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Abstract 

Secreted proteins play crucial roles in paracrine and endocrine signaling; however, identifying 

novel ligand-receptor interactions remains challenging. Here, we benchmarked AlphaFold as a 

screening approach to identify extracellular ligand-binding pairs using a structural library of 

single-pass transmembrane receptors. Key to the approach is the optimization of AlphaFold 

input and output for screening ligands against receptors to predict the most probable ligand-

receptor interactions. Importantly, the predictions were performed on ligand-receptor pairs not 

used for AlphaFold training. We demonstrate high discriminatory power and a success rate of 

close to 90 % for known ligand-receptor pairs and 50 % for a diverse set of experimentally 

validated interactions. These results demonstrate proof-of-concept of a rapid and accurate 

screening platform to predict high-confidence cell-surface receptors for a diverse set of ligands 

by structural binding prediction, with potentially wide applicability for the understanding of cell-

cell communication. 
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Introduction 

Many secreted proteins, polypeptides, and peptides constitute signaling molecules that control 

intercellular communication by binding and activating membrane receptors1,2. Upon receptor 

binding, these molecules directly coordinate short or long-distance signaling responses and 

biological functions such as cell growth, survival, and metabolism1,3,4. The human secretome 

contains at least 2,000 secreted proteins, not counting posttranslationally processed fragments  

and peptides5. The vast majority of these ligands have no assigned function or cognate receptor. 

Single-pass transmembrane receptors, also known as bitopic proteins, represent more than 50 

% of all transmembrane proteins6 (1300 proteins in humans7) and include receptor tyrosine 

kinases (RTKs), cytokine receptors, enzymes, and extracellular matrix proteins4,8–10. 

Surprisingly, most ligands for these receptors remain unknown. Deorphanization of functional 

receptors can open up entirely new fields in biology and offer new therapeutic avenues11. 

Performing experimental screens to identify ligand-receptor pairs is challenging for 

several reasons. Mapping interactions at the cell surface is inherently more difficult than 

identifying intracellular interactions. This is because extracellular ligand-receptor interactions 

often have low affinity and fast dissociation rates, making high-throughput screening methods 

such as affinity purification challenging12,13. Similarly, binding screens using an individual ligand 

applied to a receptor in solution are time-consuming, not applicable for all receptor types, and 

may lack the cellular environment necessary for posttranslational modifications or co-receptor 

binding13,14. Lastly, cell-based CRISPR screens are limited by the ability to gain sufficient 

receptor expression and the lack of expression of essential coreceptors13,15. 

With the revolutionizing ability to predict protein 3D structures from their amino acid 

sequences, AlphaFold (AF2) has become an omnipresent tool in the field of structural 

biology16,17. AF2 can predict protein-protein interactions including heterodimeric protein 

complexes18–20, but accurately modeling membrane-spanning protein complexes can pose a 

challenge requiring knowledge of topology21,22. Prediction of protein-protein interactions (PPIs) 

using AF2 have been previously benchmarked23. These studies have revealed that complexes 

originating solely from eukaryotes are predicted more accurately compared to mixed complexes, 

that modeling success rate varies depending on the annotated function of chains23, and that 

homomers more accurately model interfaces compared to heteromers24. Importantly, previous 

benchmark studies have not compared the use of full canonical protein sequences compared to 

cleaved and binding parts of structures18,22,23,25,26. They have also not addressed the success 

rate of predicting dimers that are part of larger protein complexes. This is important for screening 
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purposes as computational cost as well as feasibility is aggravated by modeling complex size, 

In addition, single-pass receptors typically form homo or heteromers and ligands frequently 

dimerize. Receptor and ligand binding partners forming a binding complex are typically not 

known in the discovery phase. Previous benchmarking studies have also not addressed how 

false positive rate relates to ranking. In a screening setting, false positives are of less importance 

compared to ranking. Illustrating the discrepancy between model success and ranking, AF2 has 

been evaluated for screening purposes of multi-pass receptor-peptide interactions finding that 

protein interaction metrics can be effectively used to rank predictions. Interestingly, though 

success rate, as defined by DockQ score, was acceptable or high for all eleven tested peptides, 

ranking varied from 1-2522 preventing its use as a classifier.   

Here, we benchmark AF2 as a screening tool for single-pass receptors. We show that 

accuracy in a screening setting is dependent on complex type and cannot be inferred from 

general benchmarking of AF2. Specifically, we find that ranking accuracy is likely superior for 

ligand-single-pass receptors compared to ligand-G-protein coupled receptor (GPCR) 

interactions. We describe the computational and input settings for the prediction screen, 

performance, success rate, show that “promiscuous” ligands with many putative false predictions 

are likely to be more successful in predicting the correct receptor with a slight loss in accuracy,  

and provide proof-of-principle evidence of identification of high-confidence binders. This work 

provides a useful resource for future investigations and is likely to be relevant to a wide variety 

of fields including cancer research, immunology and endocrinology. 

 

Results 

 

Improving binding prediction accuracy with domain selection 

There is currently no report of AF2’s applicability as a screening tool to predict binding of an 

extracellular ligand to its cognate single-pass cell surface receptor. Therefore, we first aimed to 

test and optimize the input sequences to test the impact on interface accuracy of ligand-receptor 

binding predictions. Single-pass transmembrane receptors may produce spurious predictions 

with intertwined transmembrane, intracellular, or extracellular domains which might interfere with 

ligand binding prediction21. Consequently, this might result in inaccurate predictions for ligand 

binding sites. We therefore tested the effect of removing the intracellular part of the receptor on 

AF2 structure prediction. Prediction of ligand-receptor binding associations was performed using 

either the full-length receptor consisting of the extracellular domain (ECD), the transmembrane 
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domain (TMD), and the intracellular domain (ICD), or the ECD alone. For many secreted proteins 

the cleavage pattern is unknown. As this has not been tested back-to-back in previous 

benchmarking studies, for the ligand input, we therefore tested using either the full-length ligand 

(secreted protein with the pro-region) without the N-terminal signal peptide, or the processed 

ligand cleaved from a precursor protein. Importantly, to avoid any learning-based bias by AF2, 

we selected ligand-receptor pairs for genes where crystal structures from the Protein Data Bank 

(PDB) had not been released at the point of AF2 training. For qualitative assessment of the 

ligand-receptor binding prediction, we used the interface template modeling (ipTM) score for 

modeling protein complexes where a value closer to 1 reflects a likely protein complex with a 

high probability of correct interface modeling, while values lower than 0.2 indicate two randomly 

chosen proteins27,28. Importantly, the ipTM score is not influenced by the size of the protein.  

To examine the impact of the ligand input sequence, we designed a set of four test 

ligands. These ligands all possessed annotated chains according to UniProt and their respective 

ligand-receptor structures were not available during AF2 training (Table S1). The pairs were 

chosen by finding ligand-receptor pairs in published databases29,30 that did not have a structure 

in PDB at the point of AF2 training date cutoff (2018-04-30). The test pairs included the following: 

BMP10 with its receptors BMPR1A, BMPR1B and ACVRL1; AMH with its receptor AMHR231,32; 

ALKAL1 with its receptors ALK and LTK; and the secreted antigen CD160 with its receptor 

TNFRSF14/HVEM. As expected, the higher the ipTM value, the more closely AF2 predictions 

resembled the interactions in the reference crystal structures31,33. This correlation is illustrated 

in our predictions for the BMP10-ACVRL1 (Figures 1A-1E) and AMH-AMHR2 pairs (Figures 

S1A-S1E). The vast majority of contacts in the crystal structure of BMP10-ACVRL1 are located 

between ACVRL1 residue 20-80 and BMP10 residue 240-280 (Figure 1A). Surprisingly, in the 

majority of cases, predicting the structure including the secreted ligand led to more spurious 

contacts compared to predicting the full ligand with only the ECD of the receptor, the secreted 

ligand with the receptor ECD and ICD, or the full ligand with both the ECD and ICD (Figures 1B 

and 1D). This was caused by a flip in the contact site compared to the crystal structure (Figure 

1B) illustrating that one cannot necessarily expect more accurate predictions from input of 

specific binding regions. Generally for the eight ligand-receptor pairs, the highest prediction 

strength was observed when predicting the full or secreted ligand in combination with only the 

ECD of the receptor, which led to average ipTM values above 0.7 for BMP10-ACVRL1 (Figure 

1F), BMP10-BMPR1A/B (Figures 1G-1H), AMH-AMHR2 (Figure 1I), ALKAL1-ALK/LTK 

(Figures 1J-1K), and CD160-TNFRSF14 (Figure 1L). Including both the ECD and ICD domains 
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of the receptor for prediction, alongside the full ligand, consistently led to a decline in prediction 

accuracy. This was evidenced by median ipTM values of approximately 0.3 for AMH-AMHR2 

(Figure 1I), ~0.6 for ALKAL1-LTK (Figure 1K), close to 0.2 for BMP10-BMPR1A (Figure 1G), 

and ~0.3 for BMP10-BMPR1B (Figure 1H).  

In conclusion, selecting receptor ECDs can improve the precision of ligand to single-pass 

receptor binding predictions. Predicting ligand-receptor structures is not necessarily more 

accurate when using either the secreted or full ligand, if combined only with the receptor's 

extracellular domain. On the other hand, including the intracellular domain can diminish 

prediction accuracy. In our limited set of test cases low ipTM values were predominately caused 

by spurious contact sites.   

 

Construction of a single-pass transmembrane receptor library 

To test the performance of AF2 as a screening platform, we established a library of single-pass 

transmembrane proteins using sequences obtained from UniProt (Figure 2A). To conserve 

computational resources, we filtered out receptors with duplicated gene names, those without a 

gene name, those lacking a labeled extracellular domain, those also annotated as multi-pass, 

and receptors with an extracellular domain exceeding 3,000 amino acids. Since AF2 version 

2.2.4 was trained on sequences longer than 15 amino acids, we also excluded entries with an 

extracellular domain less than 16 amino acids. This resulted in a library of 1,107 receptors. We 

analyzed the functional composition of the library using the membraneome database21, revealing 

that 45% of proteins are receptors, with structural/adhesion proteins at 24%, and receptor 

ligands/regulators at 12% (Figure 2B, Table S2). Single-pass transmembrane receptors span 

the membrane once and are classified into types I, II, II, or IV, depending on their transmembrane 

topology (Figure 2C)7,34. Most entries in our library are type I single-pass transmembrane 

receptors (86.4%), with the remaining entries being type II, III, and IV receptors, which make up 

12.2%, 1.4%, and 0.1% of the library, respectively (Figure S2A). Receptors were distributed 

fairly evenly across tissues and cell types (Figure S2B, p < 0.001; Figure S2C). We explored 

receptor expression across tissues annotated in the Human Protein Atlas35, identifying that 

48.5% of receptors in the library were tissue-enhanced, 25% exhibited low tissue specificity, 

while 0.9% were undetectable (Figure S2D). The library showed enrichment in cells responsive 

to many secreted cues, including Langerhans cells, neurons and related support cells, immune 

cells and enterocytes (Figure S2E). Further, the library was enriched for terms relating to 

immune function (Figure S2F). Taken together, the library is of use for a broad spectrum of 
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disease areas including cancer, immunology, neurology and endocrine disorders.  We also 

examined the ligand gene lengths for known ligand-receptor complexes29,36, finding that the 

median gene length for single-pass receptor ligands was 284 amino acids (quartiles: 189-416), 

while multi-pass receptor ligands were shorter at a median of 103 amino acids (quartiles: 77-

152) (p<0.0001, Figure 2D) In summary, we show that ligand size could potentially infer receptor 

type, and the broad applicability of our library. 

 

Performance analysis experimentally validated ligand-receptor structures 

Using the single-pass transmembrane library, we tested how accurately AF2 could predict the 

known receptors for ligands, establishing its effectiveness as a screening platform. We included 

eight receptor-ligand pairs, from previously reported datasets29,30, where structures were absent 

at the time of AF2 training for both proteins or manually curated pairs where only the receptor 

had an available structure29 (Table S1). Considering the often unknown processing of orphan 

ligands and the high ipTM values (>0.6) obtained using full ligands with the receptor's ECD, we 

adopted this combination for the ligand-receptor screening (Figure 3A).  

To screen and rank ligands against all the receptors in the library, we used the penalized 

ipTM value of five AF2 predictions37. With one exception, the correct receptors for the eight test 

cases consistently ranked among the top three receptors, yielding ipTM values between 0.6-0.8 

for all ligand-receptor pairs. We accurately predicted the type II receptor AMHR for the ligand 

AMH as the first predicted receptor (Figure 3B). For the ligand BMP10, its receptor ACVRL1 is 

ranked number two while BMPR1B and BMPR1A ranked first and sixth, respectively (Figure 

3C). Furthermore, for ALKAL1, the known tyrosine kinase receptor LTK38 was predicted as the 

second top ranked receptor in the screen, while the other known receptor, ALK, ranked fifth 

(Figure 3D). Importantly, other RTKs displayed low ipTMs. Given that monomeric ALKAL1 is 

known to form a homodimer upon ALK binding38, these results also suggest that binding 

prediction is independent of conformation changes. Furthermore, the prediction correctly 

identified the heterometic cytokine receptors IL17RA and IL17RB for interleukin-25 

(IL25)39(Figure 3E), CD160 for TNFRSF14/CD27040 (Figure 3F), the secreted 

metalloproteinase fetuin-b (FETUB) for meprin A (MEP1A)41 (Figure 3G) and  IL27 for IL27RA 

(Figure 3H). For one ligand, neural EGFL like 2 (NELL2), we did not predict any binding (ipTM 

~ 0.11) to the receptor roundabout homolog 3 (ROBO3)42 (Figure 3I and Figure S3A). As 

expected, the predicted ligand-receptor interactions demonstrated correct binding sites and 

locations based on the established PDB structures for IL27-IL27RA, ALKAL1-LTK, IL25-

IL17RA/B, CD160-TNFRSF14, and FETUB-MEP1A complexes (Figures 3J-3N). The ranking 
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of receptors was not significantly different when using the average ipTM, median ipTM, 

penalized ipTM, or pDockQ37,43, demonstrating robust prediction with low variability (Figure 

S3B). Since all correct ligand-receptor pairs had ipTM values above 0.47 and, due to thinning 

out in hits above this value, we hypothesized that the screen could also be performed in reverse 

to screen ligands for specific receptors (Figure S4A). We constructed a ligand library and 

predicted ligands for receptors that were not in the PDB database at the cut-off date for AF2 

training. The ligand library was generated by including entries for genes annotated in UniProt 

predicted to be secreted with a sequence length between 15-2000 amino acids, excluding 

immunoglobulins. The ligand library comprises 1,862 unique entries (Figure S4B). This 

prediction accurately identified AMH as the ligand for AMHR as the second-ranked hit (Figure 

S4C), IL27 as the first ligand for IL27RA (Figure S4D), ALKAL1 and ALKAL2 as the top two 

ligands for LTK (Figure S4E), and FETUB as the top ligand for MEP1A (Figure S4F). In 

conclusion, we show that we can rapidly and reliably use AF2 as a screening method to identify 

ligand-receptor pairs for a diverse set of established ligand-receptor pairs with a success rate of 

> 85 %. 

 

Performance using experimentally validated extracellular protein interactions 

Since our initial dataset was of limited size and since false predictions are hard to disprove, we 

utilized data derived from experimentally validated interactions. Since there are no available 

comprehensive binding datasets on secreted ligand-receptor pairs, we used a dataset of 

extracellular adhered protein pairs in the immunoglobulin superfamily (IgSF) identified using an 

ELISA-based screening platform in Wojtowicz et al44. We filtered this dataset for 83 proteins 

which had at least one interaction reported in both Wojtowicz et al and other studies, and thus 

represented high-confidence interactions. Proteins had been tested for interaction in an all-

again-all manner and IgSF-IgSF pairs, here termed ligand-receptor pairs, without any 

documented binding thus had a low likelihood of binding. We replicated the screen using AF2, 

predicting all 83 proteins against each other yielding 3,401 possible combinations (Figure 4A). 

We confirmed a clear relationship between experimental binding and the AF2 predicted ipTM 

value (Figure 4A). We predicted binding, as determined by a penalized ipTM value > 0.5, in 46 

% (24/52) of the experimentally validated binding pairs and 50% (42/83) of proteins ranked the 

correct binding partner ≤ 3 (Figure 4B). Similarly, we predicted binding in 60 % (12/20) of 

structures released after AF2 training not reported in Wojtowicz (Figure 4A). The screen also 

confirmed that pairs with a high ipTM value and a rank between one and four are likely to be 
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binding (p < 0.01, Dunn’s test) (Figure S5A). A few failed binding pairs still ranked among the 

top three predictions for a given ligand, underscoring that prediction- and screening success are 

not completely correlated (Figure 4B). Of note, predicting reported binding pairs using AF 

version 2.3.1, which included PDB structures up to 2021-09-30, only rescued 3 out of 25 

interactions with a penalized ipTM value < 0.5 using AF version 2.2.4 (Figure S5B) indicating 

that version 2.3.1 has a marginal effect on screen performance. Interestingly, we also noted that 

many proteins with an unsuccessful receptor prediction generally displayed low ipTM values 

(Figures 4A and 4C). In contrast, proteins that had at least one reported interaction, as defined 

by an ipTM > 0.5, in general had higher median ipTM values among top ranked non-binding 

receptors (Figures 4A and 4C). They also displayed higher median pTM, lower predicted 

aligned error at the interface (iPAE) and higher median ranking confidence across top ranked 

predictions (Figure S5C). Overall, we found a specificity and sensitivity similar to previously 

reported protein-protein predictions by AF2 (AUC = 0.769) (Figure S5D). However, the 

performance was markedly better for ligands that had over two predictions with a penalized ipTM 

value > 0.5 (Figure 4D). This came at the expense of a slightly lower accuracy in terms of rank 

(p < 0.05 for a correlation between number of predictions with an ipTM value > 0.5 and average 

rank of reported receptor with highest penalized ipTM) (Figure 4E). As expected, the vast 

majority of predictions with reported binding and a penalized ipTM value above 0.5 also 

accurately predicted the correct binding site and structural conformation (Figure 4F). Principal 

component analysis (PCA) of the metrics iPAE, pLDDT (ipLDDT), ranking confidence, and 

penalized ipTM separated binding pairs from non-binding pairs indicating that a combination of 

AF2 metrics can improve separation of binders from non-binders (Figure S5E). Closer 

inspection of metrics revealed that, apart from ipTM, separation of binders from non-binders 

were driven by iPAE (Figure 4G). Thus, reported binders had an iPAE significantly lower than 

non-binders all with a rank of ≤ 4 and ipTM>0.5 (p < 0.001) (Figure 4G). Setting a cut-off to the 

upper 95% confidence interval for iPAE of reported binders excluded 40% (25/63) of non-binding 

IgSFs with a rank of ≤ 4, improving specificity to 0.88 while excluding 13% (3/24) of reported 

binders (Figure 4G). In conclusion, we identify indicators of screening performance and 

measures to filter putative non-binders. 

 

Ligands that fail prediction may be inferred from AlphaFold metrics 

Prediction failures are defined as known interaction partners with poor AF2 metrics (ipTM, iPAE) 

or incorrect structural binding sites. To understand the causes of failure, we evaluated whether 
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the AF2 metrics could identify potential weaknesses in the predictive model. The metrics iPAE, 

pLDDT (ipLDDT), ranking confidence, and penalized ipTM could not distinguish reported 

binding-pairs that failed prediction from non-binders (Figure S5E). In some cases, failed 

predictions occurred for known interactions that rely on post-translational modifications (e.g., 

FCGR2A-CD72, NOTCH3-DLL1, interactions which are glycosylation-dependent). In other 

cases, the failed structures consisted of ligand-receptor pairs with compound interfaces (Figure 

S5F). Thus, knowledge of likely receptor formation or interface type can be useful in determining 

likely failures.  

 

Leveraging AlphaFold to identify high-confidence receptors for orphan ligands 

To predict receptors for orphan secreted ligands using the single-pass transmembrane receptor 

library, we selected 50 ligands based on a curated library of potentially high-value orphan 

secreted proteins15 (Table S3). We qualitatively scored the top 20 receptors out of 1,107 

receptors ranked by penalized ipTM and iPAE, taking tissue expression, known activities, and 

known or predicted structure into consideration (Figure 5A). For 90% (45/50) of ligands, we 

identified candidates with an ipTM value exceeding 0.5 (Figure 5B and Table S4), of which 18 

ligands had likely receptors based on our iPAE based cut-off (Figure 5B). For instance, the 

orphan secreted glycoprotein Stanniocalcin2 (STC2) is predicted to bind to the receptor FXYD 

domain-containing ion transport regulator 4 (FXYD4), (penalized ipTM=0.90, iPAE=2.69) 

(Figures 5B-5C). STC2 is a regulator of calcium and is expressed broadly, whereas FXYD4 

belongs to a family of proteins regulating ion transport and is exclusively expressed in the 

kidney45. STC2 binds to pregnancy-associated plasma protein-A, pappalysin-1 (PAPP-A) with 

structures released after AF2 training date cutoff46. Structurally STC2 is predicted to bind to 

FXYD4 in a similar position to PAPP-A (Figure 5C). Furthermore, we predict that the orphan 

ligand cerebral dopamine neurotrophic factor (CDNF), likely binds the activin receptor type-2B 

(ACVR2B) (penalized ipTM=0.74, iPAE=2.68) (Figures 5B and 5D). Structurally, CDNF is 

predicted to bind in the same location to ACVR2B as GDF11 (Figure 5D). In summary, we 

propose a method by which AlphaFold metrics can be used to narrowing down high-confidence 

receptor candidates for orphan ligands. 

 

Discussion  

New therapeutics are likely to target receptors or their secreted ligands47,48. Yet, for many 

hundreds of ligands identified through the secreted protein discovery initiative48 and in the 

human protein atlas secretome5, the receptors remain uncharacterized. In this paper, we 
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demonstrate a simple and highly accurate screening algorithm by which AF2 can be harnessed, 

to predict single-pass receptors for orphan ligands. The principle that AF2 can be used to identify 

peptide-protein pairs has been reported22, but to the best of our knowledge, this is the first report 

documenting the use of AF2 for protein ligand-receptor interaction screening. All protein-protein 

interactions are not made equal. Eukaryote to eukaryote interactions in general perform better 

than mixed species interactions and G-protein-containing complexes perform better than other 

categories23. Here we document the performance characteristics for ligand to single-pass 

receptors. The finding that AlphaFold succeeds at predicting ligand-receptor binding in 46% of 

interactions is consistent with previous reports on eukaryote protein-protein predictions23,49. 

Based on the data presented in this paper, this resource could be expanded to include other 

classes of extracellular proteins, cell-surface proteins such as lipid-anchors, or pathogen 

proteins36,37. This work presents a major advance for ligand discovery where no à priori 

knowledge of binding sites is needed and is broadly applicable to a diverse set of secreted 

ligands including cytokines, hormones, receptor tyrosine kinase ligands, and proteases.  

There are limitations of the method, including the computational resources needed 

(Figure S6A-S6C), and that the prediction precision and accuracy may be influenced by the 

binding mode and completeness of the input data. Approximately 100 single-pass receptors are 

missing in the library due to a lack of annotated topological domains, as well as proteins without 

annotated start and end domains in UniProt. These receptors could be included by inferring 

topological domains using computational prediction24. To reduce computational requirements, 

we limited the library to single-pass transmembrane receptors with an extracellular domain 

below 3000 amino acids in length. Very long sequences often fail or require extensive 

computation time. Moreover, glycosylphosphatidylinositol (GPI)-anchored proteins are not 

included because they lack a transmembrane domain. We also selected the canonical isoform 

of the receptors, which were not always the longest sequences. Given that the full-length ligand 

performed well, it is possible that the longest splice variant would perform better. Another 

consideration is that ligands that bind transmembrane proteins can be monomeric, dimeric, or 

trimeric, or require co-factors or post-translational modification for binding50 which is not 

accounted for in our binding prediction. Additionally, this approach may not be applicable to more 

complex receptors or ligands that interact with multiple receptors. In some cases, we were 

unable to predict the binding, such as for NELL2 to its receptor ROBO3. The crystal structure 

for NELL2-ROBO3 includes a truncated part of the ECD of the receptor which might explain the 

lack of binding prediction for this ligand-receptor pair42.  
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In conclusion, this research has the capacity to serve as a valuable tool for identifying 

previously unknown ligand-receptor pairs across a diverse range of proteins, thus opening up 

new possibilities for drug discovery and development. 
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Methods 

 

Construction of a single-pass transmembrane receptor library 

To construct a library of single-pass receptors we searched UniProt human entries for keywords 

with the terms “receptor” or “transmembrane” available by 11-11-2022 (n=47,956). From this 

pool, we retained entries stating either “Single-pass type I, II, III or IV membrane protein” and 

not “Multi-pass” under subcellular location [CC], n=6,588. As we restricted our library to secreted 

proteins, we only retained entries with keyword and subcellular location [CC] either “Membrane” 

or “Cell membrane”, n=3,165. Next, in the case of duplicated gene names, we prioritized 

reviewed entries. In case all entries with a duplicated gene name were unreviewed we prioritized 

the entry with the longest sequence, n=1,969. Shorter sequences were generally truncated 

versions of the longest FASTA sequence. Due to limited computational resources, we restricted 

the library to the canonical gene sequence by UniProt, avoiding other isoforms. To further limit 

computational requirements, we removed entries without an annotated gene name, without an 

annotated topological domain, and without an extracellular domain including start and end 

according to UniProt, retaining 1,157 receptors. Finally, as AlphaFold was trained on sequences 

longer than 15 amino acids we filtered receptors with extracellular domains equal to or shorter 

than this. To limit computation, we also excluded entries with extracellular domains longer than 

3000 amino acids retaining 1,107 receptors in the final library (Table S2).  

 

Expression of receptors across human tissues 

To determine the transcriptional distribution of single-pass transmembrane receptors, we 

extracted RNA expression of the 1,107 entries in the single-pass receptor library in all 54 tissues 

and all 79 single cell types found in the Human Protein Atlas (version 23.0)51. Here we introduced 

a lower threshold of 1 normalized transcript expression value (nTPM), defining that any receptor 

expressed below this threshold is not represented in the cell type/tissue. Of the 1,107 receptors, 

26 were not found in the Human Protein Atlas and were therefore not included for further 

analysis. This MATLAB script has been deposited at https://github.com/Svensson-

Lab/danneskiold-samsoe2023. 

 

Construction of a ligand library 

To construct a library of secreted proteins we collected all human entries listed as Secreted [SL-

0243] under subcellular location [CC] in UniProt by 01-15-2023, n=3,845. From this pool, we 
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kept reviewed entries (n=2,097), and entries longer than 16 amino acids (n=2,093). To limit 

computation, we also excluded sequences longer than 2,000 amino acids retaining 2,039 

entries.  We kept only entries with an annotated gene name, n=2,023. We further excluded 

immunoglobulins by excluding any gene with the name containing either “IGH”, “IGKC”, “IGKV”, 

“IGLC” or “IGLV” retaining 1,864 entries. In the case of duplicated gene names, we retained only 

the entry with the longest amino acid sequence retaining 1,862 secreted proteins in the final 

library (Table S2).  

 

Predicting structures  

We predicted ligand-receptor structures for each ligand against all receptors in the final libraries. 

We used ParallelFold52 in combination with AlphaFold 2.2.4 excluding the relaxation step, 

without template and using the reduced database to generate multiple sequence alignments 

(MSAs) for both ligands and receptors. To predict structures, we used Alphafold 2.2.4 either as 

stand-alone using precomputed MSAs and the same settings as above, or with ParallelFold 

predicting five models per ligand-receptor pair on the Danish National Supercomputer 

Computerome or Sherlock at Stanford University. Results were visualized with ChimeraX 

version 1.553 using the best-aligning pair of chains between reference and match structure for 

comparing PDB entries with predictions. A list of PDB IDs for all proteins in the test set and 

UniProt IDs for all tested ligands is provided in Table S1 and S3. PDB files for predictions with 

a penalized ipTM value > 0.4 is available at https://purl.stanford.edu/bg124rf2339. 

 

Score prediction  

The ipTM scores were extracted from the AlphaFold pickle files. Penalized ipTM was calculated 

by taking the median of available predictions and subtracting the median absolute deviation 

(MAD) as previously described37. The pDockQ score was calculated as previously described18.   

 

Generation of contact maps 

Contact maps were generated using the bio3d package54 in R version 4.2.1 with secondary 

structures predicted using Stride55 using either structure from the PDB database or predictions 

of ligand-receptor pairs as inputs. Distances below 8 Å were considered contacts.   

 

Ligand and receptor characteristics 
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To determine the amino acid length of ligands that bind to single-pass or multi-pass receptors, 

we extracted accession numbers for all peptide receptor-ligand pairs in the two databases 

CellPhoneDB29 (111 pairs) and GPCRs36 (86 pairs). We used UniProt56 to determine whether 

receptors were single-pass or multi-pass membrane proteins and whether they were annotated 

as secreted as determined by subcellular location. We excluded any pairs where both or none 

were secreted (202 excluded), and any pairs without receptor classification (12 excluded). In 

addition, we extracted the ligand's gene length and its signal peptide length. We only included 

ligands once, independent of the number of interacting receptors (224 excluded). We also 

excluded ligand-receptor pairs that did not have exactly one chain each (150 excluded). The 

final list includes the ligand amino acid lengths (gene length minus signal peptide length) of 130 

multi-pass membrane proteins and 67 single-pass membrane proteins (Table S5). Of these, 86 

are from the GPCRs database and 111 from the CellPhoneDB. The MATLAB script used to 

obtain and filter data is deposited at https://github.com/Svensson-Lab/danneskiold-

samsoe2023. 

 

IgSF ligand-receptor predictions 

We restricted the predictions to proteins that were included in ligand-receptor pairs that had 1) 

been reported both in Wojtowicz et. al and elsewhere, and 2) where structures for the ligand-

receptor pairs reported in Wojtowicz et. al had not been released at the AlphaFold training date 

cut-off. The number of ligand-receptor pairs in this dataset was 83 (Table S6). 

