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Abstract5

Polygenic scores have become an important tool in human genetics, enabling the prediction6

of individuals’ phenotypes from their genotypes. Understanding how the pattern of differences7

in polygenic score predictions across individuals intersects with variation in ancestry can pro-8

vide insights into the evolutionary forces acting on the trait in question, and is important for9

understanding health disparities. However, because most polygenic scores are computed using10

effect estimates from population samples, they are susceptible to confounding by both genetic11

and environmental effects that are correlated with ancestry. The extent to which this confound-12

ing drives patterns in the distribution of polygenic scores depends on patterns of population13

structure in both the original estimation panel and in the prediction/test panel. Here, we use14

theory from population and statistical genetics, together with simulations, to study the pro-15

cedure of testing for an association between polygenic scores and axes of ancestry variation in16

the presence of confounding. We use a general model of genetic relatedness to describe how17

confounding in the estimation panel biases the distribution of polygenic scores in a way that18

depends on the degree of overlap in population structure between panels. We then show how19

this confounding can bias tests for associations between polygenic scores and important axes of20

ancestry variation in the test panel. Specifically, for any given test, there exists a single axis21

of population structure in the GWAS panel that needs to be controlled for in order to protect22

the test. Based on this result, we propose a new approach for directly estimating this axis of23

population structure in the GWAS panel. We then use simulations to compare the performance24

of this approach to the standard approach in which the principal components of the GWAS25

panel genotypes are used to control for stratification.26

Author Summary27

Complex traits are influenced by both genetics and the environment. Human geneticists28

increasingly use polygenic scores, calculated as the weighted sum of trait-associated alleles, to29

predict genetic effects on a phenotype. Differences in polygenic scores across groups would30

therefore seem to indicate differences in the genetic basis of the trait, which are of interest to31

researchers across disciplines. However, because polygenic scores are usually computed using32
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effect sizes estimated using population samples, they are susceptible to confounding due to33

both the genetic background and the environment. Here, we use theory from population and34

statistical genetics, together with simulations, to study how environmental and background35

genetic effects can confound tests for association between polygenic scores and axes of ancestry36

variation. We then develop a simple method to protect these tests from confounding, which37

we evaluate, alongside standard methods, across a range of possible situations. Our work helps38

clarify how bias in the distribution of polygenic scores is produced and provides insight to39

researchers wishing to protect their analyses from confounding.40

1 Introduction41

The calculation of polygenic scores [1] has become a routine procedure in many areas of human42

genetics. The promise of polygenic scores is that they provide a means for phenotypic prediction43

from genotype data alone. By measuring the association between a genetic variant and phenotype44

in a genome wide association study (GWAS), we get an estimate of its effect on the phenotype,45

averaged over the environments experienced by the individuals in that sample. These effect esti-46

mates can then be combined into polygenic scores in a separate prediction panel by taking a sum47

of the genotypes of individuals in that panel, weighted by the estimated effects. Under the rela-48

tively strict assumptions that genetic and environmental effects combine additively, that variation49

in the phenotype is not correlated with variation in ancestry within the GWAS panel, and that the50

prediction panel individuals experience a similar distribution of environments to the GWAS panel51

individuals, these scores can be viewed as an estimate of each individual’s expected phenotype,52

given their genotypes at the included sites. If these assumptions are met, polygenic scores would53

seem to provide a means of separating out at least some of the genetic effects on a given phenotype.54

However, this promise of polygenic scores is also one of their main pitfalls. The effects of individual55

variants are typically estimated from population samples in which the environments that individuals56

experience vary as a function of their social, cultural, economic, and political contexts. Differences57

in these factors are often correlated with differences in ancestry within population samples, and58

these ancestry-environment correlations can induce systematic biases in the estimated effects of59

individual variants. Similar biases can also arise if genetic effects on the phenotype vary as a function60

of ancestry within the GWAS sample. Ancestry stratification is a long recognized problem in the61

GWAS study design [2], and many steps have been taken to guard against its effects. These include62

bias avoidance approaches, like the sampling of GWAS panels that are relatively homogeneous63

with respect to ancestry, and statistical bias correction approaches, such as the inclusion of genetic64

principal components as covariates [3], linear mixed models [4, 5], and LD score regression [6].65

These approaches have largely been successful in minimizing the number of false positive single66

variant associations [7]. However, effect size estimates can still exhibit slight stratification biases67

that are not large enough to significantly alter the false discovery rates for individual variants, and68

these biases can be compounded when aggregating across loci, leading to confounded predictions69

in which the ancestry associated effects are mistaken for genetic effects.70

Separation of direct genetic effects from correlations between ancestry and either the environment or71

the genetic background is important to all applications of polygenic scores. Empirically, polygenic72

scores exhibit geographic clustering even in relatively homogeneous samples and after strict control73

for population stratification [8, 9, 10, 11]. It is natural to ask if these observed differences reflect74

a real difference in the average genetic effect on the trait. From a population biology perspective,75
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these patterns may be signals of natural selection [12] or phenotype biased migration [9]. Medically,76

it is interesting to know if polygenic score differences or gradients represent real underlying gradients77

in the average genetic effect [13], whether those gradients are caused by non-neutral evolutionary78

mechanisms or not. However, observed patterns of polygenic scores may also be driven by residual79

bias in effect size estimates, and stratification biases remain a persistent issue.80

This issue has been particularly apparent in the detection of directional selection acting on complex81

traits. Polygenic scores are an ideal tool for this task, as studying the distribution of scores among82

individuals who differ in ancestry allows us to aggregate the small changes in allele frequency83

induced by selection on a polygenic trait into a detectable signal [14, 15, 16, 17]. Several research84

groups have developed and applied methods to detect these signals [18, 12, 19, 20, 21, 22, 23, 24].85

However, these efforts have been met with challenges, as several papers reported signals of recent86

directional selection on height in Europe using effects obtained from GWAS meta-analyses [25,87

26, 18, 12, 27, 28, 29, 20, 30, 31, 19], only for these signals to weaken substantially or disappear88

entirely when re-evaluated using effects estimated in the larger and more genetically homogeneous89

UK Biobank [32, 33, 22, 23]. Further analysis suggested that much of the original signal could be90

attributed to spurious correlations between effect size estimates and patterns of frequency variation,91

presumably induced by uncorrected ancestry stratification in the original GWAS [32, 33].92

Recently, in the context of selection tests, Chen et al. [34] proposed a strategy to mitigate the impact93

of stratification by carefully choosing the GWAS panel so that even if residual stratification biases94

in effect size estimates exist, they will be unlikely to confound the test (see also [35] for examples of95

this approach). They reasoned that because polygenic selection tests ask whether polygenic scores96

are associated with a particular axis of population structure in a given test panel, and because97

the bias induced by stratification in effect sizes depends on patterns of population structure in the98

GWAS panel [27], then one should be able to guard against bias in polygenic selection tests by99

choosing GWAS and test panels where the patterns of population structure within the two panels100

are not expected to overlap.101

However, this approach comes at a cost of reduced power: polygenic scores are generally less102

accurate when the effect sizes used to compute them are ported to genetically divergent samples103

[36, 37, 38, 39, 40]. Less accurate polygenic scores are then less able to capture evolution of the104

mean polygenic score, all else equal [39]. These decays in polygenic score accuracy also pose a105

significant challenge to their use in medicine, as scores that are predictive for some and not for106

others may exacerbate health inequities [41]. Thus, realizing the potential of polygenic scores in107

both basic science and medical applications will require the use of large and genetically diverse108

GWAS panels. Successfully deploying polygenic scores developed from these diverse panels will109

require that we have a precise understanding of how bias is produced in polygenic score predictions,110

and the development and evaluation of methods to protect against this bias.111

In this paper, we first model the covariance of genotypes in a GWAS and test panel in terms of112

an underlying population genetic model, and give expressions for the bias in the distribution of113

polygenic scores as a function of the underlying model. We then show how bias in the association114

between polygenic scores and a specific axis of ancestry variation in the test panel depends on the115

extent to which potential confounders in the GWAS lie along a specific axis of ancestry variation116

in the GWAS panel. Next, we evaluate ways to control for confounding along this axis, including117

the standard PCA-based approach, as well as a new approach that uses test panel genotypes to118

estimate the axis directly. We find that the utility of each approach depends on a host of factors,119
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including the number of independent SNPs used to compute the correction, the number of samples120

in the GWAS panel, and the amount of variance in the GWAS panel explained by the target axis.121

2 Model122

To model the distribution of genotypes in both panels, we assume that each individual’s expected123

genotype at each site can be modeled as a linear combination of contributions from a potentially124

large number of ancestral populations, which are themselves related via an arbitrary demographic125

model. Natural selection, genetic drift, and random sampling each independently contribute to the126

distribution of genotypes across panels, and we make the approximation that these three effects127

can be combined linearly. In supplemental section S1 we develop the full population model which128

we then extend to individuals. In the main text, we present just the individual genotype model,129

along with our model of the phenotype.130

2.1 Genotypes131

We consider two samples of individuals, one to compose the GWAS panel and one to compose132

the test panel. Individuals in each panel are created as mixtures of an arbitrary number of K133

underlying populations related via an arbitrary demographic model (see supplement section S1.1134

and S1.2 ), where a` is the ancestral allele frequency at site `. There are N test panel individuals135

and the vector of deviations of their genotypes from the mean genotype in the ancestral population136

(2a`) is137

X` = X`,D +X`,S +X`,B, (1)

where X`,D and X`,S are the deviations due to drift and natural selection, respectively. We can138

think of the quantity 2a`+X`,D+X`,S as giving a set of expected genotypes given the evolutionary139

history of the populations from which the test panel individuals were sampled from, while X`,B140

contains the binomial sampling deviations across individuals given these expected genotypes.141

Similarly, for the M GWAS panels individuals, the deviation of their genotypes can be decomposed142

as143

G` = G`,D +G`,S +G`,B, (2)

where G`,D and G`,S are the deviations due to drift and selection. G`,B captures the binomial144

sampling variance given the expected genotypes of the GWAS panel individuals.145

Individuals in the two panels may draw ancestry from the same populations, or from related pop-146

ulations, which induces the joint covariance structure147

V ar

([
X`,D

G`,D

])
= 4a` (1− a`) F (3)

where the matrix148

F =

[
FXX FXG

FGX FGG

]
(4)
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contains the within and between panel relatedness coefficients. Entries of F give the relatedness149

between pairs of individuals given the underlying demographic model and the fraction of ancestry150

each individual draws from each population. As such, the entries of F are directly related to the151

expected pairwise coalescent times between pairs of samples, given the demographic model [42].152

2.2 Phenotypes153

We assume that individuals in the GWAS panel are phenotyped and that the trait includes a154

contribution from S causal variants, which make additive genetic contributions, as well as an155

independent environmental effect. The vector of mean-centered phenotypes for the M individuals156

in the GWAS panel can then be written157

y =

S∑
`

β`G` + e

= u+ e (5)

where u =
∑S

` β`G` is the combined genetic effect of all S causal variants, and e represents the158

combination of all environmental effects.159

We assume that the environmental effect on each individual is an independent Normally distributed160

random variable with variance σ2
e , but that the expected environmental effect can differ in some161

arbitrary but unknown way across individuals. We write the distribution of environmental effects162

as e ∼MVN
(
c, σ2

eI
)
, where c is the vector of expected environmental effects.163

Similar to our decomposition in eq. 2, the genetic effect, u, can be broken down into the contribu-164

tions from drift, selection, and binomial sampling such that u = uD+uS+uB. Here uS =
∑S

` β`G`,S165

contains fixed effects reflecting the expected genetic contributions to the phenotype, given history166

of selection acting on the phenotype, and given the ancestries of the individuals in the GWAS167

panels (see supplement section S1.4). Both uD and uB have expectation zero, so E[u] = uS . The168

vector of individuals’ expected phenotypes, given their ancestry and socio-environmental contexts,169

is therefore given by uS + c. We assume that these are not known.170

3 Results171

Now, given these modeling assumptions, we describe how the relationship between the GWAS and172

test panels impacts the distribution of polygenic scores and the association between the polygenic173

scores and a given axis of population structure which is observed only in the test panel. We first174

consider the case where no attempt is made to correct for population structure. Motivated by175

these results, we then outline the conditions that need to be met in order to ensure an unbiased176

association test. Finally, we explore how two different correction strategies, the standard PCA177

approach and a novel approach that uses the test panel genotypes, play out in practice.178
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3.1 The impact of stratification bias on polygenic scores179

We consider a vector of mean centered polygenic scores, computed in the test panel. If the causal180

effects (β`) were known, then the polygenic scores would be given by181

Z =

S∑
`

β`X`. (6)

Of course, the causal effects are not known, and must be estimated in the GWAS panel. Conditional182

on the genetic and environmental effects on the phenotypes of the individuals in the GWAS panel183

(i.e. u and e), and genotypes at the focal site (G`), the marginal effect size estimate for site ` is184

given by185

β̂` | G`, u, e =
y>G`

G>` G`

= β` +
u>−`G`

G>` G`
+
e>G`

G>` G`

(7)

where we have decomposed the genetic effect into the causal contribution from the focal site and186

the contribution from the background, i.e. u = β`G` + u−`. This allows us to further decompose187

the marginal association in eq. 7 into the causal effect (β`), the association between the focal site188

and the background genetic contribution from all other sites (u>−`G`/G>` G`), and the association with189

the environment (e>G`/G>` G`).190

The deviation of an allele’s estimated effect size from its expectation depends in part on G`,D, the191

component of variation in the GWAS panel genotypes due to genetic drift. Because G`,D can be192

correlated with X`,D (deviations due to drift in test panel genotypes) due to shared ancestry, the193

estimated effect sizes can become correlated with the pattern of genotypic variation in the test194

panel for reasons that have nothing to do with the actual genetic effect of the variant. This leads195

to a bias in the polygenic scores,196

E
[
Ẑ − Z

]>
= E

[
S∑
`=1

u>G`

G>` G`
X>` +

S∑
`=1

e>G`

G>` G`
X>`

]
(8)

≈ S

M

(
µ>S + c>

)
F̃GX , (9)

(see section S3) where µS is the vector of expected genetic backgrounds, c is the vector of expected197

environmental effects, and198

F̃GX = E

[
G`,DX

>
`,D

(G`,D+G`,B)>(G`,D+G`,B)/M

]

≈ FGX

1 + FG
. (10)

Here FG = 1
M

∑M
m=1 Fmm is the average level of self relatedness in the GWAS panel and F̃GX is199

the expected cross-panel genetic relatedness matrix computed on standardized genotypes, which is200

approximately equal to FGX

(1+FG)
if FG is small.201
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If the GWAS and test panels do not overlap in population structure, then F̃XG = 0, and the202

polygenic scores are unbiased with respect to ancestry (i.e. E
[
Ẑ − Z

]
= 0), independent of the203

confounders, µS and c [1, 34, 35]. Stratification may still bias individual effects, but these residual204

biases are indistinguishable from noise from the perspective of the polygenic scores, as they are205

uncorrelated with all axes of population structure present in the test panel.206

3.2 Bias in polygenic scores leads to biased polygenic score associations207

We want to test the hypothesis that the polygenic scores are associated with some test vector,208

T . We assume that T is measured only in the test panel, and might represent an eco-geographic209

variable of interest (e.g latitude [12] or an encoding of whether one lives in a particular geographic210

region or not [9, 43], the fraction of an individual’s genome assigned to a particular “ancestry211

group”[18, 20], or one of the top genetic principal components of the test panel genotype matrix212

[21]).213

To test for association of polygenic scores with the test vector, we take our test statistic the as214

slope of the regression of the polygenic scores against the test vector, which we denote q. Assuming215

T is standardized, this slope is given by216

q =
1

N
Z>T. (11)

A more powerful test is available by modeling the neutral correlation structure among individuals217

due to relatedness (see section S8), but the simpler i.i.d. model presented here is sufficient for our218

purposes. Under the null model where selection has not perturbed allele frequencies in the test219

panel, E[q] = 0, reflecting the fact that genetic drift is directionless.220

In practice, an estimate of q is obtained using the polygenic scores computed from estimated effect221

sizes, i.e. q̂ = 1
N Ẑ

>T . The bias in the polygenic score association test statistic (q̂) then follows222

straightforwardly from the bias in the polygenic scores,223

E [q̂ − q] = E
[
Ẑ − Z

]>
T

≈ S

NM

(
µ>S + c>

)
F̃GXT. (12)

Therefore, we expect the polygenic score association test to be biased when the test vector (T )224

aligns with the vector of expected phenotypes (µS + c) in a space defined by the cross panel225

genetic similarity matrix (F̃XG). The conditions for an unbiased polygenic score association test226

are therefore narrower than the conditions needed to ensure unbiased polygenic scores in general.227

Rather than requiring that F̃XG = 0, we need only to ensure that certain linear combination of228

the entries of F̃XG are equal to zero, i.e. that F̃GXT = 0.229

We can gain further intuition by expressing the association statistic, q, in a different way. Specif-230

ically, we can re-frame this test as a statement about the association between the effect sizes and231

a set of genotype contrasts, r` = 1
NX

>
` T , which measure the association between the test vector232

and the genotypes at each site [12]. Writing β and r for the vectors of effect sizes and genotype233

contrasts across loci, the association test statistic can be rewritten as234

q = β>r. (13)
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This allows us to rewrite the bias in the estimator, q̂, as235

E [q̂ − q] =
S

M
E
[(
β̂> − β>

)
r
]

≈ S

M

(
µ>S + c>

)
F̃Gr (14)

where236

F̃Gr = E

[
G`,Dr

>
`,D

(G`,D+G`,B)>(G`,D+G`,B)/M

]
(15)

= F̃GXT.

