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ABSTRACT

For many cancers there are few well-established risk factors. Summary data from genome-wide

association studies (GWAS) can be used in a Mendelian randomisation (MR) phenome-wide

association study (PheWAS) to identify causal relationships. We performed a MR-PheWAS of breast,

prostate, colorectal, lung, endometrial, oesophageal, renal, and ovarian cancers, comprising

378,142 cases and 485,715 controls. To derive a more comprehensive insight into disease aetiology

we systematically mined the literature space for supporting evidence. We evaluated causal

relationships for over 3,000 potential risk factors. In addition to identifying well-established risk

factors (smoking, alcohol, obesity, lack of physical activity), we provide evidence for specific factors,

including dietary intake, sex steroid hormones, plasma lipids and telomere length as determinants

of cancer risk. We also implicate molecular factors including plasma levels of IL-18, LAG-3, IGF-1,

CT-1, and PRDX1 as risk factors. Our analyses highlight the importance of risk factors that are

common to many cancer types but also reveal aetiological differences. A number of the molecular

factors we identify have the potential to be biomarkers. Our findings should aid public health

prevention strategies to reduce cancer burden. We provide a R/Shiny app

(https://mrcancer.shinyapps.io/mrcan/) to visualise findings.
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INTRODUCTION

Cancer is currently the third major cause of death with an estimated 18.1 million new cases and

nearly 10 million cancer deaths in 20201. By 2030 it is predicted there are likely to be 26 million new

cancer cases and 17 million cancer-related deaths annually2. Such projections have renewed efforts

to identify risk factors to inform cancer prevention programmes.

For many cancers, despite significant epidemiological research, there are few established risk

factors. Although randomised-controlled trials (RCTs) are the gold standard for establishing causal

relationships, they are often impractical or unfeasible because of cost, time, and ethical issues.

Conversely, case-control studies can be complicated by biases such as reverse causation and

confounding. Mendelian randomisation (MR) is an analytical strategy that uses germline genetic

variants as instrumental variables (IVs) to infer causal relationships (Fig. 1A)3. The random

assortment of these genetic variants at conception mitigates against reverse causation bias.

Moreover, in the absence of pleiotropy (i.e. the presence of an association between variants and

disease through additional pathways), MR can provide unconfounded disease risk estimates .

Elucidating disease causality using MR is gaining popularity especially given the availability of data

from large genome-wide association studies (GWAS) and well-developed analytical frameworks3.

Most MR studies of cancer have been predicated on assumptions about disease aetiology or have

sought to evaluate purported associations from conventional observational epidemiology3,4. A

recently proposed agnostic strategy, termed MR-PheWAS, integrates the phenome-wide association

study (PheWAS) with MR methodology to identify causal relationships using hitherto unconsidered

traits5.

To identify causal relationships for eight common cancers (breast, prostate, colorectal, lung,

endometrial, oesophageal, renal and ovarian), and reveal intermediates of risk, we conducted a

MR-PheWAS study. We integrated findings with a systematic mining of the literature space to

provide supporting evidence and derive a more comprehensive description of disease aetiology

(Fig. 1B)6.

3

https://paperpile.com/c/Th8SX5/LFLH/?locator_label=issue&locator=3
https://paperpile.com/c/Th8SX5/P0jG
https://paperpile.com/c/Th8SX5/mjb6
https://paperpile.com/c/Th8SX5/mjb6
https://paperpile.com/c/Th8SX5/mjb6+FA8G
https://paperpile.com/c/Th8SX5/D4gu
https://paperpile.com/c/Th8SX5/Avda


METHODS

Ethics approval

The analysis was undertaken using published GWAS data, hence ethical approval was not required.

Study design

Our study had four elements. Firstly, the identification of genetic variants serving as instruments for

exposure traits under investigation; secondly, the acquisition of GWAS data for the eight cancers;

thirdly, MR analysis; fourthly, triangulation through literature mining to provide supporting evidence

for causal relationships (Fig. 1B).

Genetic variants serving as instruments

Single nucleotide polymorphisms (SNPs), considered genetic instruments, were identified from

published studies or MR-Base (Supplementary Table 1). For each SNP, the corresponding effect

estimate on a trait expressed in per standard deviation (SD) units (assuming a per allele effect) and

standard error (SE) was obtained. Only SNPs with a minor allele frequency <0.01 and a trait

association of P-values <5 × 10−8 in a European population GWAS were considered as instruments.

We excluded correlated SNPs at a linkage disequilibrium threshold of r2 >0.01, retaining SNPs with

the strongest effect. For binary traits we restricted our analyses to traits with a medical diagnosis,

excluding cancer. We removed duplicate exposure traits based on manual curation.

Cancer GWAS summary statistics

To examine the association of each genetic instrument with cancer risk, we used summary GWAS

effect estimates from: (1) Online consortia resources, for breast (BCAC;

https://bcac.ccge.medschl.cam.ac.uk/, accessed July 2022) and prostate cancer (PRACTICAL;

http://practical.icr.ac.uk/; accessed July 2022)7,8; (2) GWAS catalogue

(https://www.ebi.ac.uk/gwas/), for ovarian, endometrial and lung cancers (accessed September

2022)9–11; (3) Investigators of published work, for colorectal cancer (CRC), renal cell carcinoma (RCC)

and oesophageal cancer12–14. Cancer subtype summary statistics were available for lung, breast and

ovarian cancers. As the UK Biobank was used to obtain genetic instruments for many traits

investigated, the CRC and oesophageal GWAS association statistics were recalculated from primary

data excluding UK Biobank samples to avoid sample overlap bias (Table 1). Single nucleotide
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polymorphisms were harmonised to ensure that the effect estimates of SNPs on exposure traits and

cancer risk referenced the same allele (Supplementary Table 2)15.

Statistical analysis

For each SNP, causal effects were estimated for cancer as an odds ratio (OR) per SD unit increase in

the putative risk factor (ORSD), with 95% confidence intervals (CIs), using the Wald ratio16. For traits

with multiple SNPs as IVs, causal effects were estimated under an inverse variance weighted

random-effects (IVW-RE) model as the primary measurement as it is robust in the presence of

pleiotropic effects, provided any heterogeneity is balanced at mean zero (Supplementary Table

3-6)17. Weighted median estimate (WME) and mode-based estimates (MBE) were obtained to assess

the robustness of findings (Supplementary Table 7)18,19. Directional pleiotropy was assessed using

MR-Egger regression (Supplementary Table 8)20. The MR Steiger test was used to infer the direction

of causal effect for continuous exposure traits (Supplementary Table 9)21. For this we estimated the

proportion of variance explained (PVE) using Cancer Research UK lifetime risk estimates for each

tumour type (Supplementary Table 10)22. A leave-one-out strategy under the IVW-RE model was

employed to assess the potential impact of outlying and pleiotropic SNPs (Supplementary Table

11)23. Because two-sample MR of a binary risk factor and a binary outcome can be biased, we

primarily considered whether there exists a significant non-zero effect, and only report ORs for

consistency24. Statistical analyses were performed using the TwoSampleMR package v0.5.6

(https://github.com/MRCIEU/TwoSampleMR) in R (v3.4.0)15.

Estimation of study power

The power of MR to demonstrate a causal relationship depends on the PVE by the instrument25. We

excluded instruments with a F-statistic <10 since these are considered indicative of evidence for

weak instrument bias26. We estimated study power, stipulating a P-value of 0.05 for each target a

priori across a range of effect sizes as per Brion et al. (Supplementary Table 1)27. Since power

estimates for binary exposure traits and binary outcomes in a two-sample setting are unreliable, we

did not estimate study power for binary traits24.

Assignment of statistical significance

The support for a causal relationship with non-binary traits was categorised into four hierarchical

levels of statistical significance a priori: robust (PIVW-RE <1.4×10-5; corresponding to a P-value of 0.05

after Bonferroni correction for multiple testing (0.05/3,500), PWME or PMBE <0.05, true causal
5
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direction and >1 IVs), probable (PIVW-RE <0.05, PWME or PMBE <0.05, true causal direction and >1 IVs),

suggestive (PIVW-RE <0.05 or PWALD <0.05), and non-significant (PIVW-RE ≥0.05 or PWALD ≥0.05)

(Supplementary Table 12). While non-significant associations can be due to low statistical power,

they also indicate that a moderate causal effect is unlikely. For binary traits we classified

associations as being supported (P <0.05) or not supported (P >0.05; Supplementary Tables 13-16).

Support for causality

To strengthen evidence for causal relationships identified from the MR analysis we exploited the

semantic predications in Semantic MEDLINE Database (SemMedDB), which is based on all PubMed

citations28. Within SemMedDB pairs of terms connected by a predicate which are collectively known

as ‘literature triples’ (i.e. ‘subject term 1’ – predicates – ‘object term 2’). These literature triples

represent semantic relationships between biological entities derived from published literature. To

interrogate SemMedDB we queried MELODI Presto and EpiGraphDB to facilitate data mining of

epidemiological relationships for molecular and lifestyle traits29,30. For each putative risk

factor-cancer pair the set of triples were overlapped and common terms identified to reveal causal

pathways and inform aetiology. Based on the information profile of all literature mined triples, we

considered literature spaces with >50 literature triples as being viable, corresponding to 90% of the

information content31. We complemented this systematic text mining by referencing reports from

the World Cancer Research Fund/American Institute for Cancer Research, and the International

Agency for Cancer Research Global Cancer Observatory, as well as querying specific putative

relationships in PubMed32,33.
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RESULTS

Phenotypes and genetic instruments

After filtering we analysed 3,661 traits, proxied by 336,191 genetic variants in conjunction with

summary genetic data from published GWAS of breast, prostate, colorectal, lung, endometrial,

oesophageal, renal, and ovarian cancers (Table 1; Supplementary Table 17). The number of SNPs

used as genetic instruments for each trait ranged from one to 1,335. Figure 2 shows the power of

our MR study to identify causal relationships between each of the genetically defined traits and

each cancer type. The median PVE by SNPs used as IVs for each of the 3,661 traits evaluated as risk

factors was 3.4% (0.01–84%). Our power to demonstrate causal relationships a priori for each

cancer type reflects in part inevitably the size of respective GWAS datasets (Supplementary Table

1).

Causal associations identified by MR

To aid interpretation we grouped traits related to established cancer risk factors (i.e. smoking,

obesity and alcohol) and those for which current evidence is inconclusive into the following

categories: cardiometabolic; dietary intake; anthropometrics; immune and inflammatory factors;

fatty acid (FA) and lipoprotein metabolism; lifestyle, reproduction, education and behaviour;

metabolomics and proteomics; miscellaneous.

Out of the 27,066 graded associations, MR analyses provided robust evidence for a causal

relationship with 123 phenotypes (0.5% of total MR analyses), 174 with probable evidence (0.6% of

total), 1,652 with suggestive evidence (6% of total). Across the eight cancer types, the largest

number of robust associations were observed for endometrial cancer with 37 robust associations,

followed by renal cancer (n = 32), CRC (n = 21), lung (n=20), breast (n=10), oesophageal (n=3) and

prostate cancer (n=1). No robust MR associations were observed for ovarian cancer (Supplementary

Table 3).

Across all of the cancer types anthropometric traits showed the highest number of robust MR

defined causal relationships (N=32; 0.1%), followed by lifestyle, reproduction, education and

behaviour (N=17; 0.06%). No robust associations were observed for dietary intake or

cardiometabolic categories (Supplementary Table 3).
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To visualise the strength and direction of effect of the causal relationship between each of the traits

examined and risk of each cancer type and, where appropriate, their respective subtypes we

provide a R/Shiny app (https://mrcancer.shinyapps.io/mrcan/). Fig. 3 shows a screenshot of the app

for selected traits across the eight different types of cancer.

Many of the identified causal relationships, especially those that were statistically robust or

probable, have been reported in previous MR studies and are related to established risk factor

categories4,32,33. Notably: (i) the relationship between metrics of increased body mass index (BMI)

with an increased risk of colorectal, lung, renal, endometrial and ovarian cancers34; (ii) cigarette

smoking with an increased risk of lung cancer35; (iii) higher alcohol consumption and increased risk

of oesophageal, colorectal, lung, renal, endometrial and ovarian cancers36; (iv) reduced physical

activity and sedentary behaviour with an increased risk of multiple cancers, including breast, lung,

colorectal and endometrial37. As anticipated, exposure traits pertaining to cigarette smoking were

not causally related to lung cancer in never smokers. Paradoxically, but as reported in previous MR

analyses, increased BMI was associated with reduced risk of prostate and breast cancer, and an

inverse relationship between smoking and prostate cancer risk was observed34,38. Our analysis also

supports the reported relationship between higher levels of sex hormone-binding globulin with

reduced endometrial cancer risk and a relationship between testosterone with risk of endometrial

cancer and breast cancers39,40. Notably, exposure traits related to testosterone levels were only

causally associated with luminal-A and luminal-B breast cancer subtypes.

With respect to dietary intake our analysis demonstrated probable associations between genetically

predicted higher levels of coffee, oily fish, and cheese intake with reduced CRC risk and suggestive

associations between genetically predicted beef and poultry intake and elevated CRC risk. We found

suggestive associations between genetically predicted high serum vitamin B12 with colorectal and

prostate cancer, serum calcium and 25-hydroxyvitamin-D with RCC, low blood selenium with

colorectal and oesophageal cancers and methionine and zinc with reduced CRC risk. We observed

no association between genetically predicted blood levels of circulating carotenoids or vitamins B6

and E for any of the cancers.

In terms of glucose homeostasis, no relationship between genetically predicted blood glucose or

glycated haemoglobin was shown for any of the eight cancers. However, higher levels of genetically

predicted levels of fasting insulin and insulin growth factor 1 (IGF-1) and lower proinsulin showed
8
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associations with CRC. Additionally, a suggestive association between proinsulin and renal cancer,

fasting insulin and lung and endometrial cancers, and IGF-1 levels and breast cancer was observed.

Amongst genetically predicted higher levels of lipoproteins, the only associations were a probable

association between high density lipoprotein cholesterol (HDL-C) and breast cancer and suggestive

associations between low density lipoprotein cholesterol (LDL-C) with CRC, and total cholesterol and

ovarian cancer.

Genetically predicted levels of plasma FAs showed an association with reduced cancer risk.

Specifically, for the omega-6 polyunsaturated FAs, lower levels of arachidonic acