excluded a small portion of
neurons from all subsequent experiments whose Gaussian fit1580

presented a normalized error above 0.2. All grating experi-
ments in the macaque V1 model were conducted for balanced1582

stimuli, spanning from -0.2 to 0.2 in the model input scale
(obtained by z-scoring the training data). We collected re-1584

sponses to stimuli of 36 orientations spanning from 0 to 180
degrees, 36 different phases spanning from 0 to 360 degrees,1586

and 25 spatial frequencies spanning from 1.1 to 8.0 cycles per
degree of visual field. For each neuron, we selected the stim-1588

uli and responses corresponding to the phase of maximum
response. For the size tuning experiment, we centered stim-1590

uli at the Sparse Noise RF positions and considered disks of
radii spanning from 0 to 2.3 degrees. Considering the limited1592

size of the input space of the model (2.67 degrees), stimuli
corresponding to the largest radii values correspond to full-1594

field stimuli. We again tested multiple phase values and se-
lected the responses corresponding to the maximally activat-1596

ing phase. The grating summation field was estimated as the
first radius corresponding to 95% of maximal response.1598

The orientation contrast experiment was performed present-
ing to each neuron a center stimulus corresponding to GSF1600

and a surround stimulus separated from the center disk by
a moat of 0.23 degrees and reaching image borders. Iso-1602

oriented surround stimuli matched all center grating parame-
ters, ortho-oriented surround stimuli matched all center grat-1604

ing parameters except for orientation, shifted by 90 degrees.

MEI and surround optimization on macaque V1 neurons.1606

Similarly to the analysis using the mouse V1 model, macaque
V1 neuron MEIs were obtained by changing the pixels in in-1608

put space to maximize neuronal response. The optimization
procedure consisted in a Stochastic Gradient Descent (SGD)1610

of 1000 steps, with step size of 10. To minimize artifacts,
gradients where blurred with a sigma of 3 pixels. After each1612

optimization step, MEI values were linearly scaled to have
mean 0 and 0.05 standard deviation. The MEI mask was es-1614

timated by thresholding the MEI at 1.5 standard deviations
above the mean (following the same algorithm used in the1616

mouse analysis). Surround stimuli were obtained following
the same algorithm used in the mouse analysis, optimizing1618

the surround, corresponding to the region outside of the MEI
mask, to obtain maximally exciting or maximally suppress-1620

ing stimuli (surround mean=0, surround RMS contrast=0.1).
The optimization algorithm parameters were consistent for1622

the center and surround MEI optimizations.

Local patches Gabor-fit analysis. We performed a quanti-1624

tative analysis based on fitting Gabor functions to local
patches extracted from the optimized surround images to1626

quantify pattern completion of Gabor patterns in the exci-
tatory and inhibitory surround images. In this analysis, we1628

only used neurons whose MEI was well fitted by a Gabor
function (normalized fit error threshold = 0.2, spatial fre-1630

quency threshold = 1, number of remaining neurons=126).
We extracted local patches Ipatch = M ∗ I from optimized1632

surround images I using a truncated isotropic Gaussian mask
M = max(exp(−

(
x̄− µ̄)2/2σ2)− 0.3,0). σ was set to be1634

0.34 degrees of visual angle and the mask was placed in 4
cardinal positions (with respect to preferred orientation) for1636

each neuron considered. Specifically, the centers of the lo-
cal patches were placed at neuron dependent distance corre-1638

sponding to the size of the MEI mask in the direction con-
sidered (2 collinear direction, 2 orthogonal direction). In this1640

way, we ensured that the local patch was encompassing a sig-
nificant part of MEI and surround. During the fit, we restrain1642

some parameters to ensure that the resulting Gabor corre-
sponded to an oriented feature extracting pattern (aspect ratio1644

< 1.5 and spatial frequency > 1 cycle per degree). To distin-
guish between good and poor fits, we selected a normalized1646

fit error threshold of 0.3.

