
 1 

Gut microbiota and fecal short chain fatty acids differ with adiposity and country of origin: 1 

The METS-Microbiome Study 2 

 3 

Gertrude Ecklu-Mensah1*, Candice Choo-Kang2*, Maria Gjerstad Maseng3,4,5, Sonya Donato1, 4 

Pascal Bovet6, Kweku Bedu-Addo7, Jacob Plange-Rhule7, Terrence E. Forrester8, Estelle V. 5 

Lambert9, Dale Rae9, Amy Luke2, Brian T. Layden10,11, Stephen O'Keefe12, Jack A. Gilbert1**, Lara 6 

R. Dugas 2, 13** 7 

  8 

*Authors contributed equally. 9 

  10 

1Department of Pediatrics, University of California San Diego, La Jolla, CA, USA 11 

2 Public Health Sciences, Parkinson School of Health Sciences and Public Health, Loyola 12 

University Chicago, Maywood, IL, USA 13 

3 Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway. 14 

4 Dep. of Gastroenterology, Oslo University Hospital, Oslo, Norway. 15 

5 Bio-Me, Oslo, Norway. 16 

6 University Center for Primary Care and Public Health (Unisanté), Lausanne, Switzerland& 17 

Ministry of Health, Republic of Seychelles Department of Physiology, SMS,  18 

7 Kwame Nkrumah University of Science and Technology, Kumasi, Ghana 19 

8 Solutions for Developing Countries, University of the West Indies, Mona, Kingston, Jamaica 20 

9 Research Unit for Exercise Science and Sports Medicine, University of Cape Town, Cape Town, 21 

South Africa 22 

10 Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA 23 

11 Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA. 24 

12 Department of Medicine, University of Pittsburgh, PA, USA 25 

13 Division of Epidemiology and Biostatistics, School of Public Health, Faculty of Health Sciences, 26 

University of Cape Town, Cape Town, South Africa. 27 

 28 

Funding: This work is supported by the National Institutes of Health grant R01-DK111848 29 

 30 

**Co-Corresponding authors: Jack A Gilbert PhD, Email: jagilbert@health.ucsd.edu; Lara Dugas, 31 

PhD, MPH, Email: ldugas@luc.edu 32 

  33 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 22, 2023. ; https://doi.org/10.1101/2023.03.21.533195doi: bioRxiv preprint 

mailto:jagilbert@health.ucsd.edu
mailto:ldugas@luc.edu
https://doi.org/10.1101/2023.03.21.533195
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

Abstract 34 

The relationship between the gut microbiota, short chain fatty acid (SCFA) metabolism, and 35 

obesity remains unclear due to conflicting reports from studies with limited statistical power. 36 

Additionally, this association has rarely been explored in large scale diverse populations. Here, 37 

we investigated associations between fecal microbial composition, predicted metabolic potential, 38 

SCFA concentrations, and obesity in a large (N = 1,934) adult cohort of African-origin spanning 39 

the epidemiologic transition, from Ghana, South Africa, Jamaica, Seychelles, and the United 40 

States (US). The greatest gut microbiota diversity and total fecal SCFA concentration was found 41 

in the Ghanaian population, while the lowest levels were found in the US population, respectively 42 

representing the lowest and the highest end of the epidemiologic transition spectrum. Country-43 

specific bacterial taxa and predicted-functional pathways were observed, including an increased 44 

prevalence of Prevotella, Butyrivibrio, Weisella and Romboutsia in Ghana and South Africa, while 45 

Bacteroides and Parabacteroides were enriched in Jamaican and the US populations. 46 

Importantly, 'VANISH' taxa, including Butyricicoccus and Succinivibrio, were significantly enriched 47 

in the Ghanaian cohort, reflecting the participants' traditional lifestyles. Obesity was significantly 48 

associated with lower SCFA concentrations, a decrease in microbial richness, and dissimilarities 49 

in community composition, and reduction in the proportion of SCFA synthesizing bacteria 50 

including Oscillospira, Christensenella, Eubacterium, Alistipes, Clostridium and Odoribacter. 51 

Further, the predicted proportions of genes in the lipopolysaccharide (LPS) synthesis pathway 52 

were enriched in obese individuals, while genes associated with butyrate synthesis via the 53 

dominant pyruvate pathway were significantly reduced in obese individuals. Using machine 54 

learning, we identified features predictive of metabolic state and country of origin. Country of origin 55 

could accurately be predicted by the fecal microbiota (AUC = 0.97), whereas obesity could not be 56 

predicted as accurately (AUC = 0.65). Participant sex (AUC = 0.75), diabetes status (AUC = 0.63), 57 

hypertensive status (AUC = 0.65), and glucose status (AUC = 0.66) could all be predicted with 58 

different success. Interestingly, within country, the predictive accuracy of the microbiota for 59 

obesity was inversely correlated to the epidemiological transition, being greatest in Ghana (AUC 60 

= 0.57). Collectively, our findings reveal profound variation in the gut microbiota, inferred 61 

functional pathways, and SCFA synthesis as a function of country of origin. While obesity could 62 

be predicted accurately from the microbiota, the variation in accuracy in parallel with the 63 

epidemiological transition suggests that differences in the microbiota between obesity and non-64 

obesity may be larger in low-to-middle countries compared to high-income countries. Further 65 

examination of independent study populations using multi-omic approaches will be necessary to 66 

determine the factors that drive this association.  67 
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Introduction 68 

Obesity, which affects more than 600 million adults worldwide (“Obesity and Overweight” n.d.), 69 

over a third of Americans (Hales et al. 2020), and accounts for over 60% of deaths related to high 70 

body mass index (BMI) (Tseng and Wu 2019), remains an ongoing global health epidemic that 71 

continues to worsen at an alarming rate. A major driver of obesity is the adoption of a western 72 

lifestyle, which is characterized by excessive consumption of ultra-processed foods. Obesity is a 73 

major risk factor for type 2 diabetes, and according to the most recent National Diabetes Statistics 74 

Report almost 13% of the adult US population now have diabetes. Not only do 49.6% of adult 75 

African Americans present with obesity but over 17% of them now have diabetes, and are 1.5 76 

times as likely to present with type 2 diabetes compared to whites (“National Diabetes Statistics 77 

Report” 2022). Populations of African-origin outside of the US are experiencing similar fates, as 78 

the prevalence of obesity among adults living in Sub-Saharan Africa is greater than 13%, and 79 

higher than the global obesity prevalence for adults (Agyemang et al. 2016). This has been 80 

accompanied by dramatic increases in the prevalence of non-communicable diseases such as 81 

type two diabetes and hypertension among people of African-origin (Roth et al. 2020; Gouda et 82 

al. 2019). Therefore, disrupting the rapidly expanding obesity epidemic, particularly among 83 

African-origin populations is critical to controlling the cardiometabolic disorder epidemic (Geng et 84 

al. 2022). However, successfully managing and treating obesity and its comorbidities, and 85 

specifically maintaining weight loss long-term, is particularly challenging due to an incomplete 86 

understanding of the heterogeneous and complex etiopathology, as well as additional challenges 87 

facing populations experiencing rapid urbanization (Nordmo, Danielsen, and Nordmo 2020; Geng 88 

et al. 2022; Barone et al. 2022). The epidemiologic transition is a model able to capture these 89 

shifts in dietary and rural to urban movements and is characterized by diets that are high in ultra-90 

processed foods with a significant loss in fiber, as evidenced in the US, where less than 50% of 91 

the population meet dietary fiber recommendations (Dahl and Stewart 2015). 92 

Gut microbial ecology and metabolism play pivotal roles in the onset and progression of obesity 93 

and its related metabolic disorders (Ley 2010). Obese and lean individuals have reported 94 

differences in the composition and functional potential of the gut microbiome, with an overall 95 

reduction in species diversity in the obese gut (Dugas, Bernabé, et al. 2018; Greenblum, 96 

Turnbaugh, and Borenstein 2012; Jumpertz et al. 2011; Ley et al. 2006; Turnbaugh et al. 2009; 97 

Le Chatelier et al. 2013), additionally, fecal microbiota transfer from obese donors to mouse 98 

models can recapitulate the obese phenotype (Turnbaugh et al. 2006, 2008; Ridaura et al. 2013). 99 

Further, fecal microbiota transplant from healthy donors into patients with obese and metabolic 100 

syndrome has been shown to improve markers of metabolic health in the recipients (Vrieze et al. 101 

2012). While these studies suggest that modification of microbial ecology may offer new options 102 

for the treatment and prevention of obesity, the mechanism that drives the microbiota-obesity 103 

relationship is not fully understood. The microbiota may facilitate greater energy exploitation from 104 

food, and storage capacity by the host (Turnbaugh et al. 2006; DiBaise et al. 2008), influencing 105 

adipose tissue composition and fat mass gain, as well as providing chronic low-grade 106 

inflammation and insulin resistance (Cani and Delzenne 2009; J. L. Sonnenburg and Bäckhed 107 

2016).  108 

Among the numerous microbial metabolites modulating obesity, there is an ever-growing interest 109 

in the role of short-chain fatty acids (SCFAs), which includes butyrate, acetate, and propionate as 110 
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potential biomarkers for metabolic health as well as therapeutic targets. SCFAs derive primarily 111 

from microbial fermentation of non-digestible dietary fiber in the colon. They have many effects 112 

on host metabolism including serving as an energy source for host colonocytes, used as 113 

precursors for the biosynthesis of cholesterol, lipids, proteins and regulating gut barrier activities 114 

(Dalile et al. 2019; Koh et al. 2016; van der Hee and Wells 2021). Human and animal studies 115 

demonstrate a protective role of SCFAs in obesity and metabolic disease. In experimental animal 116 

models, SCFA supplementation reduces body weight, improves insulin sensitivity, and reduces 117 

obesity-associated inflammation (Vinolo et al. 2011; Gao et al. 2009; Henagan et al. 2015; Lu et 118 

al. 2016; Bonomo et al. 2020). In humans, increased gut production of butyrate correlates with 119 

improved insulin response after an oral glucose-tolerance test (Sanna et al. 2019). Although 120 

increased SCFA levels are generally observed as positive for health (Valdes et al. 2018), other 121 

studies have suggested that overproduction may promote obesity, possibly resulting from greater 122 

energy accumulation (Schwiertz et al. 2010; Rahat-Rozenbloom et al. 2014; Teixeira et al. 2013). 123 

Indeed, a previous study observed greater fecal SCFA concentrations to be linked with obesity, 124 

increased gut permeability, metabolic dysregulation, and hypertension in a human cohort (de la 125 

Cuesta-Zuluaga, Mueller, et al. 2018). 126 

The conflicting obesity role of SCFAs identified by existing studies may result from the variation 127 

in the gut microbiota, which is shaped by lifestyle and diet. Adequately powered studies in well -128 

characterized populations may permit more rigorous assessments of individual differences. Prior 129 

comparative epidemiological studies have broadly focused on either contrasting the gut 130 

microbiota of extremely different populations, such as the traditional hunter-gatherers and urban-131 

westernized countries, or ethnically homogenous populations (Pasolli et al. 2019; He et al. 2018; 132 

Peters et al. 2018; Zhernakova et al. 2016). Demographic factors represent one of the largest 133 

contributors to the individualized nature of the gut microbiome (Falony et al. 2016; Zhernakova et 134 

al. 2016; Yatsunenko et al. 2012). Thus, it is unclear to what extent the associations between gut 135 

microbiome, SCFA and obesity generalize across different geographies and this, additionally 136 

limits our understanding and interpretation, especially when considering the substantial 137 

geographic disparities in obesity. 138 

The five diverse, well-defined cohorts from the Modeling the Epidemiologic Transition Study 139 

(METS) offers a unique opportunity to examine the issues since they are more representative of 140 

most of the world’s population. METS has longitudinally followed an international cohort of 141 

approximately 2,500 African-origin adults spanning the epidemiologic transition from Ghana, 142 

South Africa, Jamaica, Seychelles, and the US since 2010 to investigate differences in health 143 

outcomes utilizing the framework of the epidemiologic transition. Pioneering microbiome studies 144 

from the METS cohorts reveal that cardiometabolic risk factors including obesity is significantly 145 

associated with reduced microbial diversity, and the enrichment of specific taxa and predicted 146 

functional traits in a geographic-specific manner (Dugas, Bernabé, et al. 2018; Fei et al. 2019). 147 

While yielding valuable descriptions of the connections between the gut microbiota ecology and 148 

disease, particularly obesity, as well as pioneering the efforts of microbiome studies of populations 149 

of African-origin on different stages of the ongoing nutritional epidemiologic transitions, these 150 

studies, however, have applied small sample size (N=100 to N=655), and also did not utilize all 151 

the countries in the METS cohort. Thus, uncertainties remain as to the precise interpretation of 152 
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the microbiome-obesity associations, which hampers further progress towards diagnostic and 153 

clinical applications. 154 

Our new study METS-Microbiome investigated associations between the gut microbiota 155 

composition and functional patterns, concentrations of fecal SCFAs and obesity in a large 156 

(N = 1,934) adult population cohort of African-origin, comprised of Ghana, South Africa, Jamaica, 157 

Seychelles, and the US spanning the epidemiologic transition (Dugas, Lie, et al. 2018; Luke et al. 158 

2011). The central hypothesis is that shifts towards the highest end of the epidemiologic transition 159 

spectrum is associated with alterations in microbiota diversity and community composition, 160 

reductions in levels of fecal SCFAs and obesity. 161 

 162 

Materials and Methods 163 

Study Cohort. Since 2010, METS, and the currently funded METS-Microbiome study has 164 

longitudinally followed an international cohort of African-origin adults spanning the epidemiologic 165 

transition from Ghana, South Africa, Jamaica, Seychelles, and US (Dugas, Lie, et al. 2018; Luke 166 

et al. 2011). METS utilizes the framework of the epidemiologic transition to investigate differences 167 

in health outcomes based on country of origin. The epidemiologic transition is defined using the 168 

United Nations Human Development Index (HDI) as an approximation of the epidemiologic 169 

transition. Ghana represents a lower-middle income country, South Africa represents a middle-170 

income country, Jamaica and Seychelles represent high income countries and the US represents 171 

a very high-income country. This framework has allowed us to investigate aspects of increased 172 

Westernization throughout the world (ex. increased consumption of ultra-processed foods) are 173 

related to increased prevalence of obesity, diabetes and cardiometabolic diseases. Our data from 174 

the original METS cohort demonstrate that the epidemiologic transition has altered habitual diets 175 

in the international METS sites, and that reduced fiber intake is associated with higher metabolic 176 

risk, inflammation, and obesity across the epidemiologic transition (Mehta et al. 2021). Originally, 177 

2,506 African-origin adults (25–45 yrs), were enrolled in METS between January 2010 and 178 

December 2011 and followed on a yearly basis. In 2018, METS participants were recontacted 179 

and invited to participate in METS-Microbiome. Participants were excluded from participating in 180 

the original METS study if they self-reported an infectious disease, including HIV-positive 181 

individuals, pregnancy, breast-feeding or any condition which prevented the individual from 182 

participating in normal physical activities. METS-Microbiome was approved by the Institutional 183 

Review Board of Loyola University Chicago, IL, US; the Committee on Human Research 184 

Publication and Ethics of Kwame Nkrumah University of Science and Technology, Kumasi, 185 

Ghana; the Research Ethics Committee of the University of Cape Town, South Africa; the Board 186 

for Ethics and Clinical Research of the University of Lausanne, Switzerland; and the Ethics 187 

Committee of the University of the West Indies, Kingston, Jamaica. All study procedures were 188 

explained to participants in their native languages, and participants provided written informed 189 

consent after being given the opportunity to ask any questions.  190 

Participant anthropometry, sociodemographic and biochemical measurements. Participants 191 

completed the research visits at the established METS research clinics located in the respective 192 

communities (Luke et al. 2011). Briefly, they presented themselves at the site-specific research 193 

clinic early in the morning, following an overnight fast. The weight of the participant was measured 194 
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without shoes and dressed in light clothing to the nearest 0.1 kg using a standard digital scale 195 

(Seca, SC, USA). Height was measured using a stadiometer without shoes and head held in the 196 

Frankfort plane to the nearest 0.1 cm. Waist circumference was measured to the nearest 0.1 cm 197 

at the umbilicus, while hip circumference was measured to the nearest 0.1 cm at the point of 198 

maximum extension of the buttocks. Adiposity (% body fat) was assessed using BIA (Quantum, 199 

RJL Systems, Clinton Township, MI), and study specific equations (Luke et al. 2011). Blood 200 

pressure was measured using the standard METS protocol using the Omron Automatic Digital 201 

Blood Pressure Monitor (model HEM-747Ic, Omron Healthcare, Bannockburn, IL, USA), with the 202 

antecubital fossa at heart level. Participants were asked to provide a fecal sample using a 203 

standard collection kit (EasySampler stool collection kit, Alpco, NH). Fecal samples were placed 204 

within a -80° freezer immediately upon receipt at all the sites. Participants were requested to fast 205 

from 8 pm in the evening prior to the clinic examination, during which fasting capillary glucose 206 

concentrations were determined using finger stick (Accu-check Aviva, Roche).  207 

Fecal Short Chain Fatty Acid quantification. As in our previous studies (Nooromid et al. 2020; 208 

Lewandowski et al. 2021; Reiman, Layden, and Dai 2021; Barengolts et al. 2019; Navarro et al. 209 

2018; Dugas, Bernabé, et al. 2018), fecal SCFAs were measured using LC-MC/MS at the 210 

University of Illinois-Chicago Mass Spectrometry Core using previously published methods 211 

(Moreau et al. 2003; Richardson et al. 1989). The LC-MC/MS analysis was completed on an AB 212 

Sciex Qtrap 5500 coupled to Agilent UPLC/HPLC system. All samples were analyzed by Agilent 213 

poroshell 120 EC-C18 Column, 100Å, 2.7 µm, 2.1 mm X 100 mm coupled to an Agilent UPLC 214 

system, which was operated at a flow rate of 400 µl/min. A gradient of buffer A (H20, 0.1% Formic 215 

acid) and buffer B (Acetonitrile, 0.1% Formic acid) were applied as: 0 min, 30% of buffer B; 216 

increase buffer B to 100% in 4 min; maintain B at 100% for 5 min. The column was then 217 

equilibrated for 3 min at 30% B between the injections with the MS detection is in negative mode. 218 

The MRM transitions of all targeted compounds include the precursor ions and the signature 219 

production ion. Unit resolution is used for both analyzers Q1 and Q3. The MS parameters such 220 

as declustering potential, collision energy and collision cell exit potential are optimized in order to 221 

achieve the optimal sensitivity. SCFAs are presented as individual SCFAs (μg/g), including: 222 

butyric acid, propionic acid, acetic acid and valeric acid, as well as total SCFAs (sum of 4). 223 

METS data showed Ghanaians consumed the greatest amount of both soluble and insoluble fiber 224 

and had the lowest percentage energy from fat (42.5% of the Ghanaian cohort, dietary fiber intake: 225 

24.9 g ± 9.7g/day). The US has the highest proportion of energy from fat and the lowest fiber 226 

intake of the five sites (3.2% of the US cohort, dietary fiber intake: 14.2 g ± 7.1 g/day). 227 

DNA extraction, Amplicon Sequencing. Fecal samples were shipped on dry ice to the microbiome 228 

core sequencing facility, University of California, San Diego for 16S rRNA gene processing. Fecal 229 

samples were randomly sorted, transferred to 96‐well extraction plates and DNA was extracted 230 

using MagAttract Power Microbiome kit. Blank controls and mock controls (ZymoBiomics) were 231 

included per extraction plate, which were carried through all downstream processing steps. 232 

Extracted DNA was used for amplification of the V4 region of the 16S rRNA gene with 515F-806R 233 

region-specific primers according to the Earth Microbiome Project (Thompson et al. 2017; Walters 234 

et al. 2016). Purified amplicon libraries were sequenced on the Illumina NovaSeq platform to 235 

produce 150 bp forward and reverse reads through the IGM Genomics Center, University of 236 

California San Diego.  Full DNA extraction, amplification, quantification, and sequencing protocols 237 
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and standards are available at http://www.earthmicrobiome.org/protocols-and-standards; 238 

(Thompson et al. 2017). 239 

Bioinformatic analysis. The generated raw sequence data were uploaded and processed in Qiita 240 

(Gonzalez et al. 2018) (Qiita ID 13512) an open-source, web-enabled microbiome analysis 241 

platform. Sequences were demultiplexed, quality filtered, trimmed, erroneous sequences were 242 

removed, and amplicon sequence variants (ASVs) were defined using Deblur  (Amir et al. 2017). 243 

The deblur ASV table was exported to Qiime2 (Bolyen et al. 2019; Bokulich et al. 2018) and 244 

representative sequences of the ASVs were inserted into the Greengenes 13.8 99% identity tree 245 

with SATé-enabled phylogenetic placement (SEPP) using q2-fragment-insertion (Bolyen et al. 246 

2019; Mirarab, Nguyen, and Warnow 2012) to generate an insertion tree for diversity computation. 247 

Additionally, the deblur ASV table was assigned taxonomic classification using the Qiime2 248 

feature-classifier, with Naive Bayes classifiers trained on the SILVA database (version 138; 249 

(McLaren 2020)). A total of 463,258,036 reads, 154,952 ASVs and 1902 samples were obtained 250 

from the deblur table. The resulting ASV count table, taxonomy data, insertion tree, and sample 251 

metadata were exported and merged into a phyloseq (McMurdie and Holmes 2013) object in R 252 

(R Foundation for Statistical Computing, Vienna, Austria) for downstream analysis. Features with 253 

less than ten reads in the entire dataset and samples with fewer than 6,000 reads were removed 254 

from the phyloseq object. In addition, mitochondrial and chloroplast-derived sequences, non-255 

bacterial sequences, as well as ASVs that were unassigned at phylum level were filtered prior to 256 

analyses. There were 433,364,873 reads and 13254 ASVs in the remaining 1873 fecal samples 257 

in the phyloseq object. The remaining samples after filtering were rarefied to a depth of 6,000 258 

reads to avoid sequencing bias, before generating alpha diversity measures, leaving 9917 ASVs 259 

across 1873 samples.  260 

Diversity and differential proportional analyses: Alpha diversity measures based on Observed 261 

Amplicon Sequence Variants (ASVs), Faith’s Phylogenetic Diversity, and Shannon Index were 262 

conducted on rarified samples using phyloseq (McMurdie and Holmes 2013) and picante (Kembel 263 

et al. 2010) libraries. Beta diversity was determined using both weighted and unweighted UniFrac 264 

distance matrices (Lozupone and Knight 2005), generated in phyloseq. For differential abundance 265 

analysis, samples were processed to remove exceptionally rare taxa. First, the non-rarefied reads 266 

were filtered to remove samples with < 10,000 reads. Next, ASVs with fewer than 50 reads in total 267 

across all samples and/or were present in less than 2% of samples were excluded. This retained 268 

2061 ASVs across 1694 samples. The retained ASVs were binned at genus level, and 269 

subsequently used in the analysis of compositions of microbiomes with bias correction 270 

(ANCOMBC; (H. Lin and Peddada 2020) to determine specific taxa differentially abundant across 271 

sites or obese phenotype. ANCOM-BC is a statistical approach that accounts for sampling 272 

fraction, normalizes the read counts by a process identical to log-ratio transformations while 273 

controlling for false discovery rates and increasing power. This method applies a library-specific 274 

offset term estimated from the observed abundance, which is incorporated into a linear regression 275 

model, providing the bias correction. Site, age, sex, BMI were added as covariates in the ANCOM-276 

BC formula to reduce the effect of confounders. The Bacteroides Prevotella ratio was calculated 277 

by dividing the abundance of the genera Bacteroides by Prevotella. Participants were classified 278 

into Bacteroides enterotype (B-type) if the ratio was greater than 1, otherwise Prevotella 279 

enterotype (P-type). 280 
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Random forest classifier: Random Forest supervised learning models implemented in Qiime2 281 

were used to estimate the predictive power of microbial community profiles for site and obese 282 

phenotype. The classifications were done with 500 trees based on 10-fold cross-validation using 283 

the QIIME “sample-classifier classify-samples” plugin (Bokulich et al. 2018). A randomly drawn 284 

80% of samples were used for model training, whereas the remaining 20% were used for 285 

validation. Further, the 30 most important ASVs for differentiating between site or obese 286 

phenotype were predicted and annotated. 287 

Predicted metabolic gene pathway analysis: The functional potential of microbial communities 288 

was inferred using the Phylogenetic Investigation of Communities by Reconstruction of 289 

Unobserved States 2 (PICRUSt2) v2.5.1 with the ASV table processed to remove exceptionally 290 

rare taxa and the representative sequences as input files (Douglas et al. 2020). The metabolic 291 

pathway from the PICRUSt2 pipeline was annotated using the MetaCyc database (Caspi et al. 292 

2016). The predicted MetaCyc abundances (unstratified pathway abundances) were analyzed 293 

with ANCOM-BC to determine differentially abundant pathway associations across sites and 294 

obese status. Site, age, sex, BMI were added as covariates in the ANCOM-BC formula to reduce 295 

the effect of confounders. 296 

Statistical Analysis: All statistical analyses and graphs were done with R software. Kruskal-Wallis 297 

test and Permutational Analysis of Variance (PERMANOVA) test with 999 permutations using the 298 

Adonis function in the vegan package (Oksanen et al. 2013) were performed to compare alpha 299 

and beta diversity measures respectively with multiple groups comparison correction. 300 

PERMANOVA models were adjusted for BMI, age, sex for country whereas age, sex and country 301 

were accounted for in obese groups. Variables that showed significant differences in the 302 

PERMANOVA analyses, PERMDISP test was performed to assess differences in dispersion or 303 

centroids. For differential abundance analysis, the false-discovery rate (FDR) method 304 

incorporated in the ANCOM-BC library was used to correct P values for multiple testing. A cut-off 305 

of Padj < 0.05 was used to assess significance. Spearman correlations were performed between 306 

concentrations of short chain fatty acids, Shannon diversity or concentrations of short chain fatty 307 

acids and differentially abundant taxa that were identified either among study sites or in obese 308 

and non-obese individuals. The resulting p-values were adjusted for multiple testing using the 309 

false-discovery rate (FDR). P value < 0.05 was considered statistically significant. A mixed model 310 

was built using lme4 package to assess whether total SCFAs could be predicted by Shannon 311 

diversity, obesity, and country, setting obesity and Shannon diversity as fixed effects and random 312 

intercept by country.  313 

Data availability: All 16S rRNA gene sequence data are publicly available via the QIITA platform 314 

(https://qiita.ucsd.edu) under the study identifier (ID=13512) and will soon be available on the 315 

European Bioinformatics Institute (EBI) site. 316 

 317 

  318 
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 9 

Results 319 

Obesity differs significantly across the epidemiological transition. From 2018-2019, the METS-320 

Microbiome study recruited 2,085 participants (~60% women) ages 35-55 years old from five 321 

different sites (Ghana, South Africa, Jamaica, Seychelles, and US). Of these participants, 1,249 322 

have been followed on a yearly basis since 2010 under the parent METS study. Data from 1,867 323 

participants with complete data sets were used in this analysis. Overall mean age was 42.5 ± 8.0 324 

years (Table 1). Mean fasted blood glucose was 105.2 ± 39.4 mg/dL, mean systolic blood 325 

pressure was 123.4±18.1 mm Hg and mean diastolic blood pressure was 77.2 ± 13.1 (Table 1).  326 

When compared to the high-income countries (Jamaica, Seychelles, and US), both women and 327 

men from the lower- and middle-income countries (Ghana and South Africa) had significantly 328 

lower BMI, fasted blood glucose and blood pressure (systolic and diastolic). Mean BMI was lowest 329 

in the South African men (22.3 kg/m2 ± 4.1) and highest in US women (36.3 kg/m2 ± 8.8). When 330 

compared to the US, all sites had significantly lower prevalence of obesity (p<0.001 for all sites 331 

except for Seychelles: p=0.02).  Prevalence of hypertension was lowest in Ghanaian men (33.1%) 332 

and highest in US men (72.7%). Prevalence of diabetes was lowest in South African women and 333 

men (3.5% for women and men) and highest for Seychellois men (22.8%). When compared to 334 

the US, prevalence of hypertension and diabetes was significantly lower in countries at the lower 335 

end of the spectrum of HDI (i.e., Ghana and South Africa) when compared to the US (p<0.001). 336 

Microbial community composition and predicted metabolic potential differs significantly between 337 

countries and correlates with obesity. Following the removal of control samples and those that 338 

had fewer than 6,000 reads and features less than ten reads in the entire dataset, a total of 339 

433,364,873 16S rRNA gene sequences were generated from the 1,873 fecal samples which 340 

were clustered into 13,254 ASVs. Country of origin describes most of the variation in microbial 341 

diversity and composition, with significant differences in both alpha and beta diversity. Although 342 

there were major variations in alpha diversity between countries and large degree of inter-343 

individual variation within countries, Ghana showed significantly greater diversity for all the alpha 344 

diversity metrics (Observed ASVs, Shannon Diversity and Faith’s phylogenetic diversity) when 345 

compared to all other countries. The Seychelles and US had the lowest alpha diversity (Figure 1, 346 

Table 2). The stool microbiota alpha diversity of non-obese individuals was significantly greater 347 

when compared with that of obese individuals (Figure 1). Beta diversity was also significantly 348 

different between countries (Figure 1, Table 3 & Supplementary Table 2; principal coordinate 349 

analysis, weighted UniFrac distance; F-statistic =58.67; p < 0.001; unweighted UniFrac distance; 350 

F= 39.87; p < 0.001) and obese group (weighted UniFrac distance; F-statistic =2.39; p = 0.031; 351 

unweighted UniFrac distance; F=6.06; p < 0.001). 352 

Next, we compared fecal microbiota diversity between obese individuals with their non-obese 353 

counterparts within each country independently (Supplementary Table 1). Greater alpha 354 

diversity was detected in non-obese subjects in the Ghanaian (Observed ASVs, Faith PD; p<0.05) 355 

and South African cohorts (Observed ASVs; p<0.05) only. Similarly, significant differences in beta 356 

diversity between obese and non-obese microbiota were observed in Ghana (Unweighted 357 

UniFrac; p<0.05), South Africa (Unweighted UniFrac; p<0.05) and US (Weighted UniFrac; 358 

p<0.05) data sets (Table 3 & Supplementary Table 2). These results suggest that the beta 359 

diversity differences observed in the Ghanaian and South African participants may partly be due 360 

to the presence of more abundant fecal microbiota taxa in the fecal samples whereas among the 361 
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US participants, the differences may be related to the abundance of rare taxa. Collectively, these 362 

observations suggest that country is a major driver of the variance in gut microbiota diversity and 363 

composition among participants with or without obesity with marked contributions from Ghana 364 

and South Africa and modest contribution from the US in the overall cohort. 365 

We also examined whether country of origin or obesity relates to the presence of specific microbial 366 

genera frequently used to stratify humans into enterotypes (Arumugam et al. 2011). As expected, 367 

large differences in enterotype between the countries were observed. The Prevotella enterotype 368 

(P-type) was enriched on the African continent, with 81% and 62% in Ghanaians and South 369 

Africans respectively while Bacteroides enterotype (B-type) was dominant in the US (75%), 370 

Jamaican cohorts (68%), and comparable proportions of both enterotypes among individuals from 371 

Seychelles. Further, obese individuals displayed a greater abundance of B-type whereas a higher 372 

proportion of the P-type associated with the non-obese group (Supplementary Table 3). 373 

Consistent with this observation, the abundance of B-type correlated with higher BMI (p=0.004) 374 

than P-type. Significantly greater diversity and increased levels of total SCFA were observed in 375 

participants in the P-type (Supplementary Table 3). The relative abundance of shared and 376 

unique features between the different countries illustrated by the Venn diagram showed that 377 

Ghana carries the largest proportion of unique taxa than the other countries, and US the lowest 378 

(Figure 1). 379 

Microbial taxa differ significantly between countries and between lean and obese individuals. In 380 

comparison with the US, South African fecal microbiota had a significantly greater proportion of 381 

Clostridium, Olsenella, Bacilli and Mogibacterium; Jamaican samples had a significantly greater 382 

proportion of Bacilli, Bacteroides, Clostridia, Dialister, Enterobacteriaceae, and Oscillospiraceae; 383 

Seychelles samples had a significantly greater proportion of Clostridium, Olsenella and 384 

Haemophilus; and Ghanaian samples had a significantly greater proportion of Clostridium, 385 

Prevotella, Weisella, Enterobacteriaceae and Butyricicoccaceae. The US samples had a 386 

significantly greater proportion of Aldercreutzia, Anaerostipes, Clostridium, Eggerthella, 387 

Eisenbergiella, Ruminococcaceae and Sellimonas compared to the 4 countries (Supplementary 388 

Figure 1). 389 

When adjusted for country, age, and sex (p < 0.05; false discovery rate (fdr)-corrected), 38 390 

Amplicon Sequence Variants (ASVs) were significantly different between obese and non-obese 391 

groups. The obese group was characterized by an increased proportion of Allisonella, Dialister, 392 

Oribacterium, Mitsuokella, and Lachnospira, whereas non-obese microbiota had a significantly 393 

greater proportion of Alistipes, Bacteroides, Clostridium, Parabacteroides, Christensenella, 394 

Oscillospira, Ruminococcaceae (UBA1819), and Oscillospiraceae (UCG010) (Supplementary 395 

Figure 1). 396 

Microbial taxonomic features predict obesity overall and within each country. Using supervised 397 

Random Forest machine learning, the predictive capacity of the gut microbiota features in 398 

stratifying individuals to country of origin, sex, or with metabolic phenotypes were assessed. The 399 

predictive performance of the model was calculated by area under the receiver operating 400 

characteristic curve (AUC) analysis, which showed a high accuracy for country of origin 401 

(AUC = 0.97), and a comparatively lower level of predictive accuracy for obese state (AUC = 0.65) 402 

(Figure 2). Sex was predicted with AUC = 0.75, the diabetes status with AUC = 0.63, hypertensive 403 

status with AUC = 0.65 and glucose status with AUC = 0.66. Random Forest analysis was also 404 
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used to identify the top 30 microbial taxonomic features that differentiate between countries and 405 

obese states. Similar to the ANCOMBC results, Prevotella and Streptococcus were at a greater 406 

proportion in the microbiota of Ghanaian and non-obese individuals, whereas Mogibacterium was 407 

at a greater proportion in the South African cohort.  A greater proportion of Megasphaera was 408 

associated with the Jamaican cohort, while a greater proportion of Ruminococcaceae was 409 

observed in the American microbiota. Weisella, which was identified as having a significantly 410 

greater proportion in the Ghanaian cohort using ANCOMBC, was observed to be a discriminatory 411 

feature for Seychelles microbiota using Random Forest (Supplementary Figure 2). 412 

Similarly, the predictive capacity of the gut microbiota features in stratifying individuals by obese 413 

state was assessed at each of the five study sites. The predictive performance of the model was 414 

calculated by AUC analysis, which showed a moderate accuracy for obese state for all sites, 415 

namely, Ghana (AUC = 0.57), South Africa (AUC = 0.52), Jamaica (AUC = 0.48), Seychelles 416 

(AUC = 0.43) and US (AUC = 0.52) (Supplementary Figure 3).  417 

Predicted genetic metabolic potential differs by country and obesity status. The predicted potential 418 

microbial functional traits resulting from the compositional differences in microbial taxa between 419 

countries and obese state were assessed. PICRUSt2 predicted a total of 372 MetaCyc functional 420 

pathways. ANCOM-BC analysis adjusted for sex, age and BMI identified 67 pathways (p< 0.05; 421 

false discovery rate (fdr)-corrected), LFC>1.4) that accounted for discriminative features between 422 

the 4 different countries with the US (Supplementary Figure 4). In comparison with US, MetaCyc 423 

pathways differentially increased in Ghana and Jamaica include methylgallate degradation, 424 

norspermidine biosynthesis (PWY-6562), gallate degradation I pathway, gallate degradation II 425 

pathway, histamine degradation (PWY-6185), and toluene degradation III (via p-cresol) (PWY-426 

5181). South African samples had a greater proportion of L-glutamate degradation VIII (to 427 

propanoate) (PWY-5088), isopropanol biosynthesis (PWY-6876), creatinine degradation (PWY-428 

4722), adenosyl cobalamin biosynthesis (anaerobic) (PWY-5507), respiration I (cytochrome c) 429 

(PWY-3781). MetaCyc pathways linked to norspermidine biosynthesis (PWy-6562), mycothiol 430 

biosynthesis (PWY1G-0), were at a greater proportion in the Seychelles samples, whereas 431 

reductive acetyl coenzyme A (CODH-PWY), and chorismate biosynthesis II (PWy-6165) were 432 

depleted in the US samples. ANCOM-BC analysis adjusted for site, sex and age identified 24 433 

predicted pathways that differentiated between obese and non-obese individuals 434 

(Supplementary Figure 4). Notably, the microbiota of non-obese individuals had a greater 435 

proportion of predicted pathways including the TCA cycle, amino acid metabolism (P162-PWY, 436 

PWY-5154, PWY-5345), ubiquinol biosynthesis-related pathways (PWY-5855, PWY-5856, PWY-437 

5857, PWY-6708, UBISYN-PWY), cell structure biosynthesis and nucleic acid processing (PWY0 438 

845, PYRIDOXSYN-PWY). 439 

Next, KEGG orthology (KO) involved in pathways related to butanoate (butyrate) metabolism and 440 

LPS biosynthesis were investigated. Predicted genes involved in butyrate biosynthesis pathways 441 

showed that enoyl-CoA hydratase enzymes (K01825, K01782, K01692), lysine, glutarate 442 

/succinate enzymes (K07250, K00135, K00247), glutarate/Acetyl CoA enzymes (K00175, 443 

K00174, K00242, K00241 K01040, K01039) were differentially abundant in participants from 444 

Ghana, South Africa, Jamaica, and Seychelles in comparison to the US cohort. The relative 445 

abundance of succinic semialdehyde reductase (K18122) was significantly increased only in 446 

South Africa, Jamaica, and Seychelles population. Further, predicted genes proportionally 447 
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abundant only in specific countries were observed. For instance, succinate semialdehyde 448 

dehydrogenase (K18119) was enriched only in the Ghanaian cohort, 4-hydroxybutyrate CoA-449 

transferase (K18122) enriched among South African participants and lysine/glutarate/succinate 450 

enzyme (K14268) differentially abundant within the Seychelles population. The relative 451 

abundance of predicted genes encoded for enzymes such as maleate isomerase (K10799), 3-452 

oxoacid CoA-transferase(K01027) and pyruvate/acetyl CoA (K00171, K00172, K00169) were 453 

greater in the US participants compared with participants from the 4 countries (Supplementary 454 

Figure 5). The non-obese exhibited a significantly greater abundance of genes that catalyze the 455 

production of butyrate via the fermentation of pyruvate or branched amino-acids such as enoyl-456 

CoA hydratase enzyme (K0182), Leucine/Acetyl CoA enzyme (K01640) and pyruvate/acetyl CoA 457 

enzyme (K00171, K00172, K00169, K1907) by contrast obese individuals were differentially 458 

enriched for succinyl-CoA:acetate CoA-transferase (K18118) (Supplementary Figure 5). All 459 

analyses were adjusted for country, sex, BMI and age (fdr-corrected p < 0.05). 460 

Several gut microbial predicted genes involved in LPS biosynthesis differentially enriched among 461 

the countries (p< 0.05; false discovery rate (fdr)-corrected) were identified. In particular, the 462 

relative abundance of specific LPS genes (K02560, K12973, K02849, K12979, K12975, K12974) 463 

were significantly enriched in Ghana, South Africa, Jamaica, and Seychelles when compared with 464 

US. Higher proportions of LPS genes including K12981, K12976 K09953, K03280 were 465 

significantly increased in Seychelles samples in comparison with US samples and also 466 

significantly increased in the US cohorts in comparison with participants from Ghana, South 467 

Africa, and Seychelles. US samples had a greater proportion of the following genes (K15669, 468 

K09778, K07264, K03273, K03271) in comparison with the other 4 countries (Supplementary 469 

Figure 6). Non-obese individuals had a greater abundance of predicted genes encoding LPS 470 

biosynthesis (K02841, K02843, K03271, K03273, K19353, K02850) whereas only 1 LPS gene 471 

(K02841) differentially elevated in the non-obese group (Supplementary Figure 6). All analyses 472 

were adjusted for country, sex, BMI and age (fdr-corrected p < 0.05). 473 

Microbial community composition and predicted metabolic potential correlates with observed fecal 474 

SCFA concentrations. All countries had significantly higher weight-adjusted fecal total SCFA 475 

levels when compared to the US participants (p<0.001), with Ghanaians having the highest 476 

weight-adjusted fecal total SCFA levels (Supplementary Table 4). When compared to their 477 

obese counterparts, non-obese participants had significantly higher weight-adjusted fecal total 478 

and individual SCFA levels (Supplementary Table 5). Total SCFA levels displayed weak, but 479 

significantly positive correlation with Shannon diversity (r = 0.0.074). A similar trend was observed 480 

in the different individual SCFAs, namely valerate (r = 0.19), butyrate (r = 0.12), propionate (r = 481 

0.073) and acetate (r = 0.058) (Figure 3). Observed ASVs were not significantly correlated with 482 

total SCFAs (p>0.05). Levels of acetate, butyrate and propionate exhibited strong significant 483 

correlations with total SCFA, whereas valerate levels significantly correlated negatively (r = -0.09) 484 

with total SCFAs. Next, we assessed if levels of total SCFAs could be predicted by a mixed model. 485 

Country explained 45.7% of the variation in SCFAs. No significant effect was explained either by 486 

obesity or Shannon diversity.  487 

Microbial taxonomy correlates with SCFA concentration and obesity status. To explore the 488 

connection between SCFAs with gut microbiota, Spearman correlations between taxa that were 489 

proportionally significantly different between countries and concentrations of SCFAs were 490 
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determined. Valerate negatively correlated with the proportion of Clostridium, Prevotella, 491 

Faecalibacterium, Roseburia and Streptococcus, which were all positively correlated with acetate, 492 

propionate, and butyrate. Similarly, the proportions of Christensenellaceae, Eubacterium, and 493 

UCG 002 (Ruminococcaceae) were significantly positively associated with valerate, and 494 

negatively correlated with acetate, propionate, and butyrate. In addition, only a single ASV 495 

annotated to Ruminococcus was observed to be positively associated with all 4 SCFAs (Figure 496 

4). Similarly, Spearman’s rank correlation coefficients were calculated between the differentially 497 

abundant ASVs identified between obese and non-obese group with concentrations of SCFAs. 498 

Broadly, the proportions of most ASVs were significantly positively associated with acetate in 499 

comparison with the other 3 SCFAs. Consistent with the correlations mentioned above, valerate 500 

negatively correlated with most ASVs that were found to be positively correlated with the three 501 

major SCFAs, acetate, propionate, and butyrate and vice versa. The relative proportions of ASVs 502 

belonging to Allisonella, Erysipelotrichaceae and Libanicoccus positively correlated with acetate, 503 

propionate, and butyrate, whereas significantly negative relationships were observed between 504 

Parabacteroides and Bacteroides abundances with the aforementioned SCFAs. Valerate showed 505 

significantly positive associations with Oscillospiralles and Ruminococcaceae abundances and 506 

significantly negative correlations with Lachnospira and Eggerthella abundances (Figure 4). 507 

 508 

Discussion 509 

By leveraging a well characterized large population-based cohort of African origin residing in 510 

geographically distinct regions of Ghana, South Africa, Jamaica, Seychelles, and the US, we 511 

examined the relationships between gut microbiota, SCFAs and adiposity. Our data revealed 512 

profound variations in gut microbiota, which are reflected in the significant changes in community 513 

composition, structure, and predicted functional pathways as a function of population obesity and 514 

geography, despite their shared ancestral background. Our data further revealed an inverse 515 

relation between fecal SCFA concentrations, microbial diversity, and obesity; importantly, the 516 

utility of the microbiota in predicting whether an individual was lean or obese was inversely 517 

correlated with the income-level of the country of origin. Overall, our findings are important for 518 

understanding the complex relationships between the gut microbiota, population lifestyle and the 519 

development of obesity, which may set the stage for defining the mechanisms through which the 520 

microbiome may shape health outcomes in populations of African-origin. 521 

It has previously been reported that geographic origin can modulate the composition of the gut 522 

microbiota (Yatsunenko et al. 2012; De Filippo et al. 2010, 2017).  Accordingly, taxonomic profiling 523 

revealed significant differences in gut microbiota richness and diversity among the different 524 

countries in a continuum manner. Notably, we detected greater microbiota diversity in Ghana, 525 

while depleted microbiota diversity was associated with the US, representing the lowest and the 526 

highest end along the epidemiologic transition spectrum respectively, while South Africans, 527 

Jamaicans and Seychellois ranked in between. Our findings are consistent with our previous 528 

METS studies (Fei et al. 2019; Dugas, Bernabé, et al. 2018) and other large scale continental 529 

cohort studies (De Filippo et al. 2010, 2017; Yatsunenko et al. 2012; Schnorr et al. 2014; 530 

Clemente et al. 2015; Rampelli et al. 2015; Gomez et al. 2016; Mancabelli et al. 2017), that report 531 

a higher bacterial diversity and composition/microbial richness in traditionally non-western groups 532 

that distinguish them from urban-industrialized individuals whose diets are low in fiber and high in 533 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 22, 2023. ; https://doi.org/10.1101/2023.03.21.533195doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.21.533195
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14 

saturated fats (E. D. Sonnenburg and Sonnenburg 2019; Kolodziejczyk, Zheng, and Elinav 2019). 534 

Although we observe enrichment in the relative abundance of several taxa associated with 535 

country of origin in our cohorts, we also detect a pattern where the gut microbiota of Ghanaian 536 

and South African cohort tends to share many features, while the gut microbiota of the Jamaican 537 

cohort shared many features with all 4 countries, possibly reflecting the ongoing epidemiological 538 

transitional nature of their communities represented by the overlap with western and traditionally 539 

non-western populations. Notably, traditionally non-western associated taxa including Prevotella, 540 

Butyrivibrio, Weisella and Romboutsia were enriched in participants from Ghana and South Africa, 541 

as suggested previously (Mancabelli et al. 2017). Western-associated taxa such as Bacteroides 542 

and Parabacteroides were enriched in individuals from Jamaica and the US (Mancabelli et al. 543 

2017; Kao et al. 2015), while an ASV annotated as Olsenella was proportionally abundant in 544 

Seychelles microbiota. Bifidobacterium and Aldercreutzia were enriched in the US cohort. 545 

Clostridium sensu stricto 1 was over-represented in all 4 countries in comparison with the US. We 546 

also found greater enrichment of VANISH taxa including Butyricicoccus and Succinivibrio in the 547 

Ghanaian cohort, in line with individuals practicing traditional lifestyles (Pasolli et al. 2019). 548 

Prevotella is usually associated with plant-based diets rich in dietary fibers, while Bacteroides 549 

abundance broadly correlates with diets high in fat, animal protein, and sugars (Gupta, Paul, and 550 

Dutta 2017; Wu et al. 2011), which is in agreement with our enterotype analysis where a 551 

Prevotella-rich  microbiota dominates the Ghanaian and South African gut, while a Bacteroides-552 

rich microbiota dominated in the high-income countries. Prevotella is known to produce high 553 

amounts of SCFAs (T. Chen et al. 2017), so its depletion may be associated with the observed 554 

concomitant reduction in SCFA concentrations. Increased SCFA synthesis is associated with a 555 

reduction in obesity, which is supported by our observations, whereby elevated concentrations of 556 

total SCFA and a concomitant reduction in obesity is associated with the Prevotella dominated 557 

gut of the Ghanaian cohort. Our results support a potential role for geography in reinforcing 558 

variations in the gut microbiota in our study cohort despite shared origin. Geography may reflect 559 

subtle shifts in lifestyle and/or environmental exposures including heterogeneity of dietary 560 

sources, exposure to medications, socioeconomic factors, medical history, and biogeographical 561 

patterns in microbial dispersion (Asnicar et al. 2021; Pasolli et al. 2019; Costello et al. 2012; He 562 

et al. 2018). 563 

We also inferred the metabolic capacity of the gut microbiota associated with the different 564 

countries. Several metabolic pathways linked to carrier, cofactor and vitamin biosynthesis, 565 

biosynthesis/degradation of amines, amino acids, aromatic xenobiotics, and tricarboxylic acid 566 

(TCA) cycle were differentially enriched between the different countries compared with the US. 567 

These pathways are involved in biochemical reactions that regulate several processes including 568 

energy metabolism, inflammation, epigenetic processes, and oxidative stress. Several of these 569 

observed pathways have been reported in different populations (Yu et al. 2021; Karlsson et al. 570 

2013; N. Qin et al. 2014) indicating that the gut microbiota can directly influence host metabolism, 571 

although a majority of these molecules can also be synthesized by the host or supplied through 572 

diet. In our cohort, functional shifts observed in participants from Ghana and Jamaica included 573 

the enrichment of the metabolic pathway for degradation of gallate. Metabolites generated from 574 

the gallate pathway include phenolic catechin metabolites which are thought to alleviate obesity-575 

related pathologies and also promote a healthy and beneficial human gut microbiota composition 576 

(Marchesi et al. 2016; Liu et al. 2021). We found pathways related to glutamate degradation which 577 
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can be fermented to butyrate and propionate enhanced among South Africans and Ghanaians in 578 

comparison with the US. In Seychelles, a pathway involved in mycothiol biosynthesis was 579 

upregulated. Mycothiol is a protective antioxidant produced by the members of the Actinobacteria 580 

phylum and is involved in the removal of toxic compounds from cells (Newton, Buchmeier, and 581 

Fahey 2008). The predicted abundance of mycothiol biosynthesis pathway was identified as 582 

underrepresented in the microbiome of individuals with depressive symptoms in a South Korean 583 

population (S.-Y. Kim et al. 2022). 584 

We further identified increased abundances in pathways related to the generation of SCFAs such 585 

as acetyl coenzyme A pathway, threonine biosynthesis and leucine degradation pathway in the 586 

microbiomes of all 4 countries in comparison with the US. Threonine can be metabolized to 587 

SCFAs acetate and propionate (Davila et al. 2013) and indeed, genes linked with threonine 588 

metabolism have been identified in the human gut microbiome (Abubucker et al. 2012). Taken 589 

together, our results suggest that the observed country-specific microbial differences and 590 

abundances accompany variance in the distribution of functional pathways abundances, although 591 

we are unable to ascertain what the sources are that may explain these differences in the 592 

predicted functional enrichment due the inherent limitation in functional resolution of 16S rRNA 593 

sequence data in PICRUSt2 analysis. Further studies are required to evaluate the potential causal 594 

relations of these gut microbial functions with health outcomes using shotgun metagenomic 595 

sequencing which offers robust inferences of functional pathways. 596 

Preclinical germ-free mouse models provide early causal links between gut microbial ecology and 597 

obesity (Ley et al. 2005; Bäckhed et al. 2007). Thereafter, follow up studies in human cohorts 598 

have sought to identify a consistent microbiota signature across populations that can be used to 599 

predict obesity. However, identifying obesity-specific microbiome features have proven difficult 600 

because the results are often not in agreement (Finucane et al. 2014). Therefore, we sought to 601 

examine the fecal levels of individual SCFA types and linking to variations in gut microbiota in 602 

obese and non-obese individuals in our large African cohort. The bulk of evidence from prior 603 

studies show that obesity is associated with a less diverse bacterial community (Turnbaugh et al. 604 

2009; Dugas, Bernabé, et al. 2018; Peters et al. 2018). Accordingly, we observed that our obese 605 

group harbor a significantly lower microbiota diversity and differences in community composition. 606 

Although the mechanism by which the gut microbiota influences obesity are not fully understood, 607 

several mechanisms have been proposed. For instance, the regulation of host energy metabolism 608 

and body mass concept demonstrate that a perturbed gut bacteria community contributes to the 609 

development of obesity by providing excess energy to the host via the fermentation of indigestible 610 

carbohydrates into SCFAs. Thus, the altered microbiota explains the ability of the host to extract 611 

energy from the diet and further stored in the adipose tissue (Turnbaugh et al. 2006; Jumpertz et 612 

al. 2011). In support of this notion, we identified several SCFA producing bacteria significantly 613 

under-represented or depleted in obese individuals, indicating that SCFAs beneficially regulate 614 

host energy metabolism. For example, the relative abundance of some members of Oscillospira 615 

have been reported to be markedly greater in healthy individuals and associates with human 616 

leanness (Beaumont et al. 2016; Konikoff and Gophna 2016; Gophna, Konikoff, and Nielsen 617 

2017). Oscillospira utilizes host glycans to produce SCFAs (Konikoff and Gophna 2016; Gophna, 618 

Konikoff, and Nielsen 2017) including butyrate, with beneficial effects on insulin sensitivity, body 619 

weight control and inflammation (M.-H. Kim et al. 2020). One of the strongest links that has been 620 
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corroborated across several populations between a gut microbial taxa and BMI involves members 621 

of the Christensenella genus. They are known to produce SCFAs, acetate and butyrate 622 

(Morotomi, Nagai, and Watanabe 2012) and associate negatively with markers of obesity, much 623 

in agreement with our findings indicating that Christensenella may be important for promoting 624 

leanness. We also detected several butyrate producing ASVs including Eubacterium, Alistipes, 625 

Clostridium and Odoribacter to be proportionally enriched in individuals who were non-obese.  626 

Although we observe more SCFA producing taxa in the non-obese group, we also identify taxa 627 

that are SCFA producers in the obese group. Notably we observe that obese individuals 628 

presented a greater abundance of Lachnospira, a finding consistent with our prior study in the 629 

same population (Dugas, Bernabé, et al. 2018), and others (Lippert et al. 2017; Meehan and 630 

Beiko 2014; de la Cuesta-Zuluaga, Corrales-Agudelo, et al. 2018). Contrary to our results, other 631 

studies have shown that a reduction in the abundance of Lachnospira positively associates with 632 

obesity (Companys et al. 2021; Stanislawski et al. 2017). It is well known that there are many 633 

SCFA producing gut bacteria, raising questions about whether the observed features can be 634 

precisely attributed to this mechanism or pathway. However, our predicted functional analysis 635 

revealed that genes in the KEGG pathway related to SCFA butyrate synthesis (butanoate 636 

metabolism) were significantly depleted or underrepresented in the obese group compared to the 637 

non-obese counterparts, which further supports the concept that SCFAs are beneficial. Further, 638 

we identified several predicted genes involved in butyrate synthesis via the more-dominant 639 

pyruvate pathway in the non-obese group. Altogether, these results suggest that butyrate-640 

producing bacteria may offer protection against obesity (X. Chen and Devaraj 2018). Indeed, 641 

butyrate exhibits immunomodulatory effects, improves colon mucosal barrier function, and lowers 642 

inflammation. 643 

The SCFA producing microbes dominant in the non-obese group coincided with elevated fecal 644 

SCFA levels in these individuals compared with the obese group, which is in line with previous 645 

results from other studies that have explored the relation between concentrations of fecal SCFAs 646 

and obesity (Yin et al. 2022; Dugas, Bernabé, et al. 2018). Indeed, SCFA supplementation has 647 

been documented to protect against a high‐fat diet‐induced obesity in mice (H. V. Lin et al. 2012; 648 

Lu et al. 2016) as well as weight gain in humans (Chambers et al. 2015). Conversely, other 649 

studies, mostly from western populations have reported results contrary to our study (Schwiertz 650 

et al. 2010; Fernandes et al. 2014; Riva et al. 2017; de la Cuesta-Zuluaga, Mueller, et al. 2018). 651 

For instance, de la Cuesta-Zuluaga et al observed associations between elevated fecal SCFA 652 

levels, central obesity, gut permeability, and hypertension in a Colombian cohort. The specific 653 

mechanisms that explain the higher fecal SCFA levels among obese individuals remain a matter 654 

of debate and one hypothesis is that disruptions in the obese gut microbiota may lead to less 655 

efficient SCFA absorption, hence the observed increased SCFA excretion (de la Cuesta-Zuluaga, 656 

Mueller, et al. 2018). Along the same line of notion, our findings of a negative association between 657 

obesity and SCFAs could be related to the consumption of diets enriched in fibers and other 658 

dietary precursors of SFCAs resulting in elevated SCFA production compared with SCFA 659 

absorption, thereby reducing energy harvesting and its associated storage as fat. Indeed, diets 660 

high in fiber and Mediterranean diets correlate positively with weight loss (Hu et al. 2013; Esposito 661 

et al. 2011) and increased levels of fecal SCFAs (De Filippis et al. 2016) in human studies. Other 662 

possible explanations for the observed divergences between our studies and others might be 663 
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attributed to differences in population, medication usage, sample size, microbial production 664 

capacity and intestinal absorption, underscoring the complex relationships between gut 665 

microbiota with SCFA production and host adiposity. Nevertheless, our results demonstrate that 666 

the negative associations between obesity and fecal SCFA levels in our study cohort are 667 

consistent with the positive associations found between decreased obesity and SCFA 668 

synthesizing microbes, although we are aware that fecal SCFA concentrations are not a direct 669 

measure of intestinal SCFA production but rather reflect a net result of the difference between 670 

SCFA production and absorption (Canfora, Jocken, and Blaak 2015). A measurement of the 671 

dynamics of SCFA production and availability with stable isotopes could be determined in future 672 

studies. Altogether, the observed differences in SCFA concentrations between obese and non-673 

obese individuals and the several SCFA-producing microbes further reinforce the theory that gut 674 

microbiota and its associated SCFA metabolites may have a role in body weight regulation.  675 

Another mechanism by which gut microbiota may contribute to obesity is via the metabolic 676 

endotoxemia pathway. Perturbations in the gut microbiota community composition lead to 677 

increased production of plasma lipopolysaccharide (LPS) derived from the cell wall of Gram-678 

negative bacteria, provoking low-grade inflammation and increased intestinal permeability which 679 

drives adiposity (Zhao 2013; Cani et al. 2008). An increased relative abundance of one ASV 680 

assigned to the genus Dialister in the gut community of obese individuals was identified from this 681 

study. Zhang and colleagues reported proportional increases in Dialister in obese persons and 682 

suggested that could serve as a potential predictive marker for obesity (Zhang et al. 2021). 683 

Additionally, in our recent study (Fei et al. 2021) we observed an increased relative abundance 684 

of Dialister in subjects with short sleep duration, a condition associated with a chronic 685 

inflammatory state. Indeed, Dialister has been demonstrated to trigger or aggravate host 686 

inflammatory response and insulin resistance by releasing more lipopolysaccharides (Yang et al. 687 

2022). To strengthen these findings, we further observed that several genes in the LPS 688 

biosynthesis pathway were differentially enriched within the obese group from our predicted 689 

functional analysis. Similar findings have previously been reported where the obese microbiota is 690 

enriched by LPS metabolism, initiating inflammation-dependent processes associated with the 691 

onset of obesity and insulin resistance (Boulangé et al. 2016) and other related metabolic 692 

diseases (Yan et al. 2021; Karlsson et al. 2012; Fei and Zhao 2013; Cani et al. 2007; Fei et al. 693 

2021). Collectively, our results demonstrate that obese individuals harbor a marked inflammatory 694 

state favoring the development of obesity, and this is in concordance with the associated 695 

metabolic endotoxemia pathway linking gut bacteria to obesity. 696 

This study additionally detected marked depletion in pathways involved in cell structure 697 

biosynthesis, vitamin B6 biosynthesis, NAD biosynthesis, amino acid metabolism and SCFA 698 

synthesis in our predicted metagenome analysis. Thus, our results further suggest that metabolic 699 

pathways important for growth, energy homeostasis and the maintenance of normal gut function 700 

are disrupted in individuals with obesity. Conversely, in the obese group, we noted an enrichment 701 

of formaldehyde assimilation I (serine pathway) pathway. Ubiquitous formaldehyde can be 702 

derived from food, the environment and generated endogenously as a result of human and 703 

microbial cellular metabolism of many methylated compounds. Endogenous formaldehyde 704 

produced at sufficient levels has carcinogenic properties and detrimental effects on genome 705 

stability. To counteract this reactive molecule, organisms have evolved a detoxification system 706 
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that converts formaldehyde to formate, a less reactive molecule that can be used for nucleotide 707 

biosynthesis (Reingruber and Pontel 2018; N. H. Chen et al. 2016). Thus, we may infer that the 708 

pattern of increased formaldehyde assimilation pathway in our data might result from a defect or 709 

diminished capacity of formaldehyde detoxification system pathway, an assumption which 710 

requires further verification. A study reported increases in the abundance of formaldehyde 711 

assimilation pathway in a depressed group when compared with non-depressed controls (S.-Y. 712 

Kim et al. 2022). We are the first to show that the gut of obese participants is enriched in the 713 

formaldehyde assimilation pathway. Although we do not understand the mechanistic details, it is 714 

known that toxic formaldehyde is generated along with reactive oxygen species during 715 

inflammatory processes (N. H. Chen et al. 2016). Thus, an increased capacity for formaldehyde 716 

pathway may indicate a microbiome-induced increase in reactive oxygen species in the gut of 717 

obese individuals. Indeed, prior work has identified induction of oxygen stress by microbial 718 

perturbations as one of the mechanisms by which the microbiome can promote weight gain and 719 

insulin resistance (J. Qin et al. 2012). The specific alterations of the gut microbiota and the 720 

associated predicted functionality may constitute a potential avenue for the development of 721 

microbiome-based therapeutics to treat obesity and/or to promote and sustain weight loss. 722 

Study strengths and limitations. While our study has several strengths including a large sample 723 

size, diverse population along an epidemiological transition gradient with a comprehensive 724 

dataset that allowed the exclusion of the potential effects of origin as well as control of potential 725 

interpersonal covariates, and use of validated and standard tools for data collection, we 726 

acknowledge some limitations as well. First, the cross-sectional nature of our study design is 727 

unable to establish temporality or identify mechanisms by which the gut microbiome may causally 728 

influence the observed associations. In that regard, we expect that prospective data from the 729 

METS cohort study will provide the basis to assess the longitudinal association between gut 730 

microbiota composition, metabolites, and obesity, and we have an ongoing study exploring the 731 

potential correlations longitudinally. The use of 16S rRNA sequencing in our analysis for 732 

inferences on microbial functional ecology inherently has its limitations for drawing conclusions 733 

on species and strain level functionality due to its low resolution. Nevertheless, our results provide 734 

insight into the relationship between obesity, gut microbiota, and metabolic pathways in 735 

individuals of African-origin across different geographies, stimulating further examination of large-736 

scale studies using multi-omic approaches with deeper taxonomic and functional resolution and 737 

animal transplantation studies to investigate potentially novel microbial strains and to explore the 738 

clinical relevance of the observed metabolic differences. 739 

 740 

Conclusion 741 

This study examined the relationship between the gut microbiota composition and functional 742 

patterns, concentrations of fecal short chain fatty acids (SCFAs) and obesity in a large population 743 

cohort of African origin, from Ghana, South Africa, Jamaica, Seychelles, and the United States of 744 

America, spanning the epidemiologic transition. The Ghanaian cohort exhibited the greatest gut 745 

microbiota diversity and the American cohort the least, with corresponding enrichment or 746 

depletion in taxa and predicted functional traits. Ghanaian participants were enriched in VANISH 747 

taxa reflecting their traditional lifestyle. Significant differences in gut microbiota composition and 748 

function were identified in obese individuals compared to the non-obese counterparts. Non-obese 749 
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individuals were enriched in SCFA-producing microbes which coincided with increased 750 

concentration of total SCFA in feces, extending the evidence that SCFAs mediate body weight 751 

regulation. The predictive accuracy of the microbiota for obesity status was greatest in low-income 752 

countries, and was reduced in high income countries, suggesting that lifestyle traits in high income 753 

countries may result in elevated obesity risk even for lean individuals. The specific alterations of 754 

the gut microbiota and the associated predicted metabolic function may constitute a potential 755 

avenue to guide the development of microbiome-based solutions to treat obesity and/or to 756 

promote and sustain weight loss. Thus, further examination of large-scale studies using multi-757 

omic approaches with deeper taxonomic and functional resolution and animal transplantation 758 

studies are warranted to confirm the identified taxonomic and metabolic signatures. 759 
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Table 1. METS-Microbiome participant characteristics from Ghana, South Africa, Jamaica, Seychelles and US 

Women 
 

Ghana South Africa Jamaica Seychelles US 
 

n=254 n=228 n=263 n=196 n=213 

Age (years) 40.74 ± 8.1 35.56 ± 7.8 45.16 ± 7.5 43.84 ±  6.1 45.44 ± 6.4 

BMI (kg/m2) 28.30 ± 5.9 33.42 ± 8.6 32.12 ± 7.3 30.32 ± 7.2 36.34 ± 8.8 

Obese (%) 45,0% 61,0% 60,4% 49,5% 74,7% 

SBP (mm Hg) 117.1 ± 18.5 115.20 ± 17.1 126.08 ± 19.0 123.28 ± 17.8 124.19 ± 18.4 

DBP (mm Hg) 70.53 ± 12.2 75.20 ± 12.1 79.41 ± 12.6 79.37 ± 14.4 81.52 ± 12.1 

Hypertensive (%) 37,5% 37,3% 57,4% 55,5% 65,4% 

Glucose (mg/dL) 110.45 ± 62.7 89.17 ± 20.0 107.46 ± 39.1 111.35 ± 27.2 107.07 ± 44.0 

Diabetic (%) 10,0% 3,5% 12,9% 13,9% 19,9% 

Men 
 

Ghana South Africa Jamaica Seychelles US 
 

n=117 n=171 n=133 n=164 n=107 

Age (years) 43.92 ± 8.7 36.53 ± 7.2 44.42 ± 7.5 44.57 ± 5.1 47.12 ± 5.5 

BMI (kg/m2) 23.7 ± 4.4 22.26 ± 4.1 24.8 ± 5.3 28.46 ± 5.5 30.37 ± 8.2 

Obese (%) 13,4% 5,3% 15,7% 39,2% 44,4% 

SBP (mm Hg) 121.28 ± 15.4 122.71 ± 15.5 129.23 ± 17.1 130.43 ± 16.2 130.67 ± 16.0 

DBP (mm Hg) 68.02 ± 13.0 75.32 ± 11.1 78.07 ± 11.5 81.64 ± 12.1 82.37 ± 12.2 

Hypertensive (%) 33,1% 45,0% 50,3% 65,9% 72,7% 

Glucose (mg/dL) 100.52 ± 19.4 94 ± 23.4 99.04 ± 33.1 124.26 ± 44.2 107 ± 36.2 

Diabetic (%) 4,6% 3,5% 4,8% 22,8% 17,5% 
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Table 2. Alpha diversity estimated by Shannon, Observed ASVs and Faith’s PD 

(Phylogenetic Diversity) between countries and obesity status. q-value are FDR-corrected 

p values representing statistical significance (p<0.05) of alpha diversity metrics between 

the countries. Data are presented by median (interquartile range). FDR = False Discovery 

Rate 

    N Faith’s PD Shannon Observed 

Ghana 
Obese 243 

19.2(16.2-

21.8) 3.73(3.41,4.09) 228(184,267) 

Non-

Obese 89 17.9(14.6,21.6) 3.69(3.30,4.05) 217(155,252) 

South 

Africa 

Obese 208 17.2(14.0,19.9) 3.21(2.69,3.52) 174(138,212) 

Non-

Obese 179 15.9(13.1,19.9) 3.12(2.65,3.54) 165(126,216) 

Jamaica 

Obese 217 14.2(11.6,17.2) 3.2(2.72,3.56) 146(110,184) 

Non-

Obese 147 13.4(11.5,16.5) 3.15(2.69,3.56) 136(108,173) 

Seychelles 

Obese 233 18(15.1,20.4) 3.51(3.14,3.79) 204(166,246) 

Non-

Obese 141 18.6(15.0,22.4) 3.62(3.21,3.98) 212(165,269) 

US 

Obese 112 13.6(12.1,16.6) 3.23(2.86,3.50) 144(125,180) 

Non-

Obese 195 13.9(12.1,16.5) 3.3(3.00,3.57) 150(122,184) 

p-value 
  

<0.001 <0.001 <0.001 

q-value 
  

<0.001 <0.001 <0.001 

Median (IQR) 

p-value: Kruskal-Wallis rank sum test 

q-value: False discovery rate correction for multiple testing 
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Table 3. Adjusted Multivariate Analysis for the entire cohort and by each country. 

Statistical significance from permutational multivariate analysis of variance 

(PERMANOVA) test, p < 0.05. All p-values are generated based on 999 permutations 

  Overall Ghana South Africa Jamaica Seychelles US 

  R2 P R2 P R2 P R2 P R2 P R2 P 

Obese 0.003 0.001 0.004 0.032 0.007 0.002 0.002 0.732 0.003 0.279 0.004 0.154 

Sex 0.003 0.001 0.005 0.018 0.007 0.002 0.009 0.009 0.01 0.001 0.01 0.001 

Age 0.001 0.135 0.113 0.471 0.083 0.708 0.102 0.062 0.063 0.576 0.094 0.252 

Country 0.083 0.001                     
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Figure 1. Variation in gut microbiome diversity and composition. (A) Alpha diversity estimated 

by Shannon, Observed ASVs and Faith’s PD (Phylogenetic Diversity) between countries. (B) 

Alpha diversity estimated by Shannon, Observed ASVs and Faith’s PD (Phylogenetic Diversity) 

between obese and non-obese. *p < 0.05, ****p < 0.0001 Alpha diversity metrics (Faith’s PD, 

Observed ASVs and Shannon) are shown on the y-axis in different panels, while country or 

obese group are shown on the x-axis. (C) Beta diversity principal coordinate analysis based on 

weighted UniFrac distance between countries. (D) Beta diversity principal coordinate analysis 

based on weighted UniFrac distance between obese and non-obese. (E) Beta diversity principal 

coordinate analysis based on unweighted UniFrac distance between countries. (F) Beta 

diversity principal coordinate analysis based on unweighted UniFrac distance between obese 

and non-obese. Proportion of variance explained by each principal coordinate axis is denoted in 

the corresponding axis label. (G) Venn diagram of shared and unique ASVs between the five 

countries. Statistical significance adjusted for multiple comparisons using false discovery rate 

(FDR) correction are indicated: *, P < 0.05; **, P < 0.01; ***, P < 0.001; ∗∗∗, P < 0.001 across 

countries and obese groups (Kruskal-Wallis test) for alpha diversity or by permutational 

multivariate analysis of variance (PERMANOVA) for beta diversity.  
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Figure 2. Receiver operating characteristic curves showing the classification accuracy of gut microbiota in a Random Forest model. 

Classification accuracy for estimating (A). All countries; (B) Obesity status, (C). Diabetes status; (D). Glucose status; (E). 

Hypertensive status; (F). Sex are presented. AUC= area under the curve 
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Figure 3. Correlations between alpha diversity and concentrations of the different types of fecal 

short chain fatty acids (SCFAs) among countries. Shannon index correlates positively with (A) 

total SCFA; (B) Acetate; (C) Butyrate; (D) Propionate; (E) Valerate.   
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Figure 4. Associations of gut microbiota ASVs with concentrations of short chain fatty acids 

(SCFAs). (A) Heatmap of Spearman’s correlation between concentrations of SCFAs and top 30 

differentially abundant ASVs (identified by ANCOM-BC) among countries. (B) Heatmap of 

Spearman’s correlation between concentrations of SCFAs and differentially abundant ASVs 

(identified by ANCOM-BC) for obese. Correlations are identified by Spearman’s rank correlation 

coefficient. Brick red squares indicate positive correlation, gray squares represent negative 

correlation and white squares are insignificant correlation. 

Mapping from FDR adjusted p values are denoted as: *, ** and ***, corresponding to p < 0.05, 

<0.01 and <0.001 respectively. 
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