 

Selection of orphan ligands  

Selection of orphan ligand to test AlphaLigand was filtered as follows from 80 high-priority targets 

reported in Siepe et al15. Angiopoietin-related proteins were deemed unlikely to bind cell-surface 

receptors and removed (n=72). Ligands with a gene length < 100 were removed (n=68). Ligands 

not annotated as ‘secreted’ by Uniprot were filtered (n=59). Ligands without expression in the 

Expi293F expression system and controls were removed (n=50) (Table S3).   

  

Computational requirements 

To reduce computational costs, we started by calculating MSAs for all receptors and ligands 

using up to 15 hours, 16 CPU cores and 8Gb RAM (Figure S6A). Since this step only has to be 

performed once, the calculation of MSAs significantly reduces computation time. Due to limited 

GPU access, we first ran predictions using only CPUs restricting it to a maximum of 10.5 hours, 
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12 CPUs and 64GB of memory (Figure S6B). In the, on average, ten percent of cases where 

structures did not complete prediction using CPU setting, we used GPUs with same settings as 

above except a maximum of 24h (Figure S6C). After running the eight test cases, we observed 

that no ligand-receptor pairs with a penalized ipTM value < 0.1 after the first prediction and < 0.2 

for the second prediction obtained a final penalized ipTM > 0.5 (Figure S6D-S6E). For the 

prediction of receptors for orphan ligands, we therefore adapted AlphaFold to exit after the first 

predictions in cases where the ipTM value was below these values. As most of the predicted 

ligand-receptor structures have an ipTM value < 0.2 this also significantly reduces computational 

cost.  

 

Code availability 

All codes to run the screen can be obtained at https://github.com/Svensson-Lab/AlphaLigand  

under the Apache License, Version 2.0.  

 

Contact for Reagents and Resource Sharing 

Information and requests for resources should be directed to and will be fulfilled by the Lead 

Contacts, Niels Banhos Danneskiold-Samsøe (nbds@stanford.edu) and Katrin J. Svensson 

(katrinjs@stanford.edu). 

 

Statistical analyses  

Differences in ligand length for known ligand-receptor pairs were calculated using the 

Kolmogorov–Smirnov test in MATLAB. We used two-way ANOVA followed by Turkey’s test for 

multiple comparisons of differences in ipTM values between different input domains and IgSF 

binding status for ligand-receptor pairs in GraphPad Prism version 9.5.0 or R version 4.2.1, *p < 

0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. A two-sided Wilcoxon rank sum test in R was used 

to compare differences in iPAE for IgSF pair binding status. All statistical analyzes were done 

on distinct samples without repeated measures. The Shapiro-Wilks test was used to test for 

normality.  
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Figure 1. Ligand-receptor binding prediction accuracy is dependent on the sequence 

input. (A) PDB structure (PDB id: 6sf1) and contact map of the BMP10-ACVRL1 complex 

complementary to representative predictions in B-E. (B-E) Structural binding prediction and 

corresponding contact maps (where distances below < 8 Å were considered contacts) of ligand-

receptor pairs comparing full or truncated chains of ligand and receptor. Annotation for a-e: light 
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green cartoon: PDB database receptor, dark green cartoon: AF2 predicted receptor, light blue 

cartoon: PDB database ligand, dark blue cartoon: AF2 predicted ligand, magenta: contact points. 

Tick labels indicate residue position in full length canonical protein (BMP10 accession= O95393, 

AVCRL1 accession=P37023). (F-L) ipTM of the ligand-receptor pairs (F) BMP10-ACVRL1,  (G) 

BMP10-BMPR1A, (H) BMP10-BMPR1B, (I) AMH-AMHR2, (J) ALKAL1-ALK, (K) ALKAL1-LTK, 

and (L) CD160-TNFRSF14 predicted by AF2 using either of the following annotated regions from 

UniProt: secreted ligand/chain, full ligand (pro-region and secreted ligand/chain without signal-

peptide), extracellular (extracellular without signal peptide), intracellular + extracellular (full 

canonical sequence without signal peptide). The predictions are the median± 95% CI of five 

independent predictions for each ligand-receptor pair (n=5). Two-way ANOVA followed by 

Turkey’s test was used for multiple comparisons of differences in ipTM values between different 

input conditions for ligand-receptor pairs in GraphPad Prism version 9.5.0, *p < 0.05, **p < 0.01, 

***p < 0.001, ****p < 0.0001.  
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Figure 2. Construction and properties of a structural library of 1,107 single-pass 

transmembrane receptors. (A) Schematic of the receptor library construction. 1: Extract human 

entries with the keyword either “receptor” or “transmembrane” n=47,956. 2: Retain entries with 

subcellular location [CC] either “Single-pass type I, II, III or IV membrane protein” and not “Multi -

pass” n=6,588. 3: Retain entries with keyword and subcellular location [CC] either “Membrane” 

or “Cell membrane” n=3,165. 4: Exclude duplicated gene names, for each gene retaining entries 

with longest sequences n=1,969. 5: Remove entries without an annotated gene name according 

to UniProt n=1,480. 6: Retain entries with an annotated topological domain n=1,251. 7: Remove 

entries without an extracellular domain including start and end n=1,157. 8: Exclude receptors 

with an extracellular domain shorter than 16 amino acids and longer than 3,000 amino acids, 

n=1,107. (B) Hierarchical classification of the receptors in the library categorized by functional 

annotation as defined by the membranome database as per the third of March 2023. (C) 

Schematic diagram of single-pass transmembrane receptor classified by type. (D) Canonical 

protein sequence length for ligands that bind either multi-pass or single-pass receptors 

expressed as amino acids (KS test p =10-14), n=173 multi-pass, n=64 single-pass. Significant 

differences in ligand length for known ligand-receptor pairs were calculated using the 

Kolmogorov–Smirnov test. 

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 15, 2023. ; https://doi.org/10.1101/2023.03.16.531341doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.16.531341
http://creativecommons.org/licenses/by-nc-nd/4.0/


  

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 15, 2023. ; https://doi.org/10.1101/2023.03.16.531341doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.16.531341
http://creativecommons.org/licenses/by-nc-nd/4.0/


  

Figure 3. Performance and accuracy of binding prediction in a validated ligand-receptor 

test set. (A) Approach and metric for scoring of binding of ligands against the single-pass 

transmembrane receptor library. (B-I) Binding screens for test ligands. (B) Binding prediction of 

anti-Mullerian hormone (AMH), (C) bone morphogenic protein 10 (BMP10), (D) ALK and LTK 

ligand 1 (ALKAL1), (E) interleukin-25 (IL25), (F) CD160, (G) Fetuin-B (FETUB), (H) IL27, and (I) 

neural EGFL like 2 (NELL2) to the receptor library. Values are expressed as ranked penalized 

ipTM. The predictions are the median minus median absolute deviation of five independent 

predictions for each ligand-receptor pair. Computation was insufficient to predict structures for 

AMH-DCHS1 (n=1106-1107). (J-N) Representative structural binding prediction of ligand-

receptor pairs comparing the PDB structures with AF2 (light blue: ligand in PDB, light green: 

receptor in PDB, dark blue: predicted ligand, dark green: predicted receptor) for (J) IL27-IL27Ra, 

(K) ALKAL1-LTK, (L) IL25-IL17RA/B, (M) CD160-TNFRSF14, and (N) FETUB-MEP1A. PDB 

structures used: IL17-IL27Ra (7u7n), ALKAL1-LTK (7nx0), IL25-IL17RA/B (7uwj), CD160-

TNFRSF14 (7msg), FETUB-MEP1A (7uai). A two-sided Wilcoxon signed-rank test was used to 

compare differences in ipTM between non-binders (negative) and validated binders (positive) in 

R version 4.2.1. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 15, 2023. ; https://doi.org/10.1101/2023.03.16.531341doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.16.531341
http://creativecommons.org/licenses/by-nc-nd/4.0/


  

Figure 4. Performance using experimentally validated extracellular protein 

interactions. (A) Heatmap of ligand-receptor interactions that were previously experimentally 

tested in Wojtowicz et al. and elsewhere. Fill shows penalized ipTM values for ligand-receptor 

pairs of AlphaFold prediction. AlphaFold failed to predict any ligand-receptor pairs for the gene 
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‘LRFN5’ using CPUs. It was therefore dropped. Two other pairs ‘NFASC-PTPRF’ and ‘PTPRS-

NRCAM’ failed prediction yielding 3,401 combinations. Gray rim: predictions that were present 

in the PDB database at AlphaFold training (but not identified in Wojtowicz et al), salmon pink 

rim: structure available in the PDB database, released after AlphaFold training date cut-off, 

green rim: structure released after AlphaFold training date cut-off available the PDB database, 

but binding not found in Wojtowicz et al., pink rim: binding reported in Wojtowicz et al. (B) 

Relationship between penalized ipTM value and rank for each protein for IgSF pairs reported to 

bind in Wojtowicz et al. (n=104), Spearman correlation coefficient=-0.93 (C) Penalized ipTM 

value as a function of rank for non-binding ligand-receptor predictions grouped by whether the 

ligand was successfully predicted (ipTM > 0.5) to bind its reported receptor by Wojtowicz et al. 

(n=919-2430). (D) Receiver operating curves (ROC) as a function of the number of predictions 

with a penalized ipTM  value > 0.5. (E) rank of highest ranked binding receptor as for each ligand 

grouped by number of predictions where the penalized ipTM value > 0.5 (n=2-7). Spearman 

correlation coefficient=0.352 (p <0.05). (F) Top ranking structural binding prediction for LEP 

LEPR comparing the PDB structure (8avf) with AF2 (light blue: ligand in PDB, light green: 

receptor in PDB, dark blue: predicted ligand, dark green: predicted receptor). (G) iPAE by binding 

status of predictions with and ipTM >0.5 and a rank ≤ 4. Blue: not reported to bind, magenta: 

binding in either Wojtowicz et al. or pair released in PDB after AlphaFold training date cut-off 

(n=24-63). Boxplot displaying median, first and third quartiles and 1.5 times inter quartile range. 

A two-sided The Dunn’s test and the Wilcoxon signed rank test were used to compare 

differences in penalized ipTM and median iPAE respectively, between non-binders (negative) 

and validated binders (positive). P-values were adjusted for multiple testing using the Holm 

method in R version 4.2.1. 
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Figure 5. Identification of novel ligand-receptor binding pairs. 

(A) Schematic of orphan ligands tested using AlphaLigand. Ligands are grouped by tissue (outer 

text) with maximum RNA expression, inner text=gene name. Color codes going from outer to 

inner most ring denote: 1) gray=central nervous system, white=other. 2) Tissue distribution 
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according to Human Protein Atlas. 3) location of secreted protein. 4) annotated function. All 

annotations were according to the Human Protein Atlas. (B) top one to three ranked ligand-

receptor pairs with penalized ipTM > 0.5 for 45 orphan ligands (n=121). Green stippled line 

indicates upper 95% confidence interval of iPAE for succeeded IgSF predictions. Computational 

resources were insufficient to predict all five models for between 2-240 (median=19) ligand-

receptor pairs across orphan ligands (Extended Data Table S4). The ipTM values of these 

structures were < 0.4. Based on the results from known ligand-receptor pairs, the chance of 

these structures ending with an ipTM value > 0.6 was below 0.1 percent. We therefore did not 

attempt to finish all five predictions (C) Left: representative predicted structure of the STC2-

FXYD4 ligand-receptor pair matched with the partial crystal structure of STC2-PAPP-A (8a7d), 

blue cartoon: predicted structure of STC2, blue surface: crystal structure of STC2, green cartoon: 

predicted structure of the ECD of FXYD4, beige surface: crystal structure of PAPP-A. Upper 

right: contact points between STC2 and FXYD4, purple: predicted STC2, magenta: contact 

points. Lower right: contact points between STC2 and PAPPA-A, blue: STC2 (8a7d), magenta: 

contact points. (D) Left: representative predicted structure of the CDNF-ACVR2B ligand-receptor 

pair matched with the partial crystal structure of ACVR2B-GDF11 (7mrz), blue cartoon: predicted 

structure of CDNF, green cartoon: predicted structure of ACVR2B, green surface: crystal 

structure of ACVR2B, beige: crystal structure of GDF11. Upper right: Upper right: contact points 

between CDNF and ACVR2B, dark green: predicted ACVR2B, magenta: contact points. Lower 

right: contact points between ACVR2B, and GDF11, light green: ACVR2B (7mrz), magenta: 

contact points. Contacts were defined as van der Waals radii ≥ -0.4 Å.          
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Figure S1. Binding prediction of single-pass receptor ligand complexes of AMH-AMHR2 

using full or truncated sequences. (A-E) Structural binding prediction and corresponding 

contact maps for, light green: pdb database AMH, dark green: AF2 predicted AMH, light blue: 

PDB database AMHR2, dark blue: AF2 predicted AMHR2, purple: contacts (A) PDB entry, (B) 
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secreted ligand and extracellular domain (ECD) of receptor, (C) secreted AMH and full 

receptor including intra (ICD), transmembrane (TCD) and ECD, (D) full ligand and ECD and 

(E) full ligand and full receptor. Tick labels indicate residue position in full length canonical 

protein (AMH accession= P03971, AMHR2 accession=Q16671). 
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Figure S2. Composition of the single pass transmembrane receptor library. (A) Pie graph 

of tissue distribution of the receptors in the library according to the human protein atlas (HPA). 

(B) Receptor expression (mean nTPM) relative to the number of receptors (# Receptors) 

across tissues. (C) Receptor expression as mean normalized transcript per million (nTPM) 
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relative to the number of tissues each receptor is expressed in. Each dot represents a 

receptor. Colors denote tissue distribution according to HPA. (D) Pie graph of the tissue 

expression of receptors in the library. (E) Receptor expression (mean nTPM) relative the 

number of receptors (# receptors) across cell types. (F) Classification of molecular functions 

for receptors in the library. 
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Figure S3. AF2 accurately predicts single-pass receptors for secreted ligands. (A) 

predicted structure of the NELL2-ROBO3 complex. Annotation as follows: light green cartoon 

and surface: PDB database receptor, dark green cartoon: AF2 predicted receptor, light blue 

cartoon and surface: PDB database ligand, dark blue cartoon: AF2 predicted ligand. (B) 

ranking of first hit when using the scoring metrics average ipTM, median ipTM, or penalized 

ipTM and pDockQ. Mean and 95% CI indicated. 
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Figure S4. AF2 accurately predicts single-pass receptors for secreted ligands. (A) 

Approach and metric for scoring binding of single-pass transmembrane receptors against a 

ligand library. (B) Schematic of ligand library construction. 1: Extract human entries annotated 

as secreted [SL-0243] under subcellular location n=3,845. 2: Retain reviewed entries n=2,097. 

3: Exclude secreted peptides/proteins with an extracellular domain shorter than 16 amino acids 

n=2,093 and 4: longer than 2,000 amino acids n=2,039. 5: Keep proteins with annotated gene 

names n=2,023. 6: Remove immunoglobulins with gene names either including “IGH, “IGKC”, 

“IGKV”, “IGLC” or “IGLV” n=1,864. 6: exclude duplicated gene names retaining entry with the 

longest sequence, n=1,862. Binding prediction of (C) AMHR2, (D) IL27RA, (E) LTK, and (F) 

MEP1A to the ligand library. Values are expressed as ranked penalized ipTM. The predictions 

are the median minus median absolute deviation of five independent predictions for each 

ligand-receptor.  
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Figure S5. Ligands that fail prediction may be inferred from AF metrics. (A) Violin plot of 

relationship between rank and ipTM value for binding pairs in Wojtowicz et al. (n=2-79). One 

reported binding ranked fifth, seventh and tenth not shown. (B) correlation between penalized 

ipTM predicted using AlphaFold 2.2.4 and 2.3.1 of 40 ligand-receptor pairs that did not have 

released structures at the training date cutoff for AlphaFold version 2.3.0. (C) Median pTM, 
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iPAE and ranking confidence as a function of rank for non-binding ligand-receptor pairs 

grouped by whether the ligand was successfully predicted (ipTM > 0.5) as binding to a receptor 

also determined to bind in Wojtowicz et al. (n=919-2430). Values are presented as mean ± 

95% CI. (D) ROC curve using pairs identified in Wojtowicz et al. as ground truth (AUC=0.769). 

(E) principal component analysis (PCA) including indicated metrics from predictions in Fig. 4A. 

(F) best prediction of the CD27-CD70 heterodimer overlaid with partial crystal structure (7KX0) 

displaying compound interface, (green cartoon: predicted structure of CD70, blue cartoon 

predicted structure of CD27, green surface: CD70 crystal structure chain A, turquoise surface: 

CD70 crystal structure chain B, blue surface: crystal structure of CD27). 
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Figure S6. Computational cost and mitigation. (A) computation time needed for multiple 

sequence alignments (MSAs) by receptor length in amino acids (AA). (B) CPU time spent per 

receptor in library predicted with BMP10. (C) GPU time spent per receptor in library predicted 

with BMP10. (D) relationship between ipTM value in first prediction and final penalized ipTM 
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value after five predictions for IL27. (E) relationship between median ipTM value in the first two 

predictions and final penalized ipTM value after five predictions for IL27. 
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Supplementary Data Tables 

 

Table S1. Information on the test set of ligand-receptor pairs with release dates after 

AlphaFold2 training date cut-off.  

 

Table S2. Library of single-pass receptors included in receptor screen and secreted proteins in 

ligand screen. 

 

Table S3. List of orphan ligands tested against the receptor screen. This panel was used for 

Fig. 5.  

 

Table S4. Top-ranking receptor hits for 45 orphan ligands with at least one receptor with a 

penalized ipTM value > 0.5. List of orphan ligand-receptor pairs with missing predictions. 

 

Table S5. List and data origin of ligand-receptor pairs either binding single-pass or multi-pass 

receptors used for Fig. 2d. 

 

Table S6. List of genes in the IgSF superfamily used to test the performance of AlphaFold as 

screen related to Fig. 4. 
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