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3

The value of the environment determines animals’ motivational states and sets4

expectations for error-based learning1–3. How are values computed? Rein-5

forcement learning systems can store or “cache” values of states or actions6

that are learned from experience, or they can compute values using a model of7

the environment to simulate possible futures3. These value computations have8

distinct trade-offs, and a central question is how neural systems decide which9

computations to use or whether/how to combine them4–8. Here we show that10

rats use distinct value computations for sequential decisions within single tri-11

als. We used high-throughput training to collect statistically powerful datasets12

from 291 rats performing a temporal wagering task with hidden reward states.13

Rats adjusted how quickly they initiated trials and how long they waited for re-14

wards across states, balancing effort and time costs against expected rewards.15

Statistical modeling revealed that animals computed the value of the environ-16

ment differently when initiating trials versus when deciding how long to wait17
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for rewards, even though these decisions were only seconds apart. Moreover,18

value estimates interacted via a dynamic learning rate. Our results reveal how19

distinct value computations interact on rapid timescales, and demonstrate the20

power of using high-throughput training to understand rich, cognitive behav-21

iors.22

23

Introduction24

There are many ways to compute value. Reinforcement learning provides a powerful frame-25

work for describing how animals or agents learn the value of different states and actions from26

experience and use those value estimates to guide behavior3. The value of the environment, or27

how much reward it is expected to yield, is important for motivation and sets expectations for28

reinforcement learning1–3.29

There are many reinforcement learning methods for computing value that differ in their30

implementation, computational demands, and flexibility3,6,8,9. For instance, some algorithms31

use a model of the world to flexibly estimate the value of states or actions by mental simu-32

lation or planning. Other algorithms cache values from direct experience, without an explicit33

model of the environment. These different reinforcement learning methods, which remarkably34

are thought to be supported by distinct neural circuits10,11, have trade-offs between flexibility35

and computational efficiency6,8,9. They also represent two ends of a continuum4–8. A central36

question in neuroscience and psychology is determining how values are computed in animals37

including humans12. Moreover, neurobiologically-inspired value computations will likely lead38

to advances in next generation artificial intelligence13.39

However, it is difficult to determine the value computations that subjects use, especially over40
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behaviorally relevant timescales of seconds. In standard two-alternative forced choice tasks, the41

behavioral read-out is a binary choice, and the underlying values driving choice are obscure.42

State-of-the-art methods for revealing how values are computed use regression models that pool43

data over entire behavioral sessions14, or pre-determined subsets of trials15, thereby obscuring44

moment-by-moment changes in value computations. Therefore, whether or how multiple value45

computations interact on rapid timescales in the same subject is unclear.46

Results47

Rats’ deliberative and motivational decisions are sensitive to the value of48

the environment.49

We developed a temporal wagering task for rats, in which they were offered one of several50

water rewards on each trial, the volume of which (5, 10, 20, 40, 80µL) was indicated by a tone51

(Fig. 1a). The reward was assigned randomly to one of two ports, indicated by an LED. The rat52

could wait for an unpredictable delay to obtain the reward, or at any time could terminate the53

trial by poking in the other port (“opt-out”). Wait times were defined as how long rats waited54

before opting out. Trial initiation times were defined as the time from opting-out or consuming55

reward to initiating a new trial. Reward delays were drawn from an exponential distribution, and56

on 15-25 percent of trials, rewards were withheld to force rats to opt-out, providing a continuous57

behavioral readout of subjective value (Fig. 1b)16–18. We used a high-throughput facility to train58

291 rats using computerized, semi-automated procedures. The facility generated statistically59

powerful datasets (median = 33,493 behavioral trials, 71 sessions).60

The task contained latent structure: rats experienced blocks of 40 completed trials (hidden61

states) in which they were presented with low (5, 10, or 20µL) or high (20, 40, or 80µL) re-62

wards17. These were interleaved with “mixed” blocks which offered all rewards (Fig. 1c). 20µL63

was present in all blocks, so comparing behavior on trials offering this reward revealed contex-64
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Figure 1: Wait time and trial initiation time were modulated by the value of the environ-
ment. a. Schematic of behavioral paradigm. b. Distribution of wait times for one rat. c. Block
structure of task. d-e. Average wait time on catch trials by reward in each block for (d) one rat
and (e) averaged across rats. f. Wait time ratio (average wait time for 20 µL in high block/low
block) across all rats. Filled boxes indicated rats with p < 0.05, Wilcoxon rank-sum test. Pop-
ulation average, p << 0.001, Wilcoxon signed-rank test, N = 291. g-h. Average trial initiation
times in high and low blocks for (g) one rat and (h) all rats. i. Trial initiation time ratio (average
initiation time in high block/low block) across all rats. Filled boxes indicated rats with p < 0.05,
Wilcoxon rank-sum test. Population average, p << 0.001, Wilcoxon signed-rank test, N = 291.
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tual effects (i.e., effects of hidden states). The hidden states differed in their average reward65

and therefore in their opportunity costs, or what the rat might miss out on by continuing to wait.66

According to foraging theories, the opportunity cost is the long-run average reward, or the value67

of the environment19. In accordance with these theories19,20, rats adjusted how long they were68

willing to wait for rewards in each block, and on average waited ∼10 percent less time for 20µL69

in high blocks, when the opportunity cost was high, compared to in low blocks (p << 0.001,70

Wilcoxon signed-rank test, N = 291; Fig. 1d-f). These are strong contextual effects compared71

to previous studies17,21.72

Animals make more vigorous actions when those actions are expected to yield larger or73

more valuable rewards2,22–25. Therefore, we analyzed how quickly rats initiated trials, as this74

might also reflect the perceived value of the environment. Indeed, trial initiation times were75

modulated by blocks in a similar pattern as the wait times, with rats initiating trials more quickly76

in high compared to low blocks (p << 0.001, Wilcoxon signed-rank test, N = 291; Fig. 1g-i;77

Extended Data Fig. 1). Previous work suggests that this pattern optimally balances the energetic78

costs of vigor against the benefits of harvesting reward in environments with different reward79

rates2,25,26. Therefore, both the trial initiation times, which reflect motivation, and the wait80

times, which reflect deliberating between waiting and opting-out, were modulated by the value81

of the environment.82

Notably, while we used all behavioral trials for analyses of initiation times in this study,83

sensitivity to the reward blocks was largely driven by initiation times following unrewarded84

trials (Extended Data Fig. 2, Methods), which accounted for more variance in initiation times.85

This is consistent with previous studies showing that response outcomes can gate behavioral86

strategies27,28. There were no major differences in wait times following rewarded or unrewarded87

trials (Extended Data Fig. 3). To make comparisons between trial initiation and wait times with88

as much statistical power as possible and the fewest assumptions, we used all behavioral trials89
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for subsequent analyses in this study.90

Trial initiation and wait times exhibited distinct temporal dynamics.91

Surprisingly, wait and trial initiation times exhibited dramatically different dynamics at92

block transitions. In mixed blocks, the wait times following high and low blocks converged93

to a common value, regardless of the previous block type, suggesting the use of a fixed esti-94

mate of environmental value in mixed blocks (Fig. 2a). Trial initiation times, however, showed95

longer timescale effects such that initiation times in mixed blocks strongly depended on the96

previous block identity (Fig. 2b; Extended Data Fig. 4). These longer timescale dynamics,97

which are reminiscent of incentive contrast effects29, were also evident in the transitions from98

mixed blocks into high/low blocks for trial initiation times, but not wait times (Extended Data99

Fig. 5), indicating that trial initiation and wait times utilize distinct estimates of the value of the100

environment.101

To better characterize their temporal dynamics, we regressed the trial initiation and wait102

times against rewards offered on previous trials. We included current rewards as regressors103

in the wait time model, and restricted this analysis to mixed blocks only. Examination of the104

regression coefficients revealed qualitatively different dynamics, in which the wait times were105

explained by the reward offered on the current trial, but the trial initiation times reflected an106

exponentially weighted effect of previous rewards, consistent with a model-free temporal dif-107

ference learning rule (Fig. 2c,d). We fit exponential curves to the previous trial coefficients108

for each rat, and found that the distributions of exponential decay time constant parameters (τ )109

were significantly different for the trial initiation and wait times (p << 0.01, Wilcoxon sign-110

rank test, N = 291; Fig. 2e). Moreover, τ parameters were not correlated across models (r =111

0.08, p = 0.18, Pearson linear correlation, N = 291, Fig. 2f).112

To leverage individual variability across rats, we compared rats with fast and slow temporal113
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Figure 2: Wait and trial initiation times use distinct estimates of the value of the environ-
ment. a-b. Mean change in wait times (a) and trial initiation times (b) from low or high blocks
to mixed blocks, N = 291. Data are mean ± S.E.M. Data were smoothed with a moving win-
dow of 10 trials. c-d. Regression coefficients for (c) trial initiation time and (d) wait time. e-f.
Time constants, τ , of exponential decay parameters fit to previous trial coefficients for wait time
(purple) and trial initiation time (green) were (e) significantly different, p << 0.001, Wilcoxon
sign-rank test, N = 291, and (f) uncorrelated, r = -0.03, p = 0.53, Pearson linear correlation, N
= 291. g-h. Fast or slow initiation time τ (<20th or >80th percentile) meaningfully divided rats
based on their initiation time regression coefficients (g; p << 0.01, one-tailed permutation test,
N = 116), but not wait time coefficients (h; p = 0.1, one-tailed permutation test, N = 116). Inset
shows previous trial coefficients for wait times with adjusted y-axis limits. i. Predictions for
sensitivity to previous offers (behavior conditioned on previous offer <20µL - >20µL) for fixed
(light) versus sequentially-updated (dark) estimates of environmental value, consistent with in-
ferential and retrospective strategies, respectively. j. Wait time on 20 µL catch trials in mixed
blocks conditioned on previous reward offer. (p < 0.05 for 38/291 rats, Wilcoxon rank-sum
test). k. Trial initiation time in mixed blocks conditioned on previous reward offer. (p < 0.05
for 256/291 rats, Wilcoxon rank-sum test). l. Sensitivity to previous offers for wait time (pur-
ple) and trial initiation time (green). p << 0.001, Wilcoxon sign-rank test, N = 291. Colored
bars are individual rats with p < 0.05, Wilcoxon rank-sum test.
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integration for trial initiation times (τ from exponential fit to regression coefficients < 20th or114

> 80th percentiles). There were differences in temporal integration for trial initiation times,115

but not wait times, for these groups (Fig. 2g-h, trial initiation time p << 0.001, wait time p =116

0.5, permutation test, N = 116). Collectively, these data suggest that within a block, wait times117

use a fixed estimate of the value of the environment, whereas trial initiation times are sensitive118

to previous rewards (Fig. 2c,d). Indeed, for almost all rats (87%), wait times for 20µL offers119

in mixed blocks were not significantly different if they were preceded by rewards that were120

smaller or larger than 20µL (p > 0.05, Wilcoxon rank-sum test, N = 253/291). However, for121

89% of rats, trial initiation times were significantly modulated by previous rewards, suggesting122

fixed and incrementally updated estimates of the value of the environment, respectively (p <123

0.05, Wilcoxon rank-sum test, N = 256/291, Fig. 2i-l).124

One factor that could in principle influence initiation times is satiety. However, satiety125

effects were small, and modestly apparent as a gradual increase in trial initiation times over the126

session. To control for these effects, we regressed out initiation times against trial number in127

order to detrend the slow changes over the course of a session. However, there was no qualitative128

change in any of our results, including the dynamics at block transitions, if we did not detrend129

(Extended Data Fig. 6). Because the trials are self-initiated, we suspect that when rats are sated130

they choose not to initiate trials, thereby minimizing the effects of satiety on behavior, at least131

compared to other factors that contribute more to the variance in initiation times (e.g., reward132

history, Fig. 2c).133

Computational modeling reveals distinct value computations for sequential134

decisions.135

Our data suggest that rats’ sequential decisions (when to initiate trials and how long to wait136

for rewards) reflect different value computations. We developed behavioral models for wait and137
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trial initiation times, inspired by foraging theories19. The wait time model implemented a trial138

value function that scaled with the offered reward and decayed to reflect reward probability over139

time16. The model’s predicted wait time was when the value function fell below the value of140

the environment (opportunity cost) on each trial (Fig. 3a). This model captured key features of141

the rats’ behavior, including the monotonic relationship between wait time and reward offer in142

mixed blocks (Fig. 3b) as well as a graded dependence of wait times on the catch probability143

(Fig. 3c). Different versions of the model estimated the value of the environment using different144

computations.145

Analysis of rats’ trial initiation times suggests that they estimate the value of the environ-146

ment as a running average of rewards (Fig. 2c)2,17,30. We refer to this computation as retrospec-147

tive, as it reflects past experience31. Alternatively, rats’ wait times reflected the use of discrete148

estimates of block value (Fig. 2a,d,j). Therefore, rats might infer the current block31–35, and149

use fixed estimates of block value based on that inference. We refer to this computation as150

inferential, since it requires hidden state inference.151

The inferential model selected the most likely block using Bayes’ Rule with a prior that152

incorporated reward history and knowledge of the block transition structure. This model reca-153

pitulated the rats’ wait times converging to a common value in mixed blocks (Fig. 3d-e). Across154

rats, the model also captured that wait times for 20µL in mixed blocks were not sensitive to pre-155

vious rewards (Fig 2j; Fig. 3f). This reflects the model’s use of a fixed estimate of the value of156

the environment in each block.157

In the retrospective case, the value of the environment was estimated as a recency-weighted158

average of offered rewards according to a temporal-difference learning rule (Fig. 3g). A static159

learning rate was unable to capture the rats’ behavior (Extended Data Fig. 7). Previous work has160

shown that animals adjust their learning rates depending on the volatility in the environment,161

since it is advantageous to learn faster in dynamic environments36–38. Therefore, our model162
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scaled the learning rate by the trial-by-trial change in the inferential model’s beliefs about the163

hidden state (derivative of the posterior, see Methods).164

The retrospective model captured several key features of rats’ trial initiation times, which165

we modeled as inversely proportional to the value of the environment2 (Fig. 2g-i). First, with166

a sufficiently small learning rate (<0.1, Fig. 2g), the model integrated reward history on long167

timescales such that trial initiation times in mixed blocks depended on the previous block iden-168

tity. Second, the dynamic learning rate captured the rapid behavioral dynamics at block transi-169

tions. Finally, integrating over previous trials captured the dependence of trial initiation times170

on previous rewards in mixed blocks (Fig. 2k, Fig. 3i). We explored versions of the dynamic171

learning rate that did not reflect inference, including using the unsigned reward prediction error172

or a running average of reward prediction errors38. However, these models could not capture173

both short and long timescale dynamics at block transitions (Extended Data Fig. 7). This sug-174

gests that trial initiation times reflect a retrospective computation that is influenced by subjective175

belief distributions36,37. In other words, while trial initiation and wait times reflect distinct value176

computations, those computations interact when states are uncertain via a dynamic learning177

rate.178

We fit the retrospective and inferential models to rats’ wait times. By several model com-179

parison metrics, wait times were better fit by the inferential model that used hidden state infer-180

ence to select block-specific estimates of the value of the environment (p << 0.001, Wilcoxon181

signed-rank test, N = 291; Fig. 3j, Extended Data Fig. 8), consistent with that model repro-182

ducing the wait time dynamics (Fig. 2a,3d). We also used the model to identify trials in mixed183

blocks where the rats were likely to make mistaken inferences. The rats’ wait times reflected184

these mistaken inferences, further indicating that their wait times were well-described by the185

inferential model (p << 0.001, Wilcoxon signed-rank test comparing wait times for 20µL in186

misinferred high vs. low blocks, N = 291; Extended Data Fig. 9).187
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We also developed a “belief state” model that estimated the value of the environment as the188

sum of block-specific values weighted by their posterior probabilities. The inferential and belief189

state models make qualitatively similar predictions about the average wait times. In fact, when190

the posterior beliefs are stable, which is often the case, the belief state and inferential models191

are identical, and model comparison did not favor one model over the other (Extended Data Fig.192

8).193

To leverage individual differences, we turned to the inferential model of wait times. We194

added a parameter, λ, that controlled the extent to which the model used an optimal prior, λ =195

1, versus an uninformative prior, λ = 0 (Fig. 3k; Extended Data Fig. 10). We divided the rats196

into groups with low or high values of λ (λ < 20th or > 80th percentiles; Extended Data Fig.197

11), and compared the parameters of logistic functions fit to the average wait time dynamics for198

these groups. Rats with optimal and poor inference exhibited significantly different dynamics199

at transitions from mixed into low or high blocks, indicated by different inverse temperature200

parameters (mix to low/high, p < 0.05, one-tailed permutation test, N =180 Fig. 3l). There was201

no difference in the dynamics of trial initiation times for those same groups of rats (mixed to202

low: p = 0.3, mixed to high: p = 0.2, one-tailed permutation test, N = 180; Fig. 3l). Therefore,203

individual differences in trial initiation (Fig. 2g,h) and wait times (Fig. 3l) are dissociable.204

Block sensitivity for wait times requires structure learning.205

Structure learning is the process of learning the hidden structure of environments, including206

latent states and transition probabilities between them39. If wait and trial initiation times dif-207

ferentially required knowledge of latent task structure, they should exhibit different dynamics208

over training. In the final stage of training, when rats were introduced to the hidden states, their209

wait times for 20µL gradually became sensitive to the reward block (Fig. 4a). We observed210

a gradual increase in the magnitude of reward and block regression coefficients that mirrored211
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Figure 3: Computational modeling reveals distinct value computations for wait time and
trial initiation a. Model schematic. b. Example wait time model performance for mixed blocks
only in held-out test data. c. Rat population (left; sample sizes in methods) and model (right)
wait time data in mixed blocks as a function of catch probability. d. Example opportunity cost
and wait time dynamics from inferential model. e. Inferential model fit to rats can capture wait
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model. h. Retrospective model can qualitatively capture trial initiation time behavior. i. Retro-
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comparison using ∆ BIC prefers inferential model compared to retrospective model when fit to
wait time data (p << 0.001, Wilcoxon Signed-rank test, N = 291).
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Figure 3 cont.: Computational modeling reveals distinct value computations for wait time
and trial initiation k. Schematic for sub-optimal inference model l. Transitions from mixed
to low (blue) or high (red) blocks for wait time (left) or trial initiation time (right) separated
by quality of inference (λ < 20th or > 80th percentile). *p < 0.05, one-tailed non-parametric
shuffle test comparing logistic fit parameters, N = 116. Data are mean ± S.E.M.

the behavioral sensitivity to hidden states (Fig. 4b). In contrast, trial initiation times exhibited212

block sensitivity on the first session in the final training stage (Fig. 4a). This sensitivity was213

comparable early and late in training, consistent with animals using previous rewards to a simi-214

lar extent at these timepoints (Fig. 4c). These data suggest that block sensitivity for wait times,215

but not trial initiation times, required learned knowledge of hidden task states, and that these216

decisions reflected computations with distinct learning dynamics.217

The modest increase in trial initiation time block sensitivity over training is consistent with218

the gradual use of a dynamic learning rate that reflected learned knowledge of the blocks. A219

hallmark of the dynamic learning rate was the “overshoot” after transitions from high to mixed220

blocks (difference between maximum trial initiation time after transitioning and the trial initia-221

tion time 20 trials post-transition; Fig. 2b). The overshoot became more prominent with training222

(Fig. 4d), on a similar timescale as block sensitivity for wait times (Fig. 4e), suggesting a shared223

mechanism.224

Reducing state uncertainty did not change trial initiation times.225

Why would animals use a retrospective computation at trial initiation, but rely on an inferen-226

tial computation as rats deliberated just 1-2 seconds later? In non-human primates, the decision227

to initiate trials can also reflect retrospectively computed values that differ from the values gov-228

erning the subsequent choice40,41. One possibility is that motivation and approach behavior rely229

on neural circuits that do not support inference11. Another possibility is that actions more distal230

to rewards are more likely to be retrospective, because there are more steps required to men-231
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tally simulate outcomes for forward-looking strategies like planning42,43. According to either232

hypothesis, the decision of when to initiate a trial is inherently retrospective.233

Theoretical work in reinforcement learning has suggested that the brain should select the234

strategy that is the fastest and most accurate when taking into account uncertainty8,9. Therefore,235

perhaps trial initiation times are retrospective because the rats’ subjective beliefs about the236

inferred state have more uncertainty before they hear the reward offer. Model simulations of a237

Bayes’ optimal observer did show that the reward offer reduced the uncertainty of subjective238

beliefs about the hidden state (comparing variance of prior to variance of posterior, p << 0.001,239

Wilcoxon sign-rank test).240

To test this hypothesis, we modified the task so that some rats heard the reward cue before241

they initiated the trial, when the center light turned on; they heard the tone again at trial ini-242

tiation, as in the standard task (Fig. 5a). Their trial initiation times became sensitive to the243

offered reward (Fig. 5b). However, trial initiation times for 20µL in mixed blocks were still244

modulated by the previous reward, consistent with the use of incrementally updated estimates245

of the value of the environment within a block (p < 0.05 for 13/16 rats; Fig. 5c). Moreover, how246

quickly they initiated trials in mixed blocks continued to depend on the previous block identity247

(Fig. 5d). These data indicate that there may be something inherently retrospective about the248

motivational decision to initiate a trial.249

Discussion250

We used high-throughput training to collect statistically powerful datasets and leverage in-251

dividual variability across hundreds of animals. Consistent with previous work, rats adjusted252

their behavior as we varied the richness of the environment in a way consistent with forag-253

ing theories19,30,44–46, and behavioral economic theories of reference dependence47,48. Notably,254

we found that animals used multiple, parallel computations to estimate the richness of the en-255
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Figure 5: Value computations for motivation do not depend on state uncertainty. a.
Schematic of pre-initiation cue experiment. b. Trial initiation time varied as a function of
offered volume for rats that trained on the original task before transitioning to pre-initiation cue
task (left) and for rats that trained exclusively on the pre-initiation cue task (right). c. Trial initi-
ation times were still sensitive to previous reward (behavior on trials offering 20µL conditioned
on the previous reward offer) after training on the pre-initiation cue task. (p < 0.05 for 13/16
rats, Wilcoxon Rank-sum test, N = 16). d. Trial initiation times in mixed blocks depended on
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vironment, and rapidly switched between these computations on single trials, indicating that256

value computations vary on fine timescales (seconds). Our data are consistent with evidence257

for multiple decision-making systems that rely on distinct neural circuits10,12,49,50. While ani-258

mals’ decisions of how long to wait for rewards relied on hidden state inference, the decision of259

when to initiate the trial was governed by a retrospective computation that calculated the value260

of the environment as the running average of rewards. Reducing state uncertainty before the261

trial did not change the value computations governing trial initiation times, suggesting that this262
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decision may be inherently retrospective, although influenced by subjective belief distributions263

via a dynamic learning rate.264

Recent work in psychology, machine learning, and neuroscience has characterized how par-265

allel value computations might be combined4–8,40,51–54. For instance, in multi-step decision266

tasks, interaction effects in regression models are thought to reflect the use of combined ret-267

rospective and inferential value estimates14,15, and hybrid strategies for computing values have268

been approximated as a weighted average of retrospective and inference-based values40. Our269

findings add to this body of work. Instead of simply combining or averaging values that were270

computed in different ways, rats seemed to coordinate their dynamics: changes in subjective271

beliefs about inferred states acted as a gain on retrospective value learning rates. Moreover, we272

tested the prevailing hypothesis about arbitration between these parallel value computations,273

namely, that agents should use the value estimate with the lowest uncertainty8,9. We reduced274

state uncertainty by playing the reward cue before rats initiated trials. However, trial initiation275

times still reflected retrospective value computations (Fig. 5c-d). We hypothesize that different276

neural circuits mediate these rapid sequential decisions (starting the trial versus deciding how277

long to wait), and that these circuits support or favor distinct value computations due to their278

connectivity and other neurobiological constraints.279

Alternatively, previous work has suggested that actions more distal to rewards are more280

likely to be retrospective, because there are more steps required to mentally simulate outcomes281

for forward-looking strategies like planning42,43. Therefore, one potential reason that trial initi-282

ation times were retrospective is because they were more distal to rewards. However, in multi-283

step decision-making tasks (i.e., the two-step task), the first action, which is diagnostic of how284

value is computed, generally reflects computations that use a model of the world to flexibly esti-285

mate values14,55,56. Compared to the two-step task, the first action in our task is a similar number286

of states away from the terminal reward state, but the temporal delays are longer. Therefore, it287
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is possible that temporal proximity to reward may determine how values are computed.288

It may be counterintuitive that the retrospective computation produced faster dynamics at289

block transitions than hidden state inference (Fig. 2a,b). Two features of the models explain this290

observation. First, the inferential model selects the block with the maximum posterior proba-291

bility. This argmax operation nonlinearly thresholds whether changes in the posterior produce292

changes in the inferred state. In contrast, the retrospective model’s estimate of the value of the293

environment is directly influenced by graded, “subthreshold” changes in the posterior via the294

dynamic learning rate. Subthreshold changes in the posterior necessarily precede changes that295

cross threshold for inferring a state change. Second, the inferential model’s prior is recursive:296

the posterior on one trial becomes the prior on the next trial. This means that the prior accu-297

mulates information over trials to infer state changes, instead of making them instantaneously.298

Indeed, individual differences in the informativeness of rats’ priors predicted the dynamics of299

their inferred state changes (Fig. 3l).300

The contextual effects we observed likely reflect efficient coding of value17,57–59. According301

to the efficient coding hypothesis, to represent stimuli efficiently, neurons should be tuned to302

stimulus distributions that animals are most likely to encounter in the world60. Recent stud-303

ies have shown that biases in value-based decision-making, including the contextual effects304

observed here, reflect efficient value coding17,57,58. Previous studies examined how neurons305

“adapted” to reward or stimulus distributions over blocks of trials or sessions, implying grad-306

ual, experience-dependent adjustments in behavioral sensitivity and neural tuning17,61,62. Our307

findings suggest that if animals have learned the reward or stimulus distributions associated308

with a particular state, they can condition their subjective value representations on that inferred309

state, perhaps via discrete, state-dependent adjustments in neural sensitivity63. A major future310

question is how multi-regional neural circuits represent belief distributions for hidden state in-311

ference, and condition rapid adjustments in efficient neural representations of value on inferred312
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states.313
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Methods314

Subjects315

A total of 291 Long-evans rats (184 male, 107 female) between the ages of 6 and 24 months316

were used for this study (Rattus norvegicus). The Long-evans cohort also included ADORA2A-317

Cre (N =10), ChAT-Cre (N =2), DRD1-Cre (N=3), and TH-Cre (N =12). Animal use procedures318

were approved by the New York University Animal Welfare Committee (UAWC #2021-1120)319

and carried out in accordance with National Institutes of Health standards.320

Rats were pair housed when possible, but were occasionally single housed (e.g. if fighting321

occurred between cagemates). Animals were water restricted to motivate them to perform be-322

havioral trials. From Monday to Friday, they obtained water during behavioral training sessions,323

which were typically 90 minutes per day, and a subsequent ad libitum period of 20 minutes.324

Following training on Friday until mid-day Sunday, they received ad libitum water. Rats were325

weighed daily.326

Behavioral training327

Rats were trained in a high-throughput behavioral facility in the Constantinople lab using328

a computerized training protocol. They were trained in custom operant training boxes with329

three nose ports. Each nose port was 3-D printed, and the face was protected with an epoxied330

stainless steel washer (McMaster-Carr #92141A056). All ports contained a visible light emit-331

ting diode (LED; Digikey #160-1850-ND), and an infrared LED (Digikey #365-1042-ND) and332

infrared photodetector (Digikey #365-1615-ND) that enabled detection of when a rat broke the333

infrared beam with its nose. Additionally, the side ports contained stainless steel lick tubes334

(McMaster-Carr #8988K35, cut to 1.5mm) that delivered water via solenoid valves (Lee Com-335

pany #LHDA1231115H). There was a speaker mounted above each side port that enabled de-336
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livery of stereo sounds (Bohlender Graebener). The behavioral task was instantiated as a finite337

state machine on an Arduino-based behavioral system with a Matlab interface (Bpod State Ma-338

chine r2, Sanworks), and sounds were delivered using a low-latency analog output module339

(Analog Output Module 4ch, Sanworks) and stereo amplifier (Lepai LP-2020TI).340

Research technicians loaded rats in and out of the training rigs in each session, but the train-341

ing itself was computer automated. All rig computers automatically pulled version-controlled342

software from a git repository and wrote behavioral data to a MySQL (MariaDB) database343

hosted on a synology server. Rig computers automatically loaded each rat’s training settings344

file from the previous session, and following training, wrote a new settings file to the server345

for the subsequent day of training. Rig computers automatically loaded files for specific rats346

based on a schedule on the MySQL database. Human intervention was possible but generally347

unnecessary.348

Sound Calibration349

We calibrated sounds using a hand-held Precision Sound Level Meter with a 1/2” micro-350

phone (Bruel & Kjaer, Type 2250). The microphone was calibrated with a sound level calibrator351

(Bruel & Kjaer, Type 4230). Tones of different frequencies (1, 2, 4, 8, 16kHz) were presented352

for 10 seconds each; these tones were selected because they are in the trough of the behavioral353

audiogram for rats64. They are also on a logarithmic scale and thus should be equally discrim-354

inable to the animals. We adjusted the auditory gain in software for each frequency stimulus to355

match the sound pressure level to 70dB in the rig, measured when the microphone was proximal356

to the center poke.357

Task Logic358

LED illumination from the center port indicated that the animal could initiate a trial by359

poking its nose in that port - upon trial initiation the center LED turned off. While in the center360
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port, rats needed to maintain center fixation for a duration drawn uniformly from [0.8, 1.2]361

seconds. During the fixation period, a tone played from both speakers, the frequency of which362

indicated the volume of the offered water reward for that trial [1, 2, 4, 8, 16kHz, indicating363

5, 10, 20, 40, 80µL rewards]. Following the fixation period, one of the two side LEDs was364

illuminated, indicating that the reward might be delivered at that port; the side was randomly365

chosen on each trial. This event (side LED ON) also initiated a variable and unpredictable delay366

period, which was randomly drawn from an exponential distribution with mean = 2.5 seconds.367

The reward port LED remained illuminated for the duration of the delay period, and rats were368

not required to maintain fixation during this period, although they tended to fixate in the reward369

port. When reward was available, the reward port LED turned off, and rats could collect the370

offered reward by nose poking in that port. The rat could also choose to terminate the trial371

(opt-out) at any time by nose poking in the opposite, un-illuminated side port, after which a372

new trial would immediately begin. On a proportion of trials (15-25%), the delay period would373

only end if the rat opted out (catch trials). If rats did not opt-out within 100s on catch trials, the374

trial would terminate.375

The trials were self-paced: after receiving their reward or opting out, rats were free to376

initiate another trial immediately. However, if rats terminated center fixation prematurely, they377

were penalized with a white noise sound and a time out penalty (typically 2 seconds, although378

adjusted to individual animals). Following premature fixation breaks, the rats received the same379

offered reward, in order to disincentivize premature terminations for small volume offers.380

We introduced semi-observable, hidden-states in the task by including uncued blocks of381

trials with varying reward statistics17: high and low blocks, which offered the highest three382

or lowest three rewards, respectively, and were interspersed with mixed blocks, which offered383

all volumes. There was a hierarchical structure to the blocks, such that high and low blocks384

alternated after mixed blocks (e.g., mixed-high-mixed-low, or mixed-low-mixed-high). The first385
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block of each session was a mixed block. Blocks transitioned after 40 successfully completed386

trials. Because rats prematurely broke fixation on a subset of trials, in practice, block durations387

were variable.388

Criteria for including behavioral data389

In this task, the rats were required to reveal their subjective value of different reward of-390

fers. To determine when rats were sufficiently trained to understand the mapping between the391

auditory cues and water rewards, we evaluated their wait time on catch trials as a function of392

offered rewards. For each training session, we first removed wait times that were greater than393

two standard deviations above the mean wait time on catch trials in order to remove potential394

lapses in attention during the delay period (this threshold was only applied to single sessions395

to determine whether to include them). Next, we regressed wait time against offered reward396

and included sessions with significantly positive slopes that immediately preceded at least one397

other session with a positive slope as well. Once performance surpassed this threshold, it was398

typically stable across months. Occasional days with poor performance, which often reflected399

hardware malfunctions or other anomalies, were excluded from analysis. We emphasize that the400

criteria for including sessions in analysis did not evaluate rats’ sensitivity to the reward blocks.401

Additionally, we excluded trial initiation times above the 99th percentile of the rat’s cumulative402

trial initiation time distribution pooled over sessions.403

Shaping404

The shaping procedure was divided into 8 stages. For stage 1, rats learned to maintain a405

nose poke in the center port, after which a 20 µL reward volume was delivered from a random406

illuminated side port with no delay. Initially, rats needed to maintain a 5 ms center poke. The407

center poke time was incremented by 1 ms following each successful trial until the center poke408

time reached 1 s, after which the rat moved to stage 2.409
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Stages 2-5 progressively introduced the full set of reward volumes and corresponding au-410

ditory cues. Rats continued to receive deterministic rewards with no delay after maintaining a411

1 second center poke. Each stage added one additional reward that could be selected on each412

trial- stage 2 added 40 µL, stage 3 added 5 µL, stage 4 added 80 µL, and stage 5 added 10 µL.413

Each stage progressed after 400 successfully completed trials. All subsequent stages used all 5414

reward volumes.415

Stage 6 introduced variable center poke times, uniformly drawn from [0.8-1.2] s. Addition-416

ally, stage 6 introduced deterministic reward delays. Initially, rewards were delivered after a 0.1417

s delay, which was incremented by 2 ms after each successful trial. After the rat reached delays418

between 0.5 and 0.8 s, the reward delay was incremented by 5 ms following successful trials.419

Delays between 0.8 and 1 s were incremented by 10 ms, and delays between 1 and 1.5 s were420

incremented by 25 ms. Rats progressed to stage 7 after reaching a reward delay of 1.5 s.421

In stage 7, rats experienced variable delays, drawn from an exponential distribution with422

mean of 2.5 seconds. Additionally, we introduced catch trials (see above), with a catch proba-423

bility of 15%. Stage 7 terminated after 250 successfully completed trials.424

Finally, stage 8 introduced the block structure (see above). We additionally increased the425

catch probably for the first 1000 trials to 35%, to encourage the rats to learn that they could426

opt-out of the trial. After 1000 completed trials, the catch probability was reduced to 15-20%.427

All data in this paper was from training stage 8.428

Training for male and female rats429

We collected data from both male and female rats (160 male, 114 female). Male and female430

rats were trained in identical behavioral rigs with the same shaping procedure described above.431

Early cohorts of female rats experienced the same reward set as the males. However, female432

rats are smaller, and they consumed less water and performed substantially fewer trials than433
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Stage
Center poke

time
5µL 10µL 20µL 40µL 80µL

Reward
delay

Reward
probability

Blocks

1
Increment to

1s
X 0 1

2 1s X X 0 1
3 1s X X X 0 1
4 1s X X X X 0 1
5 1s X X X X X 0 1

6
Variable

(0.8-1.2s)
X X X X X Increment

to 1.5s
1

7
Variable

(0.8-1.2s)
X X X X X

Variable
(from ex-
ponential)

0.85

8
Variable

(0.8-1.2s)
X X X X X

Variable
(from ex-
ponential)

0.65-0.85 X

the males. Therefore, to obtain sufficient behavioral trials from them, reward offers for female434

rats were slightly reduced while maintaining the logarithmic spacing: [4, 8, 16, 32, 64 µL]. For435

behavioral analysis, reward volumes were treated as equivalent to the corresponding volume436

for the male rats (e.g., 16 µL trials for female rats were treated the same as 20 µL trials for437

male rats). The auditory tones were identical to those used for male rats. We did not observe438

any significant differences between the male and female rats, in terms of contextual effects439

(Extended Data Fig. 12), or behavioral dynamics at block transitions (data not shown).440

We tracked most female rats’ stages in the estrus cycle using vaginal cytology, with vaginal441

swabs collected immediately after each session using a cotton-tipped applicator first dipped442

in saline. Samples were smeared onto a clean glass slide and visually classified under a light443

microscope. For the current study, data from female rats was averaged across all stages of the444

estrus cycle.445
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Behavioral models446

We developed separate behavioral models to describe rat’s wait time and trial initiation time447

data. Both wait time and trial initiation time should depend on the value of the environment.448

For the wait time data, we adapted a model from16 which described the wait time, WT, in terms449

of the value of the environment (i.e., the opportunity cost), the delay distribution, and the catch450

probability (i.e., the probability of the trial being unrewarded). Given an exponential delay451

distribution, we defined the predicted wait time as452

WT = Dτ log

(
C

1− C
· R− κτ

κτ

)
.

where τ is the time constant of the exponential delay distribution, C is the probability of reward453

(1-catch probability), R is the reward on that trial, κ is the opportunity cost, and D is a scaling454

parameter. In the context of optimal foraging theory and the marginal value theorem, which455

provided the theoretical foundation for this model, each trial is a depleting “patch” whose value456

decreases as the rat waits19. Within a patch, the decision to leave depends on the overall value457

of the environment, κ, which is stable within trials but can vary across trials and hidden reward458

states, i.e., blocks.459

The above equation was shown to be normative for a Markov Decision Process in which460

the value of the environment was constant for the foreseeable future16. However, given that461

the value of the environment changed over blocks in our task, it is possible that this equation462

is not normative for our case. However, this formulation qualitatively captured features of the463

data, including the graded dependence of wait times on the catch probability, and sensitivity to464

reward volumes and blocks. Therefore, we found it to be a useful, if not necessarily normative,465

process model of behavior.466

For the trial initiation time, we adapted a model2 which describes the optimal trial initiation467
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time, TI, given the value of the environment, κ, as468

TI =
D

κ
,

where D is a scale parameter.469

We initially evaluated two different ways of calculating the value of the environment for470

these models, which are shared between the wait time and trial initiation time models: a retro-471

spective and inferential model (see below). We assumed independent log-normal noise for each472

trial, with a constant variance of 8 seconds for the wait time model and 4 seconds for the trial473

initiation time model. The log-normal noise model outperformed alternative noise models, such474

as gamma and ex-Gaussian noise. The noise variance terms were selected from a grid search475

using data from a subset of animals.476

Inferential model477

The inferential model has three discrete value parameters (κlow, κmixed, κhigh), each associ-478

ated with a block. For each trial, the model chooses the κ associated with the most probable479

block given the rat’s reward history. Specifically, for each trial, Bayes’ Theorem specifies the480

following:481

P (Bt |Rt) ∝ P (Rt |Bt)P (Bt).

where Bt is the block on trial t and Rt is the reward on trial t. The likelihood, P (Rt |Bt), is the482

probability of the reward for each block, for example,483

P (Rt |Bt = Low) =

{
1
3
, if Rt = 5, 10, 20µL

0, if Rt = 40, 80µL.

To calculate the prior over blocks, P (Bt), we marginalize over the previous block and use the484

previous estimate of the posterior:485

P (Bt) =
∑
Bt−1

P (Bt |Bt−1)P (Bt−1 |Rt−1). (Eq. 1)
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P (Bt | Bt−1), referred to as the “hazard rate,” incorporates knowledge of the task structure,486

including the block length and block transition probabilities. For example,487

P (Bt = Low|Bt−1) =


1−H0, for Bt−1 = Low
H0, for Bt−1 = Mixed
0, for Bt−1 = High

where H0 = 1/40, to reflect the block length. The model assumed a flat block hazard rate for488

the following reasons. (1) Since animals broke center fixation on a subset of trials, the actual489

block duration was highly variable. Based on the distributions of experienced block durations,490

it is unlikely that rats would have learned a perfect step function hazard rate. (2) The blocks491

spanned several to tens of minutes, making it unlikely that rats would keep a running tally of492

trials on such long timescales. (3) Gradual changes in wait times at block transitions are not493

consistent with the use of a veridical step-function hazard rate. (4) We considered an alternative494

parameterization in which the veridical step function hazard rate was blurred with a Gaussian,495

but this would have required a number of nontrivial design choices, such as whether the trial496

counter should be reset after “misinferred” block transitions, regardless of when they occurred497

in the actual block. (5) Wait times reflected misinferred blocks based on a constant block hazard498

rate (Extended Data Fig. 9), suggesting that this simplification was a reasonable approximation499

of the inference process. Including H0 as an additional free parameter did not improve the500

performance of the wait time model evaluated on held-out test data in a subset of rats (data not501

shown), so H0 was treated as a constant term.502

The model selected a fixed value of the environment associated with the most likely block.503

This formulation is related to an established approximation for solving partially-observable504

Markov decision processes (POMDPs) known as the Most Likely State algorithm65. This al-505

gorithm is well-studied, has precedence in the literature as a heuristic approximation for the506

full posterior distribution over states, and may be biologically plausible as it is computationally507

tractable compared to more complex solutions to POMDPs.508
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Belief state model509

Like the inferential model (above), the belief state model has three distinct value parameters510

and calculates the probability of being in each block using Bayes Rule. However, rather than511

selecting a single value associated with the most probable block, the model uses the sum of512

each value, weighted by that probability, that is,513

κt =
∑
Bt

P (Bt |Rt)κBt .

While this model uses the full posterior distribution over states, model comparison found that514

it was comparable to the simpler Most Likely State algorithm (above; Extended Data Fig. 8).515

In fact, when the belief distributions were stable (e.g., in adaptation blocks), these models were516

identical. For that reason, we exclusively used the Most Likely State model (above) for this517

paper.518

There may be alternative normative strategies for this task given different sets of assump-519

tions. For instance, assuming an infinite time horizon, one might compute the average kappa520

under the Markov process determining block transitions, starting from the current state. With a521

sufficiently long time horizon, this average will be dominated by the steady-state distribution of522

the Markov process, which would predict no contextual modulation of wait times. Given that523

the rats exhibited strong contextual effects, this strategy is not consistent with their behavior.524

We therefore did not explore such a model in the current manuscript.525

Inferential model with lambda parameter526

To account for potentially sub-optimal inference across rats, we developed a second in-527

ferential model. This model also uses Bayes rule to calculate the block probabilities, except528

with a sub-optimal prior, Priorsubopt. Specifically, we introduce a parameter, λ, that generates529

the sub-optimal prior by weighting between the true, optimal prior (P (Bt), Eq. 1), and a flat,530
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uninformative prior (Priorflat, uniformly 1/3), that is,531

Priorsubopt = λP (Bt) + (1− λ)Priorflat.

When λ = 1, this model reduces to the optimal inferential model, and when λ = 0, this model532

uses a flat prior and the block probabilities are driven by the likelihood.533

Retrospective model534

The retrospective model has a single, trial-varying κ variable which represents the recency-535

weighted average of all previous rewards. This average depends on the learning rate parameter536

α with the recursive equation537

κt+1 = κt + αtδt,

where κt is the value of the environment on trial t, rt is the reward on trial t, δt = rt − κt is the538

reward prediction error (RPE), and αt is a dynamic learning rate given by αt = G · α0. In order539

to capture the dynamics of the trial initiation times around block transitions, we included a gain540

term, Gt on the learning rate, which is inversely related to the trial-by-trial change in the mixed541

block probability from by the inferential model, given by542

Gt =
1

1− |P (Bt = Mixed|Rt)− P (Bt−1 = Mixed|Rt−1)|
.

We used trial-by-trial changes in the mixed block probability as a summary statistic of changes543

in the full posterior distribution. Given the distribution of rewards and the transition structure544

between blocks, there is always some ambiguity about whether the hidden state is a mixed545

block, and the posterior block probabilities sum to one. Therefore, changes in the mixed block546

probability reflect changes in the full posterior on every trial.547

The dynamic learning rate we implemented is consistent with previous work showing that548

humans and animals can adjust their learning rates depending on the volatility and uncertainty549

in the environment36–38. Other models using either (1) a single, static learning rate (G = 1), or550
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(2) a dynamic learning rate where the gain term was the unsigned reward prediction error on551

that trial (G = |δt|) were unable to capture the observed trial initiation time dynamics at block552

transitions (Extended Data Fig. 7).553

Fitting and evaluating models554

We used MATLAB’s constrained minimization function, fmincon, to minimize the sum of555

the negative log likelihoods with respect to the model parameters. 100 random seeds were used556

in the maximum likelihood search for each rat; parameter values with the maximum likelihood557

of these seeds were deemed the best fit parameters. Before fitting to rat’s data, we confirmed558

that our fitting procedure was able to recover generative parameters (Extended Data Fig. 13).559

When evaluating model performance fit to rat data, we performed 5-fold cross-validation and560

evaluated the predictive power of the model on the held-out test sets. To compare the different561

models, we used Bayesian Information Criterion (BIC), BIC = log(n) · k + 2 · nLL, where n562

is the number of trials, k is the number of parameters, and nLL is the negative log-likelihood of563

the best-fit model evaluated on all data. We confirmed the model comparison by also comparing564

Akaike Information Criterion (AIC = 2 · k + 2 · nLL where k is the number of parameters and565

nLL is the negative log-likelihood of the best-fit model evaluated on all data) and cross-validated566

negative log-likelihood, which gave similar results to BIC.567

We only fit models to the rats’ wait time data. This is because the distribution of trial568

initiation times was generally heavy-tailed, and seemed to reflect multiple processes on different569

interacting timescales (e.g., reward sensitivity on short timescales, attention, motivation, and570

satiety on longer timescales). These processes made it challenging to fit the data with a single571

process model. Therefore, we used the inferential and retrospective trial initiation time models572

to generate qualitative predictions that we could compare to the rats’ data.573
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Statistical analyses574

Wait time and trial initiation times: sensitivity to reward blocks575

For all analyses, we removed wait times that were one standard deviation above the pooled-576

session mean. Without thresholding, the contextual effects are qualitatively similar. Outlier wait577

times tend to occur in low blocks, likely due to attentional or motivational lapses. Therefore, the578

main difference is that the wait time curves in low blocks are both flatter and longer compared579

to the thresholded data (Extended Data Fig. 14). When assessing whether a rat’s wait time580

differed by blocks, we compared each rat’s wait time on catch trials offering 20 µL in high581

and low blocks using a non-parametric Wilcoxon rank-sum test, given that the wait times are582

roughly log-normally distributed. We defined each rat’s wait time ratio as the average wait583

time on 20µL catch trials in high blocks/low blocks. For trial initiation times, we compared all584

trial initiation times for each block, again using a non-parametric Wilcoxon rank-sum test. We585

defined each rat’s trial initiation time ratio as the average trial initiation time in high blocks/low586

blocks.587

Trial initiation times were bimodally distributed, with the different modes reflecting whether588

previous trials were rewarded or not. Unrewarded trials included opt-out trials and trials where589

rats prematurely terminated center fixation (“violation trials”). Analyzing these trial types sep-590

arately showed that trial initiation times following unrewarded trials were modulated by blocks591

in a similar pattern as the wait times, with rats initiating trials more quickly in high compared592

to low blocks (Extended Data Fig. 2). While we used all behavioral trials for analyses of593

trial initiation times throughout the manuscript, we note that trial initiation times following594

rewarded trials exhibited a different pattern (Extended Data Fig. 2), consistent with previous595

studies showing that response outcomes gate behavioral strategies27,28. Specifically, following596

rewarded trials, there was a weak positive correlation between reward magnitude and trial ini-597

tiation time, in contrast to the strong negative correlation we observed following unrewarded598
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trials. We interpret the positive correlation as potentially reflecting micro-satiety effects. How-599

ever, as these effects were weak, most of the variance in the trial initiation times were driven by600

those following unrewarded trials.601

To assess block effects across the population, we first z-scored each rat’s wait time on all602

catch trials and trial initiation time on all trials. For wait times, we computed the average z-603

scored wait time on catch trials offering 20 µL in high and low blocks for each rat, and compared604

across the population using a paired Wilcoxon sign-rank test. Similarly for trial initiation times,605

we averaged all z-scored trial initiation times for high and low blocks for each rat, and compared606

across the population using a paired Wilcoxon sign-rank test.607

To assess the effects of catch probability on wait times, we trained cohorts of rats with608

different catch probabilities. The cohorts varied in size: N = [3, 183, 61, 151, 39] for catch609

probability = [0.1, 0.15, 0.2, 0.25, 0.35], respectively.610

Block transition dynamics611

To examine behavioral dynamics around block transitions, for each rat, we first z-scored612

wait-times for catch trials of each volume separately in order to control for reward volume613

effects. We then computed the difference in z-scored wait times for each volume, relative to the614

average z-scored wait time for that volume, in each time bin (trial relative to block transition),615

before averaging the differences over all volumes (∆ z-scored wait time). For trial initiation616

times, we z-scored all trial initiation times. In order to remove satiety effects, for each session617

individually, we regressed trial initiation time against z-scored trial number and subtracted the618

fit.619

For each transition type, we averaged the ∆ z-scored wait times and trial initiation times620

based on their distance from a block transition, including violation trials (e.g., averaged all wait621

times four trials before a block transition). Finally, for each block transition type, we smoothed622
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the average curve for each rat using a 10-point moving average, before averaging over rats.623

When comparing block transition dynamics in rats with different quality priors, specifically624

from mixed blocks to high or low, we chose rats in the top or bottom 20th percentile of fit λ’s625

and averaged each group’s block transition dynamics for both wait time and trial initiation time.626

To compare the normalized dynamics of each group, we fit 4-parameter logistic functions of the627

following form:628

y = A+ (D − A)/(1 + exp(−C(x− x0)))

to the behavioral curves and compared the four parameters: A (the lower asymptote), D (the629

upper asymptote), C (the inverse temperature), and x0 (x-value of the the sigmoid’s midpoint).630

To determine significance for our observed differences, we performed a non-parametric shuffle631

test. We generated null distributions on differences in the fit parameters by shuffling the labels632

of the upper and lower percentile λ rats, refitting the logistic to the new shuffled groups’ av-633

erage dynamic curves, and comparing the fit parameters 500 times. We then used these null634

distributions to calculate p-values for the observed differences in parameters: the area under635

this distribution evaluated at the actual difference of parameter values (between high and low λ636

rats) was treated as the p-value.637

Trial history effects638

To assess wait time sensitivity to previous offers, we focused on 20 µL catch trials in mixed639

blocks only. We z-scored the wait times of these trials separately. Next, we averaged wait times640

depending on whether the previous offer was greater than or less than 20 µL. For trial initiation641

times, we used all 20 µL trials in mixed blocks. We averaged z-scored trial initiation times642

depending on whether the previous offer was greater or less than 20 µL. For both wait time643

and trial initiation time, we defined the sensitivity to previous offers as the difference between644

average wait time (trial initiation time) for trials with a previous offer less than 20 µL and645
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trials with a previous offer greater than 20 µL. We compared wait time and trial initiation time646

sensitivity to previous offers across rats using a paired Wilcoxon signed-rank test.647

To capture longer timescale sensitivity across rewards, we regressed previous rewards against648

wait time and trial initiation time. We focused only on mixed blocks. Additionally, we lin-649

earized the rewards by taking the binary logarithm of each reward (log2(reward)). For wait650

time, we z-scored wait times for catch trials in mixed blocks. Then, we regressed wait times651

on these trials against the current offer and previous 9 log2(reward) offers, including violation652

trials, along with a constant offset term. Reward offers from a different block (e.g., a previous653

high block) were given NaN values. For trial initiation times, we again z-scored for mixed654

block trials only. Then, we regressed against the previous 9 log2(reward) offers, not including655

the current trial, along with a constant offset. Additionally, we set the reward for violation and656

catch trials to 0, since rats do not receive a reward on these trials.657

For both wait time and trial initiation time, we used Matlab’s builtin regress function to658

perform the regression. With the coefficients, we found the first non-significant coefficient659

(coefficient that whose 95% confidence interval contained 0), and set that coefficient and all660

following coefficients to 0. Finally, we fit a negative exponential decay curve, y = D exp−x/τ ,661

to each rat’s previous trial coefficients (that is, only the previous 9 trial coefficients) for both wait662

time and trial initiation time and reported the time constant of the exponential decay (tau) for663

each. If all previous trial coefficients were equal to 0 (as was the case for a vast majority of the664

wait time coefficients), the time constant was reported as 0. We correlated wait time regression665

time-constants and trial initiation time regression time-constants using Matlab’s builtin corr666

function.667

35

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 2, 2023. ; https://doi.org/10.1101/2023.03.14.532617doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.14.532617
http://creativecommons.org/licenses/by-nc-nd/4.0/


Learning Dynamics668

To assess learning dynamics, we included all sessions after stage 8, not just the sessions669

that passed criteria for inclusion (above). Because of data limitations examining each session670

individually (e.g., not every session included both a high and low block), we grouped subse-671

quent sessions into pairs (i.e., we grouped sessions 1 and 2, sessions 3 and 4, etc.). For each672

session-pair, we calculated the wait time and trial initiation time ratios as above. To assess the673

emergence of block effects on wait time data, we regressed wait time for each session against674

both the current reward and a categorical variable representing the current block identity (1 =675

low block, 2 = mixed block, 3 = high block). To assess the emergence of previous trial effects676

on trial initiation time, we regressed trial initiation time for each sessions against the previous677

reward. We smoothed each regression coefficient over sessions using a 5-session moving av-678

erage. Finally, we set outlier coefficients (3 scaled median absolute deviations away from a679

5-point moving median, using Matlab’s builtin isoutlier function) to NaN. Finally, we averaged680

regression coefficients over sessions across rats.681

Pre-initiation cue task682

To modulate the subjective uncertainty in the rat’s estimate of state (block) before trial683

initiation time, we ran a subset of rats on a variation of the task where we cued reward offer684

before rats initiated a trial (N =16). All other aspects of the task remained identical: reward offer685

cued played again after the rat initiated the trial, rats waited uncued exponentially-distributed686

delays for rewards, etc. We included both rats that initially trained on the original task before687

switching to the pre-initiation cue task (N = 12), as well as rats who were trained only on the688

pre-initiation cue task (N = 4). To allow the rats who had started on the original task time to689

adjust to the new task, we only included data after 30 pre-initiation cue sessions. For the rats690

who were exclusively trained on the pre-initiation cue task, we included all stage 8 sessions.691
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For all rats, we did not exclude sessions using the wait time critera (see above).692

To compare effects for rats who had started on the original task, we performed all analyses693

for data collected on the original task and on the pre-initiation cue task. First, to confirm that the694

rats learned that the tone before trial initiation indicated the upcoming reward, we averaged z-695

scored trial initiation times by the offered reward in mixed blocks. We excluded post-violation696

trials in the original task session, because those trials repeat the same volume as the previ-697

ous trial so the rat could conceivably use that to modulate their trial initiation time. All other698

analyses (sensitivity to the previous reward and previous reward regression) were performed as699

described above.700
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difference (high - low) across all rats. (Wilcoxon signed-rank test, N = 291).
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unrewarded trials, and (right) all trial. b. Trial initiation time averaged over block (Wilcoxon
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Line is least-squares regression. b. Trial initiation times block transition plots without detrend-
ing. Results are qualitatively similar to Fig. 2.
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Extended Data Fig. 7: Alternative retrospective models fail to capture both fast and slow
trial initiation time dynamics at block transitions. Trial initiation time model transitions
from low (blue) or high (red) blocks to mixed blocks. Top: A “vanilla” learning rate model
with a single, static learning rate. Bottom: a dynamic learning rate model where learning rate
gain is equal to the unsigned RPE of that trial.
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Extended Data Fig. 8: Model comparison for wait times favors inferential over retrospective
model, but does not distinguish between inferential and belief state models. a-b. Cross-
validated negative log-likelihood comparing inferential model and (a.) retrospective or (b.)
belief state model. c-d. Akaike information criterion (AIC) comparing inferential model and
(c.) retrospective or (d) belief state model. e-f. Bayesian information criterion (BIC) comparing
inferential model and (e.) retrospective or (f.) belief state model. For each, Wilcoxon signed-
rank test, N = 291
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Extended Data Fig. 9: Inferential model identifies mistaken inferences during mixed blocks
across rats. a. Average wait time curves conditioned by model-inferred block in mixed blocks
only in held-out test set across rats. b. Wait time ratio (wait time on 20 µL inferred high/low
trials) is modulated by inferred block (p << 0.001, Wilcoxon Signed-rank test, N = 291)
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Extended Data Fig. 10: Sub-optimal inferential model with lambda. Distribution of λ fit over
rats (N = 291).
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Extended Data Fig. 11: Differential wait time dynamics based on λ from sub-optimal Bayes
model are robust across a range of percentiles.
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Extended Data Fig. 12: Males and females have comparable wait time ratios (top) and trial
initiation time ratios (bottom). Wait time p = 0.23, Wilcoxon Rank-sum test, N = 184 males,
107 females. Trial initiation time p = 0.59, Wilcoxon Rank-sum test, N = 184 males, 107
females.
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Extended Data Fig. 13: Models are able to recover generative parameters. N = 48 random
parameter sets.
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Extended Data Fig. 14: Wait time curves without threshold (right) have qualitatively simi-
lar context effects, but longer average wait times. Wait times one standard deviation above
the pooled session mean were excluded for most analyses in this study (left). Including all wait
times preserved the contextual effects, but resulted in longer average wait times, as the mean is
particularly sensitive to outliers. Outlier wait times tended to occur in low blocks, likely due to
attentional or motivational lapses. Therefore, the main difference between the thresholded and
unthresholded data is that the wait time curves in low blocks are both flatter and longer in the
unthresholded data.

55

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 2, 2023. ; https://doi.org/10.1101/2023.03.14.532617doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.14.532617
http://creativecommons.org/licenses/by-nc-nd/4.0/

