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Introductory Paragraph  

Deep learning methods have recently become the state-of-the-art in a variety of regulatory genomic 
tasks1–6 including the prediction of gene expression from genomic DNA. As such, these methods 
promise to serve as important tools in interpreting the full spectrum of genetic variation observed 
in personal genomes. Previous evaluation strategies have assessed their predictions of gene 
expression across genomic regions, however, systematic benchmarking is lacking to assess their 
predictions across individuals, which would directly evaluates their utility as personal DNA 
interpreters. We used paired Whole Genome Sequencing and gene expression from 839 individuals 
in the ROSMAP study7 to evaluate the ability of current methods to predict gene expression 
variation across individuals at varied loci. Our approach identifies a limitation of current methods 
to correctly predict the direction of variant effects. We show that this limitation stems from 
insufficiently learnt sequence motif grammar, and suggest new model training strategies to 
improve performance.  
 
Main  

Sequence-based deep learning methods are emerging as powerful tools for a variety of functional 
genomic prediction tasks. These models take as input genomic DNA, and learn to predict context-
dependent functional outputs like transcription factor binding2,8,9, chromatin state10–13 and  gene 
expression values1,14. State of the art models can reproduce experimental measurements with a 
high degree of accuracy and enable mechanistic insights through their learnt DNA 
features1,2,15. Yet, the true potential of these sequence-based models lies in their ability to predict 
outcomes for arbitrary sequence inputs – a space too large for experimental methods to fully 
explore. While partial evaluations through expression quantitative trait loci (eQTL)1,16 studies or 
massively parallel reporter assays (MPRA)17 have shown promise, the broader application of these 
models as personalized DNA interpreters has not been comprehensively assessed. We address this 
by conducting an extensive analysis using paired Whole Genome Sequencing (WGS) and cerebral-
cortex RNA-sequencing data from the ROSMAP datasets7 with measurements from 839 
individuals. Our study bridges the gap between the known potential and the actual performance of 
these models in personalized genomics interpretation. 
 
To start, we focus our evaluation on Enformer1, the top-performing deep learning  model. 
Enformer is trained to predict various functional outputs from (cis) sub-sequences from the 
Reference genome. This training approach allows Enformer and other deep learning models to 
identify short DNA sub-sequences (motifs) that are shared across the genome and exploits 
variations in motif combinations across genomic regions to make context-dependent predictions. 
As a control experiment, we used the pre-trained Enfomer model, provided it with sub-sequences 
around the TSS from the Reference genome and evaluated its predictions on population-average 
gene expression (n=13,397 expressed protein coding genes) from the cerebral cortex (Fig. 1A-B). 
To account for the differences between data types that were used during Enformer’s training and 
our study, we used a fine-tunning strategy, whereby we trained an elastic net model on top of the 
predictions from Enformer’s output tracks (see Methods).  Consistent with the expectation for this 
type of evaluation, we observed good prediction accuracy as measured by the Pearson correlation 
coefficient R=0.58 (Fig. 1B). The results were similar when we restricted the analysis to a smaller 
set of genes (n=3,401) overlapping Enformer’s test regions (R=0.51; Supplementary Fig. 1).   
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While Enformer is not explicitly trained on genetic variation data, once trained, it holds promise 
that it has learnt the cis regulatory logic of gene expression and so can predict the impact of 
arbitrary genetic variation on its outputs.  To evaluate its performance in this setting, which is 
distinct from the cross-genome performance evaluated above, we applied Enformer to predict 
individual-specific gene expression levels based on personal genomic sequences (Methods; Fig. 
1C). As a positive example, we first present here results for a highly heritable gene (heritability 
r2=0.8) DDX11. DDX11’s variance in expression across individuals can be attributed to a single 
causal single-nucleotide variant (SNV) using statistical fine-mapping16. Using WGS data, we 
created 839 input sequences of length 196,608bp centered at the transcription start site (TSS), one 
per individual for the gene (Fig. 1C, Supplementary Fig. 2, Methods). Applying Enformer to 
these input sequences we observed a Pearson correlation of 0.85 (p<1e-200) between predicted 
and observed gene expression levels across individuals (Fig. 1D). Further, in-silico mutagenesis 
(ISM) at this locus showed that Enformer utilized a single SNV with high correlation to gene 
expression (eQTLs) in making its predictions (Fig. 1E). This SNV is the same causal SNV that 
was identified through statistical fine-mapping with Susie16. Thus, at this locus, Enformer is able 
to identify the causal SNV amongst all those in LD, and in addition provides hypotheses about the 
underlying functional cause, in this case the extension of a repressive motif (Supplementary Fig. 
3).  
 
However, the impressive predictions on DDX11 proved to be the exception rather than the rule.  
When we tested 6,825 cortex-expressed genes, we found a large distribution in Pearson's R (Fig. 
2A, Supplementary Table 1; min R=-0.76, max R=0.84, mean = 0.01). Surprisingly, while the 
predictions were significantly correlated to observed expression for 598 genes (FDRBH=0.05, 
Methods), they were significantly anti-correlated with the true gene expression for 195 (33%) of 
these genes. For example, predicted GSTM3 gene expression values are anti-correlated with the 
observed values (R= -0.49; p<1e-200, Fig. 2B). We performed several sensitivity analyses to 
which these results proved robust (Methods, Extended Data Fig. 1): these results are not sensitive 
to output track fine-tuning, or model ensembling as done in Enformer, or subseting the analysis to 
a smaller set of genes that have easily detectable causal variants based on statistical fine-mapping 
(Supplementary Table 1). Overall, these results imply that the model fails to correctly attribute 
the variants’ direction of effect (i.e., whether a given variant decreases or increases gene expression 
level).   
 
We then compared Enformer against a widely-used linear approach called PrediXcan18. PrediXcan 
constructs an elastic net model per gene from cis genotype SNVs across individuals. Unlike 
Enformer, PrediXcan is explicitly trained to predict gene expression from variants but it does not 
take into account variants that were not present in its training data and cannot output a prediction 
for unseen variants. While the models are conceptually different, the PrediXcan model gives a 
lower bound on the fraction of gene expression variance that can be predicted from genotype. 
Further, genes that are significantly predicted with PrediXcan should have at least one causal 
variant somewhere in the genomic region used for the predictions and thus provide a substantial 
set of loci for assessing Enformer’s predictions. We used the previously published prediXcan 
model that was trained on GTEx cortex18 and simply applied it to ROSMAP samples. Hence 
neither Enformer nor PrediXcan have seen the ROSMAP samples prior to their application. As 
shown in Fig. 2C, for the 1,570 genes where PrediXcan’s elastic net model was available, 
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performance of Enformer is substantially lower (921 significantly predicted gene by PrediXcan 
vs. 162 by Enformer, Mean R Enformer = 0.02, Mean R PrediXcan = 0.26, Supplementary Table 
1). Further, PrediXcan did not have the same challenge with mis-prediction of the direction of 
SNV effect (i.e., all PrediXcan’s significantly predicted genes have a positive correlation between 
predicted and observed). When we ignore the sign of the Enformer’s correlation values, we observe 
that both models, despite their conceptual differences, show some predictive power for the same 
genes (R=0.58, Supplementary Fig. 4). This supports the observation that Enformer can identify 
genes whereby genetic variation across individuals significantly impacts gene expression values, 
but unlike PrediXcan, it is not able to determine the sign of SNV effects accurately. We note that 
Enformer predictions were evaluated against eQTLs in the original study using signed linkage 
disequilibrium profile (SLDP) regression1,19 demonstrating improved performance over competing 
models in terms of z-score, however, this previous result is based on evaluation across the genome, 
and not loci specific as we report here.   
 
To investigate if these observations are specific to Enformer or more broadly apply to sequence-
based deep learning models that follow the same training recipe, we trained a simple CNN that 
takes as input sub-sequences from the Reference genome centered at gene TSSs (40Kbp) and 
predicts population-average RNA-seq gene expression from cortex as output (Methods). This 
CNN can predict population-average gene expression in cortex with a similar accuracy as 
Enformer (R=0.57, Extended Data Fig. 2A), yet it has the same challenge with direction of the 
predictions across individuals (Extended Data Fig. 2B). Thus, our results on Enformer are likely 
to generalize to other sequence-based deep learning models trained in the same way.  
 
To explore the causes for the negative correlation between Enformer predictions and the observed 
gene expression values we used two explainable AI approaches: ISM and input-Gradient 
(Supplementary Methods S2). These approaches approximate the output of a nonlinear neural 
network with a linear function that weights the contribution of each SNV through a process 
referred to as feature attribution. First, we confirmed that this approximation was reasonable for 
95% of the examined genes (Supplementary Fig. 5 and 6). For each gene, based on its ISM 
attributions, we determined the main SNV driver(s) that dominate the differential gene expression 
predictions across individuals (Supplementary Methods S2). Across the 256 examined genes, we 
found that 32% have a single SNV driver, and the vast majority (85%) have five or fewer drivers 
(Supplementary Fig. 7, Supplementary Table 2) which determine the direction and correlation 
with the observed expression values. To understand how these driver SNVs cause mispredictions, 
we classified Enformer-identified driver SNVs into “supported” and “unsupported” categories 
based on the agreement of SNVs’ ISM attribution sign with the direction of effect according to the 
eQTL analysis (Methods). For this analysis, we computed marginal eQTL effect sizes, which do 
not distinguish causal variants from others in LD. However, it is important to note that the 
Enformer model is entirely agnostic to LD structure as it was trained with a single Reference 
genome. As such, Enformer predictions by construction assume a causal interpretation of the 
identified drivers variants. Thus, a comparison of Enformer-identified driver variants is 
informative because a sign discordance between the two strongly suggests that the Enformer effect 
is incorrect. On the other hand, the reverse analysis is not interpretable: an eQTL with a large 
marginal effect can have a low Enformer effect because it is not causal.  As an example of sign 
discordance analysis, GSTM3 has two common driver SNVs identified by Enformer yet their 
predicted direction of effect was unsupported based on the SNVs signed eQTL effect size (Fig. 
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2D). For all 256 inspected genes, we found that mispredicted genes had almost exclusively 
unsupported driver SNVs  whereas correctly predicted genes indeed had supported driver SNVs 
(Fig. 2E). This analysis thus confirms that this small number of driver SNVs per gene are the cause 
of Enformer’s misprediction for the sign of the effect.  
 
To investigate whether these unsupported attributions are caused by systematically erroneous 
sequence-based motifs that Enformer learns from the training data, we analyzed the genomic 
sequences around driver SNVs. We did not find any enrichment for specific sequence motifs 
(Supplementary Fig. 8). When we plotted the location of SNV drivers along the input sequences, 
we found that most drivers were located close to the TSS (Fig. 2F, Supplementary Fig. 9 and 10, 
Supplementary Methods S3), supporting a recent report17 that shows current sequence-based deep 
learning models mainly predict gene expression from genomic DNA close to TSS, despite using 
larger input DNA sequences. Further, when we analyzed ISM values in windows around the driver 
SNVs, we observed that the majority do not fall into coherent attributional motifs (short regions 
of sequence with consistent attribution) as would be expected if the model was picking up on 
biologically meaningful regulatory mechanisms (Supplementary Fig. 11, Supplementary Table 
3, Supplementary Methods S4).  
  
In summary, our results suggest that current sequence-based deep learning models trained on the 
input-output pair of a single Reference genome often fail to correctly predict the direction of SNV 
effects on gene expression. We further show that current neural network models perform worse 
than simple baseline approaches like PrediXcan in predicting the impact of genetic variation across 
individuals. For future development, we recommend that new models are  not only assessed on 
genome-wide statistics of absolute causal eQTL effect sizes but also on a per-gene agreement 
between the sign and the size of the predicted and measured effect of causal variants.  
 
We hypothesize that two complementary strategies will be fruitful for improving the prediction of 
gene expression across individuals. Firstly, current models are trained on sequences from a single 
Reference genome and learn sequence features that explain gene-to-gene expression variation, and 
thus have not been explicitly trained to learn how loci-dependent genetic variation impacts gene 
expression. The mechanisms that explain gene-to-gene variation may be distinct from those that 
explain interpersonal variation, for example, while promoter logic is important to determine which 
genes are expressed within a cell type, long-range interaction appears to be much more important 
for interpersonal variation17. Thus,  training on input-outputs-pairs of diverse genomes and their 
corresponding gene expression measurements may be a way to increase sequence variation and 
learn these effects for accurate personalized predictions. Second, current methods do not 
accurately model all of the biochemical processes that determine RNA abundance. For example, 
post-transcription RNA processing (whose dependence on sequence is mediated via RNA-protein 
or RNA-RNA interactions) is entirely ignored. While including data sets that explicitly measure 
post-transcriptional regulatory processes and long-range interaction may improve modeling of 
these effects4,6, it is also possible that with sufficiently large paired WGS and gene expression 
training datasets, the resulting models will implicitly learn these mechanisms as long as they 
impact gene expression variation across individuals.  
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Figure Legends 
 
Figure 1. Evaluation of Enformer across genomic regions and select loci. (A) Schematic of the 
Reference-based training approach. Different genomic regions from the Reference genome are treated as 
data points. Genomic DNA underlying a given region is the input to the model, and the model learns to 
predict various functional properties including gene expression (CAGE-seq), chromatin accessibility 
(ATAC-Seq), or TF binding (ChIP-Seq). (B) Population-average gene expression levels in cerebral cortex 
(averaged in ROSMAP samples, n=839) for expressed genes (n=13,397) versus Enformer’s predictions. 
(C) Schematic of the per-locus evaluation strategy. (D) Predicted and observed  DDX11 gene expression 
levels in cortex for individuals in the ROSMAP cohort (n=839). Each dot represents an individual. Output 
of Enformer is fine-tuned using an elastic net model (Methods). (E) In-silico mutagenesis (ISM) values for 
all SNVs which occur at least once in 839 genomes within 98Kb of DDX11 TSS. SNVs are colored by 
minor allele frequency (MAF).  
 
Figure 2. Evaluation of Enformer on prediction of gene expression across individuals. (A) Y-axis 
shows the Pearson R coefficient between observed expression values and Enformer’s predicted values per-
gene (genes=6,825, individuals=839). X-axis shows the negative log10 p-value, computed using a gene-
specific null model (Method, one-sided T-test, permutation analysis with n=50 independent samples per 
gene). The color represents the predicted mean expression using the most relevant Enformer output track 
(“CAGE, adult, brain”). Red dashed line indicates FDRBH=0.05. (B) Y-axis shows the prediction from 
Enformer’s “CAGE, adult, brain” track across individuals for the GSTM3 gene (n=839), x-axis shows the 
observed gene expression values. (C) Pearson R coefficients between PrediXcan predicted versus observed 
expression across individuals is shown on the x-axis, Enformer’s Pearson R coefficients are shown on the 
y-axis. Red lines indicate threshold for significance (abs(R)>0.2, Bonferroni corrected nominal p-value), 
darker colored dots are significant genes from panel A. Green cross represents the location of the mean 
across all x- and y-values. (D) ISM value versus eQTL effect size for all SNVs (n=706 with MAF>0.1) 
within the 196Kb input sequence of the GSTM3 gene. Red circles represent driver SNVs. SNVs are defined 
as supported or unsupported based on the concordance with the sign of the eQTL effect size. (E) Fraction 
of supported driver SNVs  per gene (y-axis) versus Pearson’s R coefficients between Enformer’s 
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predictions and observed expressions (x-axis) (n=87 supported genes, n=161 unsupported genes). (F) 
Number of driver SNVs within the 1000bp window of the TSS. Main drivers are the drivers with the 
strongest impact on linear approximation, shown in different colors. Left plot, n=983 driver SNVs; Right 
plot, n=564 driver SNVs. 
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Methods 

No specific ethics approval was needed to conduct the current study.  

WGS and RNA-seq datasets 

We used n=839 subjects with available WGS (blood) and RNA-seq (cerebral cortex) from the 
ROS and MAP cohort studies20 (previously  described21, also see Supplementary Methods). The 
839 samples are from distinct individuals. Both studies were approved by an Institutional Review 
Board of Rush University Medical Center. All participants signed an informed and repository 
consent and an Anatomic Gift Act. Besides the availability of both WGS and cortex RNA-seq after 
pre-processing, no other exclusion criteria were used.  

Predicting gene expression with Enformer 

Population-average gene expression. We centered the Reference genome (GRCh38) around the 
gene’s TSS (Gencode v27), and extracted the genomic sequence in the +/- 196,608 bp window, 
which was then used as input to Enformer (April 2022, v1). We performed this analysis for 13,397 
brain expressed genes (for computational reasons, a random set of  6,825 genes among these were 
used in per-individual analyses described below). To use the outputs of Enformer predictions, we 
closely followed previous methodology. Specifically, for a given input sequence, Enformer makes 
predictions for 5,313 human output tracks and 986 bins. The predictions were obtained for all the 
5,313 human output tracks, as the sum of log values from the three central 128bp bins (bin 
numbers: 447,448,449) for each output track. We performed two types of summarization of the 
output tracks: 1) directly using the single track that best matched our RNA-seq gene expression 
data (“Cortex, adult, brain”); 2) using an elastic net model, trained on the predictions from all 
tracks and all expressed genes (i.e., a matrix of 5,313 tracks-by- 13,397 brain expressed genes), to 
predict population-average gene expression for adult cortex (using GTEx data). As we discuss 
further in the “sensitivity analysis” section below, the results from these two types of analyses 
proved similar. Finally, we also performed our evaluation analysis on a smaller set of genes 
(n=3,401) that overlapped test regions not used to train the Enformer model (Supplementary Fig. 
1).    
 
Predicting gene expression across individuals. For each individual and each gene, we 
constructed a personalized DNA sequence input (+/- 196,608 bp) from phased WGS data 
(separated maternal and paternal DNA sequence inputs were constructed for each individual and 
each gene). As above, we summed up the log transformed predicted values for the three central 
128bp bins (bins numbers: 447,448,449) for each output track. We used two methods to predict 
final gene expression: 1)  used “fine-tuning” as follows: we trained an elastic net model to linearly 
weight all of Enformer’s 5,313 human output tracks to predict population-average gene expression 
in the cerebral cortex, using the GTEx RNA-seq data (cortex). Specifically, the elastic net model 
was fit to predict population average gene expression levels in cortex from the Enformer’s 
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predictions when Reference sequence centered at each gene’s TSS was used as input; 2) we 
directly selected a single track most representative of cortex gene expression data (“CAGE:brain, 
adult”). Enformer was used to make separate predictions from the maternal and paternal sequences. 
For each individual and each gene, we averaged the predictions from the maternal and paternal 
sequences. 

Statistics and Reproducibility 

We used a sample size of 839 (independent subjects) for assessing the significance of the model's 
predictions. This sample size is sufficient for assessing significance across individual and per gene, 
based on previous eQTL analyses22,23. We also note that no data from the complete initial dataset 
(where both WGS and RNA-seq samples passed QC) were excluded from the analyses. 
Permutation analysis was used to complement the standard false discovery rate (BH) and 
Bonferroni corrected p-values.  

Deriving gene-specific Null distribution. Predicted gene expression for the 839 individuals is a 
function of SNV genotypes for each gene and individual. Thus, we can linearly approximate 
Enformer’s predictions for each gene and each individual as the weighted sum of the SNVs present 
in that individual for the given gene18. Therefore, to create a null distribution for predictions of 
gene expression value for each individual and each gene, we assign random attribution weights to 
each SNV present in the given individual. Specifically, we sample random normally distributed 
weights for every SNV within the 196,608 bp window around the TSS, and sum them up for each 
individual genotype as the random gene-specific predictions. For each gene we generate 50 
random predictors from which we derive the mean and standard deviation of the absolute Pearson’s 
correlation to the observed expression values. To assign p-values to Enformer’s correlation to 
observed gene expression, we use a one-sided T-test and Benjamini-Hochberg procedure to target 
a 0.05 false discovery rate.  

Sensitivity analysis. We performed three types of sensitivity analysis, to ensure our cross-
individual predictions results are robust. First, we compared the predictions from a single relevant 
track (CAGE, cortex, adult) and the results when we fine-tuned the predictions with the elastic net 
model described above (trained on average gene expression prediction from all tracks, using data 
from GTEx) (Extended Data Fig. 1A). Second, we performed model ensembling, whereby we 
averaged over model predictions on shifted sub-sequences and reverse and forward strands, but 
this did not impact  the sign of significant correlations  in ~96% of cases (Extended Data Fig. 
1B). Third, when we focused this analysis on 184 genes with known causal SNVs according to 
previous eQTL analysis16, again we observed that while Enformer can make significant 
predictions, the predicted expression levels are anti-correlated for 80 (43%) of these genes 
(Extended Data Fig. 1C, Supplementary Table 1).  

Training and testing of simple CNN 

Our simple CNN was trained on genes that were not located within the regions of Enformer’s test 
set. During training we used sequences of length 40,001bp from the reference genome centered at 
the TSS as input to the model and predicted mean log gene expression from the ROSMAP dataset 
(dorsolateral prefrontal cortex). The length of the input sequence was informed by a recent study17. 
This CNN has a very shallow architecture; it consists of a single convolutional layer with 900 
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kernels of width 10 and a ReLU activation. We apply a single average pooling layer of size 900 
bp that reduces the input of the network to 44 segments. We then apply a single hidden layer of 
size 200 with ReLU activation before predicting mean gene expression of the given gene. For 
training we use Mean Squared Error (MSE) loss and Adam optimizer with a learning rate of 0.001 
and default hyperparameters. Then, for a random set of 190 individuals, we constructed a maternal 
and a paternal genomic sequence by inserting all the variant alleles within +/- 20,000bp of the TSS  
into the Reference sequence. We then made separate predictions for the maternal and paternal 
sequences and averaged them for every individual. We computed the Pearson’s correlation 
coefficient between the predicted and observed expression values for these 190 individuals and 
compared the absolute Pearson’s R to the value that we would expect from our gene specific Null 
model for variants within +/- 20,000bp of the TSS.  

Driving variant attribution scores using GRAD and ISM 

To explore the causes for the negative correlation between Enformer predictions and the observed 
gene expression values we applied two explainable AI (XAI) techniques on all genes with a 
significant correlation value (abs(R)>0.2, Fig. 2A): ISM and gradients (Grad) 9,15,24.  Please see 
the Supplementary Methods for details on rational and methodology, as well as the procedure for 
identifying the Enformer “driver SNVs” for predictions from WGS data.   

Computing eQTL values and sorting drivers into supported and unsupported 
drivers 

We computed eQTL effect size (ES) for a given SNV as the slope of the linear regression solution 
that predicts gene expression across individuals from this SNVs genotype, i.e. individuals with 
two copies of the major allele (genotype 0), those with one copy of the major allele (genotype 1) 
and those with two copies of the minor allele (genotype 2). The slope of the regression with the 
genotype of each SNV represents how much expression changes with an additional copy of the 
minor allele. Positive or negative slopes determine the direction of SNV effect on gene expression. 
Based on the eQTL ES and ISM attribution values for each SNV, one can distinguish between 
supported and unsupported drivers. Supported drivers’ attributions have the same sign as the eQTL 
ES and unsupported drivers have the opposite sign.   
 

Data Availability 

Genotype, RNA-seq, and DNAm data for the Religious Orders Study and Rush Memory and 
Aging Project (ROSMAP) samples are available from the Synapse AMP-AD Data Portal 
(Accession Code: syn2580853) as well as RADC Research Resource Sharing Hub at 
www.radc.rush.edu. 
 
Code Availability 

Scripts for running the analyses presented, as well as intermediate results are available from: 
https://github.com/mostafavilabuw/EnformerAssessment25 
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Extended Figure 1

Sensitivity analysis for Enformer predictions. (A) Density plot, where each dot represents a gene (n=13,397). X-axis 
shows Pearson R coefficients for Enformer predictions for the single most relevant track (“CAGE,brain,adult”) and y-axis 
shows the fine-tuned cortex model from all human tracks. Color depicts local density.  (B) Pearson R coefficients across 
839 individuals between observed expression and the predicted CAGE track from a single forward-stranded input 
sequence centered at the TSS (x-axis) versus the average over forward-stranded sequences which were shifted by -3, -2, 
-1, 0, 1, 2, 3 bp, and a reverse-stranded input sequence centered at the TSS (y-axis). Data shown for a random subset of 
loci (n=30). Orange line: diagonal line where x and y-axis have the same value. The correlation coefficient between 
values on x-axis and y-axis is R=0.94 (C) Absolute Pearson R coefficients between Enformer predictions and observed 
gene expression for sets of genes with one causal SNP and all others. Causal genes determined by the Susie algorithm 
(“Susie-Causal”). Edges of the box indicate the 25th and 75th percentiles, and the central mark indicates the median 
(N1=183 genes fine-mapped with Susie, N2= 6625 genes without fine-mapped variants, two-sided Wilcoxon rank-sum 
test, for each gene R coefficient computed using n=839 individuals).
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Extended Figure 2

Performance of the simple CNN model. (A) Density plot of observed population-average expression of test set genes 
(n=3,401 genes) in cerebral cortex versus simple CNN’s predicted gene expression from the Reference sequences. This 
plot only displays genes which could be assigned to Enformer’s test set. Colors depict local density. (B) Y-axis shows 
Pearson R coefficients between observed expression values and a simple CNN’s predicted values per individual. X-axis 
shows the negative log10 p-value computed with a gene-specific Null model (one-sided T-test, n=50 independent 
samples per gene; Supplementary Method). The color represents the predicted mean expression. Red dashed line 
indicates FDRBH=0.05.
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 2 

Supplementary Methods 
 
S1. Data Pre-processing  
 
RNA-seq gene expression data from the ROSMAP cohort  
 
RNA-seq data were collected from dorsolateral prefrontal cortex (DLPFC) tissue of 1118 
individuals1, and preprocessed with the pipeline described by Felsky and colleagues3.  In brief, 
we applied TMM normalization (using edgeR calcNormFactors) to the raw counts to estimate 
the effective library size of each individual. We then applied voom/limma to regress out 
confounds and convert the counts into log2(CPM). Technical covariates included: 
 
1) batch, study (ROS or MAP) 
2) RNA integrity number, postmortem interval 
3) Library size 
4) Log PF number of aligned reads 
5) PCT_CODING_BASES 
6) PCT_INTERGENIC_BASES 
7) PCT_PF_READS_ALIGNED 
8) PCT_RIBOSOMAL_BASES  
9)PCT_UTR_BASES  
10)PERCENT_DUPLICATION 
11) MEDIAN_3PRIME_BIAS 
12)MEDIAN_5PRIME_TO_3PRIME_BIAS 
13) MEDIAN_CV_COVERAGE.  
 
Biological covariates, including 1) age, 2) sex, and 3) top 10 expression principal components.  
Both biological and technical covariates were regressed out from log raw read counts. Only 
genes with mean log2(CPM) > 2 were included. Mean expression values were retained for 
downstream analysis. 
 
WGS data from the ROSMAP cohort 
 
The variant call files for whole genome sequencing (WGS) data from the ROSMAP in variant 
call format (VCF) were obtained from the Synapse repository (syn117074200). The coordinates 
of variant calls (GRCh37) were converted to GRCh38 coordinates using the Picard LiftoverVcf 
tool (http://broadinstitute.github.io/picard). The Eagle software2 version 2.4.1 was used to phase 
the genotypes with the default setting. 
 
S2. Driving variant attribution scores 
 
To explore the causes for the negative correlation between Enformer predictions and the observed 
gene expression values we applied two explainable AI (XAI) techniques on all genes with a 
significant correlation value (abs(R)>0.2, Fig. 2A): ISM and gradients (Grad) 3–5.  Below, we 
describe both methods, however, we only present the result of the ISM method in the main text, 
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due to its superior performance. Specifically, while there was a moderate correlation between 
attributions computed with Grad and ISM (mean Pearson R = 0.28, Fig. S5), we found that linear 
decomposition with ISM generated a better approximation of Enformer’s predictions (Fig. S6), 
and was able to accurately approximate Enformer’s predictions for 95% of the examined genes 
(R>0.2, p<10-8).  
 
Linear approximation of NN models  
 
To understand the impact of each variant to Enformer’s prediction of gene expression for 839 
individual sequences we linearly approximate the neural network function using the Taylor 
expansion. In contrast to Deep Neural Networks (DNNs), linear functions are easy to interpret. To 
approximate the value of a complex function with arbitrary input s, the Taylor approximation 
linearly decomposes the function value at s into the value of a function at nearby position f(s0) and 
the derivative of the function at s0 multiplied by the difference between the position of interest s 
and s0 6:  

𝑓(𝑠) ≈ 𝑓(𝑠!) +
𝑑𝑓
𝑑𝑠!

(𝑠 − 𝑠!) + 𝑂(2) 

Where O(2) represents the second order term that is truncated in the linear approximation. In our 
problem, the function values at Reference genotypes are f(s0) and the gradient with respect to the 
Reference genotype for the selected output track give "#

"$!
 . The positions of interest are the 

individual genome sequences that contain different sets of variants Li. In a one-hot encoded input, 
to get the difference from the Reference sequence to the individual genomic sequence, for each 
loci, we have to delete the Reference base (set b0 from 1 to 0) and introduce a new base (set b1 
from 0 to 1). If we assume that these changes in each set of variants Li are independent and linear, 
we can approximate the function value for an individual’s genomic sequence si as the sum of 
changes from the reference sequence times the gradient at these positions.  

𝑓(𝑠) ≈ 𝑓(𝑠!) ++
%!

&

𝑑𝑓 (&,)")

𝑑𝑠 −
𝑑𝑓 (&,)#)

𝑑𝑠!
= 𝑓(𝑠!) ++

%!

&

𝑔𝑟𝑎𝑑(𝑙) 

The gradients, denoted grad(l), are computed for “free” in the forward pass with the Reference 
sequence and can therefore be used directly. The gradient at the Reference represents a local 
numerical approximation.  
 
Another approximation of the gradient is defined by finite differences from the reference to a 
sequence with a single variant, which is also referred to as in-silico mutagenesis (ISM). 

𝑓(𝑠) ≈ 𝑓(𝑠!) ++
%!

&

𝑓(𝑠!(𝑙, 𝑏! → 𝑙, 𝑏+)) − 𝑓(𝑠!)
𝑠!(𝑙, 𝑏! → 𝑙, 𝑏+) − 𝑠!

(𝑠!(𝑙, 𝑏! → 𝑙, 𝑏+) − 𝑠!)

= 𝑓(𝑠!) ++
%!

&

𝐼𝑆𝑀(𝑙) 

We note that linear approximation is not a perfect approximation of the non-linear neural network. 
However, the linear weights generally cover the most impactful contributions to the predictions 
and we only derive our explanations for genes for which the linear approximation correlates 
significantly with Enformer’s predictions.  
 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 28, 2023. ; https://doi.org/10.1101/2023.03.16.532969doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.16.532969
http://creativecommons.org/licenses/by-nd/4.0/


 4 

Computation of Gradients 
 
To compute the gradient at the Reference sequence we performed forward passes with all genomic 
sequences from the Reference genome of length 196,008b centered at the TSS of each gene. As a 
predictor for gene expression we selected track_idx = 4980 (“CAGE:brain, adult”) and summed 
over the central windows 447, 448, 449 to compute the gradient for the predicted gene expression. 
The gradient attribution at each loci l is then computed as the difference between gradients at 
variant base b1 and the base in the reference sequence b0 (see Taylor expansion above). 
 

𝑔𝑟𝑎𝑑(𝑙) =
𝑑𝑓 (&,)")

𝑑𝑠 −
𝑑𝑓 (&,)#)

𝑑𝑠  
Computation of ISM 
 
To compute ISM at the Reference sequence we performed forward passes with all genomic 
sequences from the Reference genome of length 196,008b centered at the TSS. As a predictor for 
gene expression we selected track_idx = 4980 (“CAGE:brain, adult”) and summed over the central 
windows 447, 448, 449. We then separately inserted the most common alternate allele at each 
possible SNV position within the 196Kb window into the Reference sequence, setting the 
reference base b0 at the loci l to zero and the new b1 base to one. We consider possible SNV 
positions to be any position where at least one subject in the dataset has a SNV. For each of these 
sequences with a single base change from the Reference, we performed a forward pass and 
computed the predicted gene expression as the sum of the three windows. Consequently, to get all 
ISM attributions for each gene we had to perform as many forward passes as variants are around 
the gene. The finite difference for each variant is the difference between the predicted value from 
the variant sequence and the reference sequence. 
 

𝐼𝑆𝑀(𝑙) = 𝑓(𝑠!(𝑙, 𝑏! → 𝑙, 𝑏+)) − 𝑓(𝑠!) 
 
Selection of drivers  
 
To contribute to the variance of predictions across different individual genomes, a variant has to 
have a large attribution but also it has to occur in the right set of individuals, that is the genotype 
has to be correlated with gene expression. To determine which variant’s weight contributes most 
to the linear approximation, i.e. sum over linear weights (ISM) times genotype, we sorted the ISM 
attributions (i.e., SNV weights) in order of their absolute value with the largest attribution at first. 
We then iteratively included these attributions to the sum and determined which attributions 
improved the correlation of the sum with the original Enformer predictions (CAGE,adult,brain). 
SNVs were defined as drivers if adding their attribution to the partial sum increased the correlation 
with the Enformer prediction by at least 5% of the correlation between Enformer predictions and 
sum over weights from all variants and the variants' genotype times attribution also significantly 
correlated with the Enformer predictions themselves (i.e., p<0.01, Bonferroni correction). 
 
S3. Defining and extracting sequence motifs around drivers 
 
To determine if specific sequences are overrepresented around driver SNVs, we extracted 13-mer 
sequences (i.e. 7-mers on each side including the driver) around every driver and clustered them 
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into motifs. For each pair of 13-mers we found their best alignment without introducing gaps, 
requiring that they had at least four aligned bases, and that the location of both SNVs would be 
included in the aligned part. We scored the alignments by the number of aligned bases and divided 
this score by five to determine the fraction of bases out of five aligned bases. We then performed 
agglomerative clustering with complete linkage and a threshold of 0.8 meaning that at least four 
bases had to be aligned between all 13-mers in a cluster. This procedure produced 256 sequence 
clusters from the 13-mers around 1091 drivers in the reference sequence of 251 genes (Fig. S8A). 
The 13-mers of the variant sequence of these 1091 drivers clustered into 261 sequence patterns 
(Fig. S8B), and the reference sequence at the main drivers of these 251 genes clustered into 84 
sequence patterns (Fig. S8C). We then determined the enrichment of driver types (i.e. supported 
or unsupported) for each cluster. We used Fisher’s exact test to compute the p-value of this 
enrichment, and Benjamini-Hochberg procedure to correct for multiple testing. None of the 
clusters were significant when targeting a FDR of 0.05.  
 
S4. Defining and extracting significant attributional motifs from ISM  
 
Since sequence-based models learn sequence motifs that are predictive of functional properties 
like gene expression, we reasoned that examining “attributional motifs” will be informative in 
understanding when predictions go wrong. We thus defined attributional motifs as short regions 
of DNA where a few consecutive bases all receive a reasonably high feature attribution (defined 
below).  Absence of such attributional motifs in a given genomic loci indicates insufficient training 
data for learning the regulatory logic that enable coherent predictions.  
 
Specifically, we computed ISMs for 41bp around all driver SNVs at the Reference sequence and 
the variant sequence (Reference with driver SNV inserted). We also computed ISMs within 
windows of 2000bp around each gene’s TSS (Fig. S11A). To compare effect sizes of SNVs across 
genes, we standardize their effect by the maximum absolute ISM in 2000bp around the TSS, so 
that each ISM values around the drivers represent the percentage or fraction of the maximum ISM 
value that we observe (Fig. S11B,-C). This way, we determine how important a base change is 
compared to effects of other bases along the entire gene, and we can ignore potential motifs with 
negligible impact on Enformer’s predictions. We use the standardized ISMs around the drivers to 
determine in the reference and also the variant sequence how many subsequent base changes have 
ISM values with more than 5%, 10%, 20% and 50% of the maximum absolute ISM 
(Supplementary Table 3), and if they don’t surpass these thresholds, we determine the distance to 
the nearest base above these thresholds (Fig S14D, for 10% threshold).  
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Supplementary Figures 
 
 
 

 
Figure S1. Observed population-average expression from cerebral cortex versus Enformer’s 
predicted gene expression using the fine-tuned model. Inputs are Reference sequences centered at 
TSS of each tested gene. This plot only displays genes which could be assigned to Enformer’s test 
set. 
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Figure S2. Distribution of the number of SNVs per individual for genes DDX11 and GSTM3. 
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Figure S3. In silico mutagenisis for the strongest variant in DDX11 at rsID rs7953706 (located 
at chr 12, 31073901). Top) top plot shows the mean attributions for the Reference sequence from 
ISM and the heat map below shows the individual ISM values for each of the three variants. Red 
indicates that replacing the base at this position with the variant allele would increase expression 
and blue indicates decreasing expression. Bottom) Mean attributions for the Reference sequence 
with the variant rs7953706 inserted and below the individual ISM values for each of the three 
possible variants.  
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Figure S4. Absolute Pearson Rs between PrediXcan predicted versus observed expression across 
839 individual genomic sequences (x-axis) versus Enformer’s absolute Pearson R values (y-axis). 
Red lines indicate threshold for significance of positive predictions (R>0.2, FDRBH<0.05). Green 
cross represents the location of the mean across all x- and y-values. Darker colored dots represent 
genes that possess significant correlation compared to gene’s SNV-specific distribution as shown 
in Figure 2A (FDRBH<0.05).  
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Figure S5. Correlations between ISM and Grad attributions for all variants of every gene. 
Distribution (blue bars, left axis) and reverse cumulative percentage (dark blue line, right axis) 
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Figure S6. Correlations between sum of attributions (linear approximation) and Enformer 
predictions (CAGE,adult,brain track) for Grad (golden) and ISM (navy blue). A) Histogram of 
correlations B) Faction of tested genes with a correlation higher than indicated on the x-axis (sum 
from right to left). 
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Figure S7. A) Number of genes with number of SNV drivers selected by forward method (see 
Methods). B) Fraction of genes with at most X SNV drivers. C,D) Fractions of genes with at most 
X SNV drivers for genes with positively correlated predictions to observed expression and 
negatively correlated predictions. 
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Figure S8. Clustering 13-mers around SNV drivers at the reference and variant sequences to 
determine motifs that are enriched for supported and unsupported drivers. A) 13-mer clusters 
around all SNV drivers with the Reference base at driver SNV. B) 13-mer clusters with the variant 
base at driver loci. C) 13-mer clusters with the Reference base at the main driver SNVs.   
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Figure S9. Top: Location of driver SNVs along the entire input sequence within 1000 bp windows. 
Bottom: Main driver locations along the entire sequence within 1000 bp windows 
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Figure S10. Gradient attribution clusters from clustering standard deviation of Grad 
attributions within 128bp. Gradient attributions of 251 genes were clustered with Euclidean 
distance on the standard deviation of standardized attributions within windows of 128 bp along the 
entire 196,008bp input sequence. The figure shows a 20,000 bp window around the TSS with the 
mean of the absolute standardized attribution of 20 clusters that were found by agglomerative 
clustering with complete linkage. Grey bars show the mean absolute standardized attribution for 
each cluster and blue line shows the mean standard deviation at this position. Right bars show how 
many positive (+) and negative (-) correlating genes are part of these clusters. Vertical golden 
dashed line in the center indicates the location of TSS, while dashed lines around it indicate the 
boundaries of the three central windows of Enformer output tracks from which these gradients 
were derived from. 
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Figure S11. ISM effect of main drivers compared to largest observed absolute ISM value in 
2000 bp window around TSS. A) Top: Mean ISM effect of changing one base pair to another 
one near the TSS of STPG1 gene. Bottom: PhyloP score for each base pair. PhyloP scores above 
1.3 are shown as letters, others as grey bars. Main recognizable motifs are highlighted in red 
frames. Common SNVs are shown as dots, color indicates Pearon’s R of SNVs genotype to 
observed expression, red is positive, white is near zero, and blue is negative correlation, location 
of dot indicates the ISM for changing the reference to the variant base. B) Fraction of mean ISM 
effect to maximum absolute effect found in 2000bp window around the TSS (see A) for 40bp 
around the main driver of STPG1 gene. ISM values are shown in the Reference sequence (top) and 
in the variant sequence (bottom, reference sequence with the inserted variant). Changing bases 
from C to T at chr1-24417389 introduces a repressive t motif which has more than 10% the effect 
of the maximum absolute ISM. C) Fraction of main drivers (supported:indigo, unsupported:gold) 
for 251 genes with at least X% of maximum absolute ISM. 40% of unsupported and 52% of 
supported drivers have an effect of 10% or more on Enformer’s predictions. D) Fraction of main 
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drivers that exert 10% of the maximum ISM effect and are surrounded by X bases with ISM effect 
that also exert more than 10% of the maximum absolute ISM effect.  
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