Divisive normalization model. We considered a population of
10,000 LN Gabor filter simple cells of randomly sampled ori-
entation, position and phase. Gabor filter parameters consid-
ered are: spatial frequency of 2.5, σ of 0.2, aspect ratio of
1, image resolution of 93x93 (2.67x2.67 degrees). These pa-
rameters generate Gabors filters resembling the MEI of the
macaque V1 neurons. We use ReLU to enforce non-negative
responses. We then implemented a divisive normalization
model (see Heeger (1992)):

R= yi
1 + ȳ

,
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where ȳ represents the response of the population, divisively1648

normalizing the response yi of another simple cell i. We used
ELU() + 1 as nonlinearity of neuron i to allow gradient flow1650

during optimization. We obtained the MEI of neuron of the
Heeger model neuron by optimization the input space to elicit1652

maximal response. We enforced pixel mean to 0, pixel stan-
dard deviation to 0.05, and trained using SGD with step size1654

of 0.1, 1000 steps and gradient Gaussian blurring of 1 pixel.
We enforced pixel mean to 0, pixel standard deviation to 0.05,1656

and trained using SGD with step size of 0.1, 1000 steps and
gradient Gaussian blurring of 1 pixel. We identified a MEI1658

mask (threshold=1.5) and optimized the surround to maxi-
mally suppress MEI response. In this case we enforced pixel1660

mean to 0, pixel standard deviation to 0.10, and trained using
SGD with step size of 0.1, 3000 steps and gradient Gaussian1662

blurring of 1 pixel.

Replication of center-surround modulation in functional1664

connectomics dataset Recently, we and others released a
large-scale functional connectomics dataset of mouse visual1666

cortex ("MICrONS dataset"), including responses of >75k
neurons to full-field natural movies and the reconstructed1668

sub-cellular connectivity of the same cells from electron mi-
croscopy data (MICrONS Consortium et al., 2021). A dy-1670

namic recurrent neural network (RNN) model of this mouse’s
visual cortex—digital twin—exhibits not only a high predic-1672

tive performance for natural movies, but also accurate out-
of-domain performance on other stimulus classes such as1674

drifting Gabor filters, directional pink noise, and random dot
kinematograms (Wang et al., 2023). Here, we took advan-1676

tage of the model’s ability to generalize to other visual stim-
ulus domains and presented our full-field and masked images1678

to this digital twin model in order to relate specific func-
tional properties to the neurons’ connectivity and anatomi-1680

cal properties. Specifically, we recorded the visual activity
of the same neuronal population to static natural images as1682

well as to the identical natural movies that were used in the
MICrONS dataset. Neurons were matched anatomically as1684

described for the closed loop experiments. Based on the re-
sponses to static natural images we trained a static model as1686

described above, and from the responses to natural movies
we trained a dynamic model using a RNN architecture de-1688

scribed in (Wang et al., 2023). This enabled us to compare
the MEIs and surround images for the same neurons gener-1690

ated from two different static models: one trained directly on
responses from real neurons, and another trained on synthetic1692

responses to static images from dynamic models . We then
presented MEIs and optimized surround images to the animal1694

in a closed-loop experiment.
To investigate the circuitry implementation of pattern com-1696

pletion, we combined synaptic connectivity data extracted
from electron microscopy imaging with functional tuning1698

data obtained from the digital twin model. Receptive field
overlap between pairs of neurons was quantified using the in-1700

tersection over union (IoU) of their MEI masks. Additionally,
feature tuning similarity between neurons was assessed using1702

the digital twin model, which comprises a shared core for vi-
sual feature extraction and a final readout layer where the1704

extracted visual features are linearly weighted to predict neu-
ronal activity. The feature similarity between pairs of neurons1706

is measured as the cosine similarity of their feature weights.
Neurons with reliable visual responses (CCmax > 0.4) that1708

are well predicted by the digital twin model (CCabs > 0.2)
were included in the downstream analysis. Visual response1710

reliability (CCmax) and model performance (CCabs) were
quantified as described in (Wang et al., 2023).1712

We conducted Welch’s t-test to compare feature similarity be-
tween connected neurons and randomly paired unconnected1714

neurons at different levels of receptive field overlap. Correc-
tions for multiple comparisons were applied using the Ben-1716

jamini–Hochberg procedure.
To further examine the relationship between feature similar-
ity and connectivity, we modeled the number of synapses be-
tween neuron pairs (nsyn) using a Poisson generalized linear
model of form:

nsyn ∼ FW +RF +FW :RW

This model incorporated feature similarity (FW), receptive1718

field overlap (RF), and their interaction term (FW:RF). The
Likelihood Ratio Test (LRT) was employed to assess whether1720

the inclusion of the interaction term significantly improved
model fit compared to a reduced model without it.1722

Probabilistic model

Generative model. Our generative model is hierarchical and
probabilistic, containing three groups of random variables:
g, x and I. g ∈ {0,1}N represents the presence N high level
textures and objects, modeled as independent Bernoulli dis-
tributions:

p(g) =
N∏
i=1

Bernoulli(gi;pgi) =
N∏
i=1

pgi
gi

(1−pgi)
1−gi

where pgi is the a priori probability that the feature repre-1724

sented by gi is present in the image.
x ∈ {0,1}9×N represents the presence of 9×N local visual
features, modeled as a Bernoulli distribution conditioned on
g:

p(x|g) =
9×N∏
i=1

Bernoulli(xi;pxi(g)) ,

where pxi (g) represents the prior expectation of whether fea-
ture xi is present given the presence of the global features
represented by g. Specifically, those elements of x represent-
ing local features compatible with the presence of any one gi
have a high probability, phigh, when gi = 1, and otherwise a
low probability, plow. We assign phigh to be 0.80 and plow to
be 0.02 but our qualitative results do not depend on the spe-
cific values. I ∈ RH×W represents the image of height H
and width W , and is a modeled as the linear combination of
the projective fields (PFs) inferred to be present in the image,
corrupted by isotropic Gaussian pixel noise of variance σ2

(Olshausen and Field, 1996):

p(I) =N
(

I;
9×N∑
i=1

PFixi,σ2I

)
.
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Note that the RF of a neuron is closely related to the PF but1726

slightly different (Olshausen and Field, 1996).

Inference. We assume the neural responses are proportional1728

to the marginal posterior probabilities, p(xi|I), of the ele-
ments of x each representing a different V1 neuron (but note1730

that any monotonic relationship will yield the same quali-
tative results). We compute the posterior for various input1732

images using Python’s PyMC package (Oriol et al., 2023) to
obtain the average simulated responses (stars in Figure 5f,g).1734

In order to simulate trial-to-trial variability, we interpret (bi-
nary) samples as spikes (Buesing et al., 2011) and compute1736

the per trial firing rates in Figure 5f,g by counting the number
of spikes over a trial duration of 1s assuming a sampling rate1738

of 1/20ms.

Code and data availability Our coding framework uses1740

general tools like PyTorch, Numpy, scikit-image, matplotlib,
seaborn, DataJoint (Yatsenko et al., 2015, 2018, 2021),1742

Jupyter, and Docker. All custom analysis code and all data
will be publicly available in an online repository latest upon1744

journal publication. Please contact us if you would like ac-
cess before that time.1746
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Supplementary Information
Supplemental Fig. 1 - Neuronal responses to MEIs and surround images recorded during inception loop experiments
Supplemental Fig. 2 - Center-surround effects are preserved at higher contrast
Supplemental Fig. 3 - Surround images correspond to the optimal modulating stimulus and are ecologically relevant
Supplemental Fig. 4 - Image contrast restricted to the far surround still result in surround modulation
Supplemental Fig. 5 - Contrast-matched MEIs result in higher activation than MEIs with excitatory surround
Supplemental Fig. 6 - MEIs with excitatory and inhibitory surrounds of macaque V1 neurons
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Supplemental Fig. 1. Neuronal responses to MEIs and surround imaged recorded during inception loop experiments across animals. a, Comparing observed
responses to the MEI (x-axis) and the excitatory surround (y-axis) per experiment (n=6 mice, 960 cells total). Dark dots indicate neurons where the response to the surround
images is significantly higher than to the MEI (Wilcoxon rank-sum test, p-values<0.05). Across the population, the modulation was significant for all animals (p-values<0.05,
Wilcoxon signed rank test). b, Comparing observed responses to the MEI (x-axis) and the inhibitory surround (y-axis) per experiment (n=3 mice, 510 cells total). Dark
dots indicate neurons where the response to the surround images is significantly lower than to the MEI (Wilcoxon rank-sum test, p-value<0.05). Across the population, the
modulation was significant for all animals (p-value<0.05, Wilcoxon signed rank test). c, Comparing observed responses to the excitatory surround (x-axis) and the contrast-
matched MEI (y-axis) per experiment (n=3 mice, 560 cells total). Dark dots indicate neurons where the response to the contrast-matched MEIs is significantly higher than to
the MEI (Wilcoxon rank-sum test, p-value<0.05). Across the population, the modulation was significant for all animals (p-value<0.05, Wilcoxon signed rank test).
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Supplemental Fig. 2. Center-surround effects are preserved at higher contrast. a, MEI and MEI with excitatory and inhibitory surround for six example neurons,
optimized with a higher contrast constraint (0.1 for the MEI (instead of 0.05) and 0.2 for the surround (instead of 0.1)). b, Recorded neuronal responses to MEI and
MEI with excitatory and inhibitory surround. Neuronal responses to the MEI were significantly modulated (p-value=4.× 10−13, 0.00949, 3.20× 10−05, for excitatory
surround, p-value=1.53× 10−22, 5.85× 10−18, 7.12× 10−18 for inhibitory surround, Wilcoxon signed-rank test). c, Distribution of RF diameters estimated using a
sparse noise stimulus with different contrast levels. The change is RF sizes across different contrast levels is minimal (100%vs50% : −0.009± 8.87,50%vs25% :
−0.52±9.66,100%vs25% :−0.53±9.31, mean±std in degrees of visual angle).
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Supplemental Fig. 3. Surround images correspond to the optimal modulating stimulus and are ecologically relevant. a, Schematic illustrating how we obtained
natural surround images for one example neuron. b, Optimized excitatory and inhibitory surround images, most exciting and inhibiting natural surrounds and MEI of two
example neurons. The predicted activation score is indicated in the bottom left of the images. c, Observed responses to the MEI with natural surround images compared to
the MEI alone. Across the population, the least activating natural surround images suppressed neuronal response (p-value=1.84× 10−8, Wilcoxon signed rank test), and
the most activating natural surround images enhanced neuronal response (p-value=2.44× 10−9, Wilcoxon signed rank test). Across stimulus repetitions, 23% responded
significantly stronger to the most activating natural images than to the MEI (n=3 animals, 226 cells, two-sided t-test, p-value<0.05) and 25% of the neurons responded
significantly weaker to the least activating natural surround images than to the MEI. Solid line indicates the regression line across the population, and dotted gray line
indicates the diagonal. d, Observed responses to the MEI with natural surround images compared to the MEI with excitatory/inhibitory surround. Across the population, the
MEI with inhibitory surround suppressed neuronal response more than the MEI with the least activating natural surround (p-value=1.98×10−20, Wilcoxon signed rank test).
The MEI with excitatory surround enhanced neuronal response more than the MEI with most activating natural surround (p-value=1.05×10−6, Wilcoxon signed rank test).
Across stimulus repetitions, 37% of neurons responded significantly weaker to the MEI with inhibitory surround compared to the MEI with the least activating natural surround
and 19% of the neurons responded significantly stronger to the MEI with excitatory surround compared to the MEI with the most activating natural surround (n=3 animals,
226 cells, two-sided t-test, p-value<0.05). Solid line indicates the regression line across the population, and dotted gray line indicates the diagonal. Please note that due to
spatial correlations in natural images, spatial patterns of inhibitory surround MEIs characterized by disruption are less common in natural scenes. Should we screen a larger
pool of natural images (e.g., 1 million), we anticipate observing natural surrounds that inhibit as effectively as optimized surrounds.
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Supplemental Fig. 4. Images restricted to the far surround still result in surround modulation. a, Examples of the MEI, the excitatory surround and cropped excitatory
surround. b, Examples of the MEI, the inhibitory surround and cropped inhibitory surround. c, Comparing predicted response to the MEI, the excitatory surround and
the cropped surround image (n=3, 560 cells). d, Comparing predicted response to the MEI, the inhibitory surround and the cropped surround image (n=3, 560 cells). e,
Comparing observed response to the MEI, the excitatory surround and the cropped surround image (n=3, 560 cells). Black dots indicate neurons with significantly higher
response under the condition on the y-axis (one-sided Wilcoxon rank-sum test, p<0.05, 33.6%, 20.2% and 13.4% significant cells for each pair). Modulation is significant on
population level for each pair (p-value=1.83×10−45, 9.98×10−45, 6.89×10−19, Wilcoxon signed rank test). f, Comparing observed response to the MEI, the inhibitory
surround and the cropped surround image (n=3, 560 cells). Black dots indicate neurons with significantly higher response under the condition on the y-axis (one-sided
Wilcoxon rank-sum test, p<0.05, 55.9%, 40.3% and 19.6% significant cells for each pair). Modulation is significant on population level for each pair (p-value=8.05×10−73,
9.03×10−66, 2.42×10−24, Wilcoxon signed rank test).
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Supplemental Fig. 5. Contrast-matched MEIs result in higher activation than MEIs with excitatory surround. a, Panel shows MEI, excitatory surround with MEI,
the contrast-matched MEI, and the difference between the original MEI and the contrast-matched MEI for 4 example neurons. Note that the contrast-matched MEI is a
scaled-up version of the original MEI with same features. b, Diameters of RFs estimated using sparse noise, the MEIs, the MEIs with excitatory and inhibitory surround, and
the contrast-matched MEI. Same data shown in Fig. 2e except for the contrast-matched MEI. The mean of the contrast-matched MEI (magenta distribution) size across all
neurons (n=4, 434 cells) is 33.2 degrees± 0.23 (mean± s.e.m.). The size of the contrast-matched MEI is slightly larger than the original MEI (31.3 degrees± 0.20). c, Model
predicted responses to the MEI and excitatory surround (x-axis) and contrast-matched MEI (y-axis). Responses are depicted in arbitrary units, corresponding to the output
of the model. d, Observed responses to the the MEI and excitatory surround (x-axis) and contrast-matched MEI (y-axis). For each neuron, responses are normalized by the
standard deviation of responses to all images. Across the population, the neuronal responses to the contrast-matched MEI was significantly higher (p-value=7.35×10−80,
Wilcoxon signed rank test, slope of linear regression line=1.58). Across stimulus repetitions, 58.9% of the neurons responded stronger to the contrast-matched MEI (n=3
animals, 560 cells, two-sided t-test, p-value<0.05). Solid line indicates the regression line across the population, and dotted gray line indicates the diagonal. e, Contrast
comparison between the MEI and excitatory surround (x-axis) and the contrast-matched MEI. By definition, the full-field contrast of each pair of images are matched.
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Supplemental Fig. 6. MEIs with excitatory and inhibitory surrounds of macaque V1 neurons. a, MEIs of example neurons (left) used for the collinearity analysis shown
in Fig. 5, with excitatory and inhibitory surround images optimized through the model. Order of neurons matches across the three columns. b, Distribution of difference in
orientation (delta orientation) between center preferred orientation and orientation of Gabor fit to surround local patch.
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