Here eq. 14 expresses the bias entirely in terms of vectors that belong to the GWAS panel: for each237

GWAS panel individual m, F̃Gr,m measures the covariance between individual m’s genotype and238

the genotype contrasts of the test, standardized at each site by the variance of genotypes across239

individuals in the GWAS panel (eq. 15). Thus, q̂ is biased when the vector of expected phenotypes240

(µS+c) aligns with this vector of standardized covariances (F̃Gr). Confounders which are orthogonal241

to this axis do not generate bias in the association test, even if they bias the polygenic scores along242

other axes.243

3.3 Controlling for stratification bias in polygenic association tests244

Given the above results, how can we ensure that patterns we observe in the distribution of polygenic245

scores are not the result of stratification bias? As discussed above, a conservative solution is to246

prevent bias by choosing a GWAS panel that does not have any overlap in population structure247

with the test panel, but this is not ideal due to the well documented portability issues that plague248

polygenic scores [36, 44, 40], and because it limits which GWAS datasets can be used to test249

a given hypothesis. Another obvious solution is to include the vectors of expected genetic and250

environmental effects, uS and c respectively, as covariates in the GWAS. Doing so would remove251

all ancestry associated bias from the estimated effects, and thus ensure that any polygenic score252

association test carried out using these effects would be unbiased. However, uS and c are typically253

not measurable, so this is generally not an option. Alternatively, our analysis above suggests that254

including F̃Gr as a covariate in the GWAS model is the sufficient condition for an unbiased test no255

matter what pattern of confounding exists in the GWAS panel.256

3.3.1 Including F̃Gr removes stratification bias257

If we include F̃Gr as a single fixed-effect covariate in the GWAS model, variation along F̃Gr can258

no longer be used to estimate effect sizes. As a result β̂ is uncorrelated with genotypes contrasts r259

under the null. If there is confounding along other shared axes of ancestry variation, the polygenic260

scores may still be biased along other axes, as261

E
[
Ẑ − Z

]>
≈ S

M

(
µ>S + c>

)
F̃⊥F̃Gr
GX (16)

where262

F̃⊥F̃Gr
GX ≈ PF̃GX (17)
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and P =
(
I− 1

‖F̃Gr‖
F̃GrF̃

>
Gr

)
. F̃⊥F̃Gr

GX therefore captures cross panel relatedness along all axes of263

variation other than that specified by F̃Gr. Controlling for variation aligned with F̃Gr ensures that264

F̃⊥F̃Gr
GX T = 0, and it follows that265

E [q̂ − q] ≈ S

NM

(
µ>S + c>

)
F̃⊥F̃Gr
GX T

≈ 0 (18)

and the polygenic score association test is unbiased (see S5 and S6).266

3.3.2 Relationship between F̃Gr and PCA267

A standard approach to controlling for population stratification in polygenic scores is to include268

the top J principal components of the GWAS panel genotype matrix as covariates in the GWAS,269

for some suitably large value of J [3]. In our model, how does this approach relate to including F̃Gr270

as a covariate in the GWAS?271

As outlined in Section 2.1, FGG contains the expected within panel relatedness for the individuals272

in the GWAS panel, the structure of which is determined by the demographic model. If we could273

take the eigendecomposition of FGG directly, the resulting PCs are what we refer to as “population”274

PCs. The the number of population PCs that correspond to structure is entirely dependent on the275

population model. For example, below (section 3.4.1) we simulate under a 4 population sequential276

split model (Figure 1), in which case there are three population PCs that reflect real underlying277

structure. Later, (section 3.4.2) we simulate under a symmetric equilibrium migration model on a278

six-by-six lattice grid (Figure 3), in which case there are 35 population PCs reflecting underlying279

population structure. Including these population PCs as covariates in the GWAS would be sufficient280

to remove all ancestry-associated bias in effect size estimates and render the resulting polygenic281

scores uncorrelated with any axis of ancestry variation under the null hypothesis.282

To see how the PCA correction approach works in the context of our theory, we can write F̃Gr as283

a linear combination of GWAS panel population PCs,284

F̃Gr =
∑
i

ηiUi (19)

where Ui is the ith PC of FGG and the weights are given by ηi = Cov(Ui, F̃Gr). Estimating the285

marginal associations with F̃Gr as a covariate can therefore be understood as fitting a model in286

which all population PCs are included as covariates, but the relative magnitude of the contributions287

from different PCs are fixed, and we estimate only a single slope that scales the contributions from288

all of the PCs jointly, i.e.289

y = G`β` +

(∑
i

ηiUi

)
ω + e. (20)

As a corollary, if we perform a polygenic score association test using GWAS effect size estimates290

in which the top J population PCs of FGG are included as covariates, a sufficient condition for the291

included PCs to protect against bias from unmeasured confounders in a particular polygenic score292

association test is that F̃Gr is captured by those J top PCs, i.e. that ηi ≈ 0 for i > J .293
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A second interpretation of the PC correction approach is that it operates on a hypothesis that the294

major axes of confounding in a given GWAS panel (i.e. µS and c in our notation) can be captured295

by the included PCs [45]. If this condition is met, effect size estimates are unbiased with respect to296

all axes of ancestry variation, whether they exist within a given test panel or not, and therefore any297

polygenic score association test that uses these effect size estimates will be unbiased with respect298

to ancestry as well. Combining this interpretation with results from above, population PCs should299

successfully eliminate bias in polygenic score association tests if the J PCs included in the GWAS300

either capture the confounding effects on the phenotype, eliminating all effect size bias, or if they301

capture F̃Gr, ensuring that effect size bias relevant to the test is removed.302

3.3.3 Controlling for bias in practice303

Thus far we have shown the conditions under which including F̃Gr or the top J population PCs304

as fixed covariates removes stratification bias and leads to an unbiased association test. However,305

both F̃Gr and U are theoretical quantities that depend on the population model, which we do not306

observe in practice. Instead, we must estimate these quantities, F̂Gr and Û , with error, from sample307

genotype data.308

Sample principal components309

The sample PCs, Û , can be computed by taking the eigendecomposition of the empirical genetic310

covariance matrix, or the singular value decomposition of the genotype matrix. Existing results311

from random matrix theory allow us to obtain some understanding of the accuracy of Û as an312

estimator of U . Specifically, in many GWASs the number of individuals in the GWAS panel, M , is313

roughly on the same order as the number of SNPs, L. In this setting, the accuracy of the sample314

eigenvector Ûj depends on the corresponding population eigenvalue (λj) and the ratio of the number315

of individuals to the number of SNPs in the GWAS panel (M/L). As shown first by Patterson et al.316

(2006) in the context of genetics [46] (see also [47]), PCA exhibits a phase change behavior in which317

a given sample PC is only expected to align with the population PC if the corresponding population318

eigenvalue is greater than a threshold value of 1 +
√

M
L . Below this threshold, the sample PC is319

orthogonal to the population PC.320

However, even when the corresponding eigenvalue exceeds this threshold, the angle between the321

sample PC and the population PC may still be substantially less than one, particularly if the322

relevant eigenvalue does not far exceed the detection threshold [48, 49]. Specifically, the squared323

correlation between the population PC and the sample PC is approximately324

(
U>j Ûj

)2
≈


1−M

L
/(λj−1)2

1+M
L
/(λj−1)

, λj > 1 +
√

M
L

0, λj ∈ [1, 1 +
√

M
L ]

(21)

(see [48] for details). Thus even in cases where F̃Gr is fully captured by the top J population PCs,325

either of these two related phenomena may make it difficult to accurately approximate F̃Gr as a326

linear combination of the top J sample PCs, leading to a failure to fully account for stratification327

bias in polygenic score association tests.328

Estimating F̃Gr directly using test panel genotypes329

10

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 26, 2024. ; https://doi.org/10.1101/2023.03.12.532301doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.12.532301
http://creativecommons.org/licenses/by/4.0/


Given this limitation of PCA, it’s natural to ask whether other estimators of F̃Gr might perform330

better. One choice, suggested by our theoretical results, is a direct estimator that utilizes the331

relevant test panel genotype contrasts. Given the test panel genotype contrasts (r`) and GWAS332

panel genotypes (G`), we can obtain a direct estimator of F̃Gr as333

F̂Gr =
1

L

L∑
`=1

G`r`
G>` G`/M

. (22)

Then, if F̂Gr is a sufficiently accurate estimator of F̃Gr, we should be able to render a given polygenic334

score association test unbiased by estimating marginal effects under the model335

y = G`β` + F̂Grω + ε, (23)

and ascertaining SNPs for inclusion in the polygenic scores via standard methods.336

We can expect this method to be successful when the variance of the error component of F̂Gr is337

small relative to the variance of the entries of F̃Gr. The variance of F̃Gr will be greater when the338

amount of overlap in population structure between the two panel along this specific axis is greater.339

We can think about the variance of the error component in terms of a linear model that tries to340

predict the GWAS panel genotypes using the test panel genotype contrasts. If we write G̃i· to341

denote the vectors of genotypes for GWAS individual i and r̃ for the test panel genotype contrasts,342

each standardized by the variance in the GWAS panel, then we can fit the linear model343

G̃i· = r̃F̃Gr,i + e. (24)

The regression coefficient estimate from the fitted model is then the ith entry in our population344

structure estimator, F̂Gr. The error in F̂Gr therefore behaves like the error in a typical regression345

coefficient, and should be minimized when the number of SNPs included, L, is large, and when the346

test panel sample size, N , is large, so that the r̃ are well estimated.347

This approach proposes to use the test panel genotype data twice: once when controlling for348

stratification in the GWAS panel, and a second time when testing for an association between349

the polygenic scores and the test vector. One concern is that this procedure might remove the350

signal we are trying to detect. In supplemental section S7.1 we show that while this is true for351

naive applications, the effect will be small so long as the number of SNPs used to compute the352

correction is large relative to the number included in the polygenic score (i.e S � L). Notably,353

controlling for sample PCs of the GWAS panel genotype matrix will induce a similar effect if354

the sample PCs capture F̃Gr. We confirm via simulations (see supplemental section S7.2, and355

Figure S3) that downward bias in q̂ when including F̂Gr or sample PCs is minimal when S � L.356

Further concern about downward biases in applications could likely be ameliorated via the “leave357

one chromosome out” scheme commonly implemented in the context of linear mixed models [50, 5]358

or via iterative approaches that first aim to ascertain SNPs using a genome-wide estimate of F̂Gr359

before re-estimating effects using an estimate of F̂Gr computed from sites not in strong LD with360

any of the ascertained sites.361

3.4 Applications362

In this section, using theory, simulations and an application to real data, we consider a number363

of concrete examples with varying degrees of alignment between the axis of stratification and axis364
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of population structure relevant to the polygenic score association test, demonstrating how these365

biases play out in practice, and how well PCs and F̂Gr capture bias in different circumstances.366

3.4.1 Toy Model367

Stratification bias depends on F̃4(A,B;C,D)368

We first consider a toy model with four populations (labeled A, B, C and D), which are related to369

one another by an evenly balanced population phylogeny (Figure 1). The GWAS panel is composed370

of an equal mixture of individuals from populations A and B, and we test for a difference in mean371

polygenic score between populations C and D under two different topologies, one where A and C372

are sister to one another (Figure 1A), and another where A and B are sister (Figure 1C).373

For simplicity, we consider a purely environmental phenotype (i.e. h2 = 0) with a difference in374

mean between populations A and B equal to ∆AB (Figure 1B). Following from eq. 7, the marginal375

effect size estimate for site ` is376

β̂` | G`, e =
G>` e

G>` G`

=
1

2

∆AB (p̂A,` − p̂B,`)
G>` G`/M

+
G>` ε

G>` G`

(25)

where p̂A,` and p̂B,` are the observed sample allele frequencies for population A and B at site ` (see377

also equation 2.3 in the supplement of [27]).378

Then, using these effect sizes to test for a difference in mean polygenic score between populations379

C and D, the bias in our association test statistic is,380

E [q̂ − q] = ∆AB

S∑
`=1

E
[

(p̂A,` − p̂B,`)(p̂C,` − p̂D,`)
G>` G`/M

]
= ∆ABSF̃4(A,B;C,D)

(26)

where F̃4(A,B;C,D) is a version of Patterson’s F4 statistic [51, 52], standardized by the genotypic381

variance in the GWAS panel, which measures the amount of genetic drift common to populations382

A and B that is also shared by populations C and D. Writing the bias in terms of this modified F4383

statistic helps illustrate the role of cross panel population structure in driving stratification bias384

in polygenic scores. The effect estimate at site ` is a linear function of p̂A,` − p̂B,`, so the test385

will be biased if p̂A,` − p̂B,` is correlated with p̂C,` − p̂D,`. This is true for the demographic model386

in Figure 1A, where shared drift on the internal branch generates such a correlation, yielding a387

positive value for F̃4(A,B;C,D), but not for the model in Figure 1C, where there is no shared388

internal branch and F̃4(A,B;C,D) = 0.389

To test this prediction, we simulated 100 replicates of four populations related by this topology. In390

the GWAS panel populations we simulated purely environmental phenotypes with a difference in391

mean phenotype (as outlined above), conducted a GWAS, ascertained SNPs, and then used these392

SNPs to construct polygenic scores and compute q̂ in the test panel. The results are consistent with393

our theoretical expectations: the test statistic is biased for the topology with F̃4(A,B;C,D) > 0394

(Figure 1D), but unbiased when F̃4(A,B;C,D) = 0 (Figure 1E).395
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Given the population model, F̃XG = 0 for the unconfounded topology, making F̃Gr a vector of396

zeros. Therefore, re-running the GWAS including F̃Gr does not change the outcome of the already397

unbiased test (Figure 1G). For the confounded topology, the structure in F̃XG reflects the deepest398

split in the phylogeny and is aligned with T . F̃Gr is therefore an indicator of which GWAS panel399

individuals are on which side of the deepest split and including it as a covariate in the GWAS400

eliminates bias for the confounded topology (Figure 1F).401

Quantifying error in estimators of F̃Gr402

As we outlined above, in practice, F̃Gr cannot be observed directly, and must be estimated with403

error from the data. To illustrate the impact of this estimation error on the performance of both404

estimators in a simple, well understood case, we performed simulations using three different versions405

of our toy model in which we vary the amount of overlap in population structure between the test406

and GWAS panels. Specifically, given that F̃Gr is known in this toy model, we can compute the407

error in either estimator as one minus the squared correlation between F̃Gr and the corresponding408

estimator. We take all of these vectors to be standardized, so this is simply409

Error = 1−
(
x̂>F̃Gr

)2
(27)

where x̂ represents the appropriate estimator.410

For each simulation, we estimated F̂Gr as in eq. 22, using L genome-wide SNPs with a frequency411

of greater than 1% in both the test and GWAS panels. For PCA, we computed sample PCs via412

singular value decomposition of the genotype matrix using the same set of SNPs that were used413

to compute F̂Gr, and we then take Û1 (i.e. the first sample PC) as the PCA based estimator of414

F̃Gr [42]. In all of these simulations, we hold the GWAS and test panel sample sizes constant at415

N,M = 1, 000 and varied the number of SNPs (L) as a way to vary the accuracy of the estimators.416

We simulated 100 replicates for each topology, and plot the resulting averages across these replicates417

in Figure 2.418

First, we simulated a scenario of complete overlap, in which there is a single population split and419

individuals in both the GWAS and test panels are independently drawn as 50:50 mixtures of the420

two population on either side of the split (Figure 2A). When the GWAS sample size (M) is on the421

same order as the number of SNPs (L), the direct estimator (F̂Gr) has a smaller error than the422

first PC (Û1) (Figure 2B), and as a consequence reduces the bias by a larger amount (Figure 2C).423

Intuitively, the direct estimator singles out the relevant axis of population structure because we424

have identified it ourselves in the test panel, whereas PCA has to find this axis “on its own” in425

the high dimension GWAS panel genotype data, and thus pays an additional cost. In contrast,426

when M � L so that M/L ≈ 0, PCA no longer has to pay this additional cost, and its performance427

improves to match that of the direct estimator.428

We next simulated under the same toy model of partial overlap in population structure between test429

and GWAS panels that we considered above in Figure 1 (Figure 2D). This results in an increase430

in the error of the direct estimator relative to the complete overlap case because the genotype431

contrasts measured in the test panel are less informative about the relevant axis of structure in the432

GWAS panel. In contrast, the error in Û1 is unchanged, as the amount of structure in the GWAS433

panel is the same as inFigure 2A. Notably, in this case the direct estimator still outperforms PCA434

when M/L > 0, but PCA performs better when M/L ≈ 0.435
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Finally, in Figure 2G we reduced the overlap in population structure even further, which leads PCA436

to uniformly outperform the direct estimator, even in the M/L > 0 regime. Intuitively, because the437

overlap in population structure is so small, the direct estimator requires a very large number of438

SNPs to produce an accurate estimate. We also note that in general across all of these simulations,439

while the magnitude of the reduction in bias closely tracks the error in the estimator of population440

structure, the reduction is slightly larger than expected for Û1 (Figure S1).441

3.4.2 Grid Simulations442

To further explore stratification bias in more complex scenarios, we conducted another set of coales-443

cent simulations under a symmetric two-way migration model on a six-by-six lattice grid, building444

off of a framework developed by Zaidi and Mathieson (2020) [53]. We sampled an equal num-445

ber of individuals per deme to comprise both the GWAS and test panels, with total sample sizes446

N,M = 1, 440. We then simulated several different distributions of purely environmental pheno-447

types across the GWAS panel individuals. We considered three different scenarios for the distribu-448

tion of phenotypes. For each scenario, we estimated effect sizes, ascertained associated sites, and449

tested for an association between polygenic score and latitude, longitude, or membership in the450

single confounded deme, depending on the example. In these simulations F̃Gr is unknown and so we451

compared F̂Gr and the top 10 sample PCs as estimators of F̃Gr, using the same set of L = 20, 000452

SNPs that are found at a frequency greater than 1% in both panels for both estimators.453

For the first example, the confounder, c, is a linear function of an individual’s position on the454

latitudinal axis (Figure 3A). When we estimated effect sizes with no correction for population455

structure, the spatial distribution of the resulting polygenic scores reflected the distribution of the456

environmental confounder. Consequently, an association test using latitude as the test vector is457

biased. However, including F̂Gr or the top 10 sample PCs as covariates in the GWAS model is458

sufficient to ensure that effect sizes that are unbiased with respect to the latitudinal genotype459

contrasts in the test panel, so the resulting association test is unbiased.460

In the second example, we simulated confounding along the diagonal, resulting in uncorrected461

polygenic scores that are correlated with both latitude and longitude in the test panel and an462

association test that is biased along both axes (Figure 3B). When we computed F̂Gr using latitude463

as the test vector, the resulting effect sizes are uncorrelated with latitudinal genotype contrasts, but464

remain susceptible to bias along other axes (e.g. longitude). This example highlights the targeted465

nature of this approach, as using effect sizes from a GWAS including F̂Gr does not remove all466

bias, but does make the association test using those effect sizes for the pre-specified test vector467

unbiased (when F̂Gr is well estimated). Including 10 sample PCs protects both the latitudinal and468

longitudinal association tests.469

In the third example, we simulated an increased environmental effect in a single deme, a scenario470

which induces a more complex spatial pattern in the uncorrected polygenic scores (Figure 3C),471

and which previous work has shown to be difficult to correct for with standard tools [54, 53]. We472

then took the test vector to be an indicator for whether the test panel individuals were sampled473

from the deme with the environmental effect or not, and compute F̂Gr using these contrasts. In474

this scenario, including F̂Gr as a covariate in the GWAS results in an unbiased test statistic. In475

contrast, the top ten sample PCs did not.476
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Quantifying error in population structure estimators477

Next, we wanted to better understand the role of error in our population structure estimators plays478

in these simulations. In contrast to the four population toy model, it is not straightforward to479

compute F̃Gr given our underlying demographic model, particularly for the case of testing a single480

deme against all others. As a result, we cannot directly measure the error in F̂Gr or sample PCs as481

estimators of F̃Gr. Instead we use the fact that under this demographic model individuals within482

a deme are exchangeable, and therefore have the same values of both F̃Gr and population PCs.483

This allows us to estimate the error in F̂Gr by computing the fraction of the total variance in484

F̂Gr that can be attributed to variance of individual values within demes, and to variance of deme485

means across replicates (see Section 5.6.1). For the PCs the relationship between the order of the486

underlying population PCs and the order of the sample PCs may differ across replicates due to the487

noisiness of the sample PCs so it is not obvious how to compute the variance of the deme means488

across replicates. We therefore use only the within deme variances, so our estimates of the error for489

the PCs are technically estimates of a lower bound on the error (see Section 5.6.2). However, we490

note that for our estimation of the error in F̂Gr, we found that the variance within demes was by far491

the larger contributor, so we expect this to be a relatively tight bound. We then vary the number of492

SNPs used to compute our estimators of population structure from L = 20, 000 down to L = 2, 000,493

and observe how differences in the estimated error of our population structure estimators translate494

to differences in the amount of bias in the polygenic score association test statistic.495

In Figure 3A and Figure 3B, F̃Gr corresponds to latitude, so we expect it to be captured by the496

top two population PCs [55]. For L = 20, 000 (the number of SNPs used in Figure 3), we estimated497

the lower bound on the error in sample PCs 1 and 2 to be 0.011. Across the range of L values498

we tested, the estimated bound was no greater than 0.053 (Figure 4A) and including 10 PCs499

consistently removes bias in q̂ (Figure 4B). Similarly, we estimated the error in F̂Gr for latitude to500

be 0.012 when L = 20, 000 with a maximum of 0.059 when L = 2, 000. Although these estimates501

are nearly identical to the values we observe for the first two PCs, the bias in q̂ is slightly higher502

(Figure 4B). We observed a similar result in the 4 population toy model (Figure S1), so this may503

be the same phenomenon, or it may be that PCs 3-10 are capturing some of the residual latitudinal504

signal that is not captured by the first two.505

Next, we explored the role of error in our population structure estimators for the more difficult506

single deme test/confounder case (Figure 3C). We again computed the error in F̂Gr as we vary507

L, with estimates ranging from 0.04 to 0.18 as L decreases (Figure 4A). For larger values of L,508

the error was small enough that confidence intervals on the bias overlapped zero, but this was not509

true when we reduced L so that the error was larger (Figure 4C). Above, with L = 20, 000, we510

found that 10 PCs were not sufficient to remove the bias. This could either be because F̃Gr is not511

captured by the top 10 population PCs or it could be that F̃Gr can be captured by 10 population512

PCs, but the sample PCs are too noisy as estimates of the population PCs. Given that there are513

36 demes in our simulations and that individuals within demes are exchangeable, only the top 35514

population PCs capture real population structure, while the rest correspond to sampling variance.515

As a result, if the sample PCs are sufficiently well estimated, then only 35 should be required to516

remove the bias. In practice, we find that using 35 PCs for larger values of L, the bias is closer to517

zero than it is with 10 PCs, but the confidence intervals still to do not always overlap zero, and the518

bias is generally greater than it is when we use our direct estimator, F̂Gr (Figure 4C). As expected,519

the performance with 35 sample PCs decreases further with an increase in the error, but is always520

intermediate between 10 PCs and F̂Gr. All of this is consistent with the observation that the error521

15

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 26, 2024. ; https://doi.org/10.1101/2023.03.12.532301doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.12.532301
http://creativecommons.org/licenses/by/4.0/


in the higer sample PCs (i.e. 11-35), is extremely high across the range of L values we explored522

(Figure 4A).523

PCs succeed by capturing structure relevant to the test, not the confounder524

Finally, to the extent that the PCs did succeed in removing bias in our simulations, we wanted525

to understand whether it was because they successfully captured the confounder, or because they526

captured the relevant axis of structure for the test (see section 3.3.2). To this end, for each of the527

three grid scenarios in the L = 20, 000 case, we computed the cumulative proportion of variance in528

the confounder, c, that could be explained by the first J sample PCs, for J up to 100 (Figure 5).529

We found that while the confounding axis was well captured by sample PCs 1 and 2 for latitude530

(Figure 5A), it was not well captured by the top 10, 35, or indeed 100 PCs for the diagonal531

(Figure 5C) or single deme confounders (Figure 5E). In contrast, if we take our estimator, F̂Gr, as532

a proxy for F̃Gr, we find that the PCs explain a considerably higher fraction of the variance. For533

the first two cases, the test axis is latitude, so this is unsurprising. However, this is true even for534

the single deme case, and results from the fact that relatedness among adjacent demes leads in a535

smoothing effect (Figure S2), which makes F̃Gr easier for the PCs to capture.536

4 Discussion537

Interpreting patterns in the distribution of polygenic scores is difficult, especially when confounding538

cannot be ruled out. Because most well-powered GWAS are conducted on population samples where539

the relationship between genetic background, ancestry, and the environment is not well controlled,540

stratification bias remains a significant concern [32, 33, 40, 56]. Here, we characterize patterns541

of stratification bias in the distribution of polygenic scores as a function of the expected genetic542

similarity between GWAS and test panels. For any given polygenic score association test axis,543

the amount of bias in the association test statistic depends on the strength of stratification along544

exactly one axis of population structure in the GWAS panel (F̃Gr).545

The ability to conduct a given polygenic score association test in an unbiased manner therefore546

depends on the accuracy with which we can model F̃Gr via co-variates included in the GWAS. For547

the standard PCA based approach the inconsistency of the sample PCs as estimators of population548

structure is therefore a plausible explanation for the signatures of residual stratification bias that549

have been reported across many GWAS datasets [32, 33, 40], though such signals might also arise550

simply from not including enough PCs, even if they are well estimated. The inconsistency of the551

sample PCs as estimators is a well known result in random matrix theory [47, 48], and we are not552

the first to notice the connection to stratification bias in GWAS and polygenic scores [49], but the553

phenomenon is not widely acknowledged in the GWAS literature.554

In light of these issues, we proposed a direct estimator of the target axis of population structure555

using the test panel genotype data, and show that under optimal conditions of complete overlap556

in structure between panels and a large sample size in the test panel (Figure 2A and Figure 4C)557

this estimator outperforms, or at least equals, the standard PCA based estimator. A limitation558

this direct approach is that the performance relative to PCA degrades as the amount of overlap559

in structure between the two panels decreases (Figure 2B and Figure 2C). As a result it is best560

suited to cases where the GWAS cohort and test panels are drawn from the same sample, thus561
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ensuring a high overlap in structure between panels. We also expect this method to perform best562

when the test panel is large relative to the amount of variance explained by the test vector, so that563

the relevant genotype contrasts, r, are well-estimated.564

Several recent papers have proposed alternative methods for improved control of population struc-565

ture in GWAS and polygenic scores. Proposals include using 1) PCs of rare variants (as opposed566

to common variants) [53], 2) PCs of external reference datasets in addition to the PCs of the567

GWAS panel [57], 3) or local ancestry assignments (in lieu of global linear estimators) [58]. Our568

results highlight the importance of developing tools to more robustly estimate the error in pop-569

ulation structure estimates [59], and it would be interesting to understand the merits of these570

alternative methods through this lens. Ideally, future methods development might allow each set of571

GWAS summary statistics to be accompanied by statistics summarizing the accuracy of the pop-572

ulation structure estimates used to control for stratification. These estimates could then be used573

in downstream analyses to provide quantitative statements about the extent to which a particular574

polygenic score association test is or is not protected from stratification bias. We also note that575

tests for association between polygenic scores and axes of ancestry variation are closely related to576

bivariate LD score regression as applied to a combination of effect estimates for one trait and fre-577

quency/genotype contrasts from an independent dataset [60, 19, 32]. Previous work in the context578

of polygenic selection tests raised concerns about spurious inflation of the LD score slope due to579

background selection [32]. It would be interesting to revisit this issue more fully in light of our580

present results.581

There are several elements of our model that differ from reality. It is worth highlighting what these582

are, and what their effects are. For example, our model ignores linkage among sites and assumes583

that we use marginal effects, rather than jointly estimated effects, to construct our polygenic584

scores. Firstly, linkage among sites does not change the fundamental point that controlling for F̃Gr585

is sufficient to render the effect size estimates uncorrelated with the test panel genotype contrasts586

under the null. This is true whether effects are estimated marginally or jointly. However, in587

practice, we would still prefer to estimate effects jointly, for at least two reasons. The first is simply588

because doing so increases the accuracy of the polygenic score, which will increase our power. The589

second is because, in the presence of residual stratification (e.g. if our estimator, F̂Gr, has high590

error), polygenic scores constructed with jointly estimated effects should be less biased than those591

constructed using marginal effects. This is because, when effect sizes are estimated marginally, each592

site experiences the entirety of the stratification effect, and therefore gets a “full dose” of it. The593

stratification effect is then being added into the polygenic score multiple times across SNPs. This594

is why we find the bias in the polygenic score association test statistic to be proportional to the595

the number of loci included in the polygenic score. In contrast, if effects were estimated jointly, the596

stratification effect will be spread out more evenly across sites, and so we would expect the effect597

on the polygenic score to be less extreme, but not eliminated.598

Another issue is that, throughout our simulations we often estimate effect sizes while attempting599

to control for stratification only along the target axis of the test. We do this to highlight our main600

point that controlling for the target axis is sufficient to render the association test unbiased, but601

readily acknowledge that it does not deal with all of the negative consequences of stratification bias.602

For example, bias along other axis will function as additional noise in the process of ascertaining603

SNPs, and in the polygenic scores themselves, which would be expected to reduce power. Therefore,604

it is still desirable to include top PCs or use a LMM alongside F̂Gr, even in the case where F̂Gr is605

well estimated.606

17

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 26, 2024. ; https://doi.org/10.1101/2023.03.12.532301doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.12.532301
http://creativecommons.org/licenses/by/4.0/


We also wish to emphasize that our results are relevant for a broader set of analyses than those607

explicitly covered by our model. For example, with a slight shift in perspective, our model is608

applicable to studies that use GWAS summary statistics together with coalescent methods to test609

for signals of directional polygenic selection [19, 23, 24, 61]. The key to this is to recognize such610

methods use patterns of haplotype variation to estimate genotype contrasts between the sampled611

present day individuals and a set of unobserved ancestors, and then ask whether these estimated612

genotype contrasts correlate with effect size estimates for a trait of interest. Thus, within such an613

analysis there also exists an F̃Gr that describes the extent to which individuals in the GWAS panel614

are more closely related to the present day sample or the hypothetical ancestors. For both the615

coalescent approaches, as well as methods relying on direct comparison of polygenic scores, both616

the evolutionary hypothesis being tested and the degree of susceptibility to bias follow directly617

from the set of genotype contrasts used in the test. Some prior work has suggested that certain618

coalescent methods of testing for polygenic selection are more robust to stratification bias than619

others [24, 61], but our results show that this cannot be true: two different methods that test the620

same evolutionary hypothesis using the same set of estimated effect sizes necessarily have the same621

susceptibility to stratification bias. If there are differences in robustness to stratification bias among622

methods, then this must come either from changing the evolutionary hypothesis being tested or623

from overall differences in the statistical power of the methods.624

Finally, we note that even if F̃Gr is known exactly the interpretation of the results of polygenic625

score association tests is limited by the many assumptions that must be made in any polygenic626

score analysis [62]. For example, these analyses use effect sizes estimated in a one set of genetic627

and environmental background, and there is no guarantee that the effects will be the same in628

other backgrounds. Effect size heterogeneity can cause many difficulties with the interpretation of629

positive associations between polygenic scores and axes of population structure (as several papers630

have noted [62, 13, 63]). Another difficulty with interpretation arises from allelic turnover [38] and631

differences in tagging across populations, as a given polygenic score will have less power to detect632

differences between populations that are genetically more distant from the GWAS panel, and this633

can lead to a biased picture of how selection has actually affected the trait across populations [39].634

However, none of these phenomena are expected to generate false signals of directional selection635

where none exists. This is because the fact that the effect size might vary across populations has636

no impact on the correlation between the effect size measured in only one of the populations and637

patterns of allele frequency differentiation among populations. One subtle caveat to this claim is638

that certain forms of directional interaction effects (e.g. directional dominance) could in principle639

create correlations between the direction of recent allele frequency change on the lineage leading to640

the GWAS panel individuals and the average effect as estimated under an additivity assumption,641

and this would violate the null model. However, there is little evidence for substantial interaction642

variance among common variants in human complex traits, so this is unlikely to be an issue in643

practice.644

Moving beyond the specific issue of associations between polygenic scores and population structure645

axes, we note that GWAS can also be impacted by other forms of genetic confounding beyond646

the simple associations between ancestry and genetic background that we consider here, include647

dynastic effects, assortative mating, and stabilizing selection [64]. Therefore, while our results648

provide a pathway to a more rigorous approach for protecting against stratification bias in polygenic649

score association tests, addressing a known problem in their implementation, continued care in the650

interpretation of polygenic score analyses is always warranted.651
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5 Materials and Methods652

5.1 Simulating genotypes653

We used msprime [65] to simulate genotypes under different models with 100 replicates per model.654

The first model, shown in Figure 1, has two population splits, 200 and 100 generations in past, for655

a total of 4 present day populations. We fix the population size for all present and past populations656

to 10,000 diploid individuals. We then sample 5,000 individuals per population and create two657

configurations of GWAS and test panels (N,M = 10, 000) based on the diagrams in Figure 1A658

and Figure 1C. For every model replicate we simulate a large number of independent sites and659

downsample to L = 10, 000 SNPs with MAF > 0.01 in both GWAS and test panels. We use these660

genotype simulations for Figure 1 and Figure S3. When the populations in the GWAS and test661

panel are non-sister (i.e Figure 1A) the average within panel FST [66] was 0.01, whereas in the662

configuration in Figure 1C the average FST was 0.005.663

For Figure 2 we use the same model setup but adjust the split times to 12/0, 12/4, and 12/10664

generations in the past for population models A, B, and C, respectively. The average FST for665

the overlapping structure scenario is approximately 0.0006. To reduce computational burden, we666

scale down the sample size to 1,000 individuals per panel (500 per population). We simulate large667

number of independent SNPs and down-sample to L sites (MAF > 0.01 in both panels) which we668

vary from 500 to 100,000.669

For Figure 3 we use a model, modified from [53], that is a 6 × 6 stepping stone model where670

structure extends infinitely far back with a symmetric migration rate of m = 0.01. We fix the671

effective population size to 1,000 diploid individuals and sample 80 individuals per deme which we672

split equally into GWAS and test panels (N,M = 1, 440). As above, we simulate large numbers673

independent SNPs and down-sample to L = 20, 000 SNPs with MAF > 0.01 in both panels.674

5.2 Simulating phenotypes675

To study the effect of environmental stratification on association tests, we first simulated non-676

genetic phenotypes for an individual i in the GWAS panel as yi ∼ N(0, 1). In our discrete 4677

population models we then generate a phenotypic difference between populations by adding ∆AB678

to yi for individuals in population B. For Figure 1 we vary ∆AB from 0 to 0.1 standard deviations.679

In order to compare across models and values of L
M in Figure 2 we compute ∆AB as 5000

0.05×L .680

In our grid simulations we generated three different phenotypic gradients where the largest pheno-681

typic shift was always equal to ∆. To generate a latitudinal gradient (Figure 3A) we added ∆
5 to682

yi for individuals in row 1, 2∆
5 for individuals in row 2, etc. For Figure 3B we generated a gradient683

along the diagonal by adding ∆
5 to the phenotype for individuals in deme (1,1), 2∆

5 for individuals684

in deme (2,2), etc. For Figure 3C we shifted the phenotype of individuals in deme (1,4) by ∆. For685

all grid simulations in Figure 3 we set ∆ = 0.2. In order to compare across values of L in Figure 4686

we compute ∆ as 60
0.015687

To study the effect of controlling for stratification in cases where there is a true signal of association688

between polygenic scores and the test vector (Figure S3), we used our 4 population demographic689
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model and followed the protocol outlined in [53] to simulate a neutral trait with h2 = 0.3. We first690

randomly select 300 variants to be causal and sample their effect sizes from β` ∼ N(0, σ2
i [p`(1 −691

p`)]
α), where σ2

i is a frequency independent scale of the variance in effect sizes, p` is allele frequency692

in the GWAS panel, and α is a scaling factor controlling the relationship between allele frequency693

and effect size. We set α = −0.4 and σ2
g = σ2

i

200∑̀
=1

[2p`(1− p`)]α+1 = 0.3.694

To simulate a signal of true difference in polygenic score in the test panel, we calculate the frequency695

difference pD,`−pC,` at all 300 causal sites in the test panel and flip the sign of the effect sizes in the696

GWAS panel such that pD−pC > 0 and β` > 0 with probability θ. θ therefore controls the strength697

of the association with θ = 0.5 representing no expected association and θ = 1 representing the698

most extreme case where trait increasing alleles are always at a higher frequency in population D.699

We use θ ranging from 0.5 − 0.62. We then draw the environmental component of the phenotype700

ei,k ∼ N(0, 1 − h2) and generate an environmental confounder by adding ∆AB ∈ {−0.1, 0, 0.1} to701

ei,k for individuals in population B.702

5.3 Computing covariates703

For each polygenic score association test we computed F̂Gr. We first construct T as either pop-704

ulation ID, latitude or the single deme of interest, depending on the simulation. Given this test705

vector, we compute r = X>T using the plink2 [67] function --glm. Finally we compute F̂Gr (see706

eq. 22) using --sscore in plink2, taking care to standardize by the variance in the GWAS panel707

genotypes. Additionally we used plink2 [67] --pca or --pca approx to compute sample PCs from708

the GWAS panel genotype matrix.709

5.4 GWAS710

For each set of phenotypes, we carried out three separate marginal association GWASs using the711

regression equations below,712

1. y = β`G` + ε713

2. y = β`G` + ωF̂Gr + ε714

3. y = β`G` + ω1Û1 + ...+ ωjÛj + ε.715

Additionally, we conducted a fourth GWAS, y = β`G` + ωF̃Gr + ε, for the discrete 4 population716

model where F̃Gr is known. All GWASs were done using the plink2 [67] function --glm.717

We then ascertain S SNPs based on minimum p-value for inclusion in the polygenic score. For718

Figure 1 and Figure 3 we set S = 300. In order to compare across values of L
M in Figure 2 and719

Figure 4, we set S = 0.05×L and S = 0.015×L, respectively. For Figure S3 we use use estimated720

effect sizes at the 300 causal sites rather than ascertaining based on p-value.721
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5.5 Polygenic Score Association Test722

We construct polygenic scores for the individuals in the test panel as Ẑi =
∑S

`=1 β̂`X` where β̂` is723

the estimated effect size from the joint model and X` is the mean centered genotype value for the724

`th variant.725

For each replicate we then compute the test statistic q̂ = 1
N Ẑ

>T by multiplying the vector of726

polygenic scores for individuals in the test panel by the test vector. Finally we compute the bias727

in q̂ across each set of 100 replicates as E [q̂ − q].728

5.6 Estimating the error in our population structure estimators for the grid729

model730

5.6.1 Direct estimator731

Consider that the value of F̂Gr,ij , the entry of F̂Gr for the ith individual in the jth deme, can be732

decomposed as733

F̂Gr,ij =
(
F̂Gr,ij − F̂Gr,j

)
+
(
F̂Gr,j − F̃Gr,j

)
+ F̃Gr,j (28)

where F̂Gr,j = 1
mj

∑mj

i F̂Gr,ij is the empirical average of F̂Gr,ij within deme j (mj is the number734

of individuals in deme j), and F̃Gr,j is the entry of the true population structure axis F̃Gr, for all735

individuals in deme j. Individuals within demes are exchangeable in our model, so the deviations736 (
F̂Gr,ij − F̂Gr,j

)
and

(
F̂Gr,j − F̃Gr,j

)
both represent sources of error in our estimator. The fraction737

of variance in F̂Gr that is attributable to error is therefore738

error =
Ej
[
V ari

(
F̂Gr,ij − F̂Gr,j

)]
+ V arj

(
F̂Gr,j − F̃Gr,j

)
V ar

(
F̂Gr

) . (29)

We can estimate Ej
[
V ari

(
F̂Gr,ij − F̂Gr,j

)]
as739

1

H

H∑
h

1

J

J∑
j

1

mj − 1

mj∑
i

(
F̂Gr,ijh − F̂Gr,jh

)2
, (30)

where h indexes replicate simulations and H is the total number of replicates (H = 100 in our740

case), J gives the total number of demes (36 in our case), mj is the number of individuals in deme741

j, and742

F̂Gr,jh =
1

mj

mj∑
i

F̂Gr,ijh (31)

is the empirical mean entry for deme j in replicate h.743
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To estimate the contribution of variance in the per-deme means, we compute the variance across744

replicates for a given deme, and then take the average of these values across demes:745

1

J

J∑
j

1

H − 1

H∑
h

(
F̂Gr,jh −

1

H

H∑
`

F̂Gr,j`

)2

. (32)

(here, the sums over ` and h are both sums over replicates–one for the mean, and one for the746

variance–but we use different letters to avoid confusion).747

The denominator, in turn, can be estimated straightforwardly as748

1

M − 1

M∑
i

(
F̂Gr,i −

1

M

M∑
`

F̂Gr,`

)2

(33)

where we now use ` to index individuals within the mean calculation. Our estimate of the error is749

then given by summing (30) and (32) and dividing by (33).750

5.6.2 Principal components751

To estimate the error in the sample PCs, we follow similar steps, except that it is not obvious752

how to compute the variance of the per deme means, as the relationship between the order of the753

underlying population PCs and the sample PCs may differ across replicates due to the noisiness754

of the sample PCs. We therefore include only the variance among individuals within demes in our755

estimate of the error, which makes it an estimate of a lower bound on the error, rather than a756

direct estimate. The PCs are automatically standardized to have a variance of 1, so that for the757

kth PC, a lower bound on the error is given by758

errork > Ej
[
V ari

(
Ûijk − Ûjk

)]
, (34)

which we estimate as759

1

H

H∑
h

1

J

J∑
j

1

mj − 1

mj∑
i

(
Ûijkh −

1

mj

mj∑
`

Û`jkh

)2

. (35)

760

Data availability761

All of the code developed to produce the figures and simulations in this paper is available in the762

github repository: https://github.com/jgblanc/PGS-differences-confounding. We used the763

existing software plink2 https://www.cog-genomics.org/plink/2.0/, msprime https://tskit.764

dev/msprime/docs/stable/intro.html, bcftools https://samtools.github.io/bcftools/bcftools.765

html, R https://www.r-project.org/, and python https://www.python.org/.766
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Figure 1: Schematic of two different panel configurations. The effect of stratification depends on the
overlapping structure between the GWAS and test panels. (A, C) Two different topologies used to create
the GWAS and test panels. (B) Stratification was modeled in the GWAS panel by drawing an individual’s phenotype
y ∼ N(0, 1) and adding ∆AB if they originated from population B. (D) When there is overlapping structure between
GWAS and test panels, there is an expected mean difference between polygenic scores in populations C and D.
Additionally, the bias in q̂ increases with the magnitude of stratification in the GWAS. (E) However, when there is no
overlapping structure between panels, there is no expected difference in mean polygenic scores between C and D and
q̂ remains unbiased regardless of the magnitude of stratification. (F, G) Including F̃Gr as a covariate in the GWAS
controls for stratification, eliminating bias in q̂ regardless of ∆AB or the overlapping structure between GWAS and
test panels.
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Figure 2: Error in estimators of F̃Gr depends on the number of SNPs used to compute them. (A) We
simulated a population model with a single split and sampled an equal proportion of individuals from each population
to make a GWAS and test panel. (D,C) Here we simulated population models with two splits and sampled individuals
in the overlapping structure configuration. (B, E, H) As F̃Gr is known for these population models, we computed the
error in Û1 and F̂Gr as estimators of F̃Gr using eq. 27. For both estimators, error decreased as the number of SNPs
increased. We hold the number of GWAS panel individuals constant at M = 1, 000 so as L increases the ratio of M

L

decreases. The error in Û1 does not depend on the population model as the depth of the deepest split is constant
across models. Error in F̂Gr increases as overlap between panels decreases. (C, F, I) Bias in q̂ computed from using
the estimators as covariates in the GWAS follows from the error in the estimators themselves.
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Figure 3: Stratification bias in more complex demographic scenarios. GWAS and test panel individuals
were simulated using a stepping-stone model with continuous migration. In the GWAS panel, the phenotype is non-
heritable and stratified along either latitude (A), the diagonal (B), or in a single deme (C). When effect sizes were
estimated in a GWAS with no correction for stratification, polygenic scores constructed in the test panel recapitulate
the spatial distribution of the confounder (second column). Including F̂Gr (test vector is latitude for A and B,
belonging to * deme for C) in the GWAS model eliminates bias in polygenic scores along the test axis (third column)
which is also reflected in the association test bias (fifth column). We also compare our approach to including the top
10 PCs (fourth column) which successfully protects the test in A and B but remains biased for C.
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Figure 4: Quantifying error in estimates of F̂Gr and sample PCs for the six-by-six stepping stone
demographic model. (A) Given the stepping stone demographic model used in Figure 3, individuals within a deme
are exchangeable and have the same F̃Gr and population PC value. Therefore we used variation within demes to
estimate the error in F̂Gr and a lower bound for the error in sample PCs (see Section 5.6.1 and Section 5.6.2 for
details) for different values of L (we hold M = 1, 400). The dashed vertical line indicates PC 35, the last population
PC we expect to capture real structure. (B) When latitude is the test vector, both sample PCs and F̂Gr are well
estimated and bias in q̂ is reduced. (C) When a single deme indicator variable is the test vector, higher PCs are
needed to capture F̃Gr. These sample PCs are not well estimated and residual bias remains when 35 PCs are used
for most values of L.
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Figure 5: Different patterns of confounding and F̂Gr are captured by different GWAS panel sample
PCs. For the three possible combinations of confounding and polygenic score association tests in Figure 3, we plot
the variance in either the confounder or F̂Gr explained by cumulative GWAS panel sample PCs, with the top 10
PCs highlighted in a darker color. As F̃Gr is unknown for this model, we estimated the error in F̂Gr as 0.011 and
0.04 for latitude and the single deme, respectively, and therefore assume it is a decent proxy for F̃Gr. In (A) both
the confounder and F̂Gr (and therefore F̃Gr) represent variation along latitude and are well captured by the first
two PCs. For (B) the confounder varies along the diagonal and these individual deme level differences are not well
captured by top sample PCs. In contrast, the test vector is still latitude and F̂Gr is again well captured by PCs 1
and 2. Finally, in (C), both the confounder and the test vector represent membership in a single deme and therefore
not as well captured by top sample PCs.
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Figure S1: Error in estimates of F̃Gr predicts bias in q̂ across population models. For all simulations in
Figure 2 we compute the expected bias as E [Error]×E [q̂nc] where q̂nc is the observed bias using effect sizes that were
estimated with no correction. We then compare this expected bias to the observed bias when using that estimator as
a covariate in the GWAS. The error in both F̂Gr and sample PC 1 is highly predictive of the observed bias, though
we observe that sample PC 1 exhibits a slight increase in bias reduction compared to the expected.
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Figure S2: F̂Gr as observed in the GWAS panel. For both of the test vectors used in the grid simulations we
plotted the average F̂Gr per deme across 100 replicates. For the latitudinal test vector, F̂Gr simply recapitulates
latitude, which is unsurprising given the symmetric migration model we use. For the single deme test vector, F̂Gr

largely reflects the distance to the focal test deme.
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Figure S3: Including F̃Gr, F̂Gr, or PC 1 as a covariate in the GWAS model maintains power to detect
true association signal. GWAS and test panels were simulated in the overlapping structure configuration (see
Figure 1A). Heritable phenotypes (h2 = 0.3) were simulated with a true difference in polygenic scores by flipping
the sign of a proportion of causal effects to align with allele frequency contrasts, pD,` − pC,`, in the test panel.
When stratification is in the same direction as the true difference, q̂ is upwardly biased, as it is when there is
no environmental stratification, once genetic stratification is strong enough. When stratification is in the opposite
direction, environmental and genetic stratification are opposed and the direction of bias depends on the strength of
each. As expected, F̃Gr perfectly captures true association regardless of the direction of stratification. Estimators of
F̃Gr (i.e F̂Gr and PC 1) also capture true association, consistent with out theoretical arguments that downward bias
is minimal when S << L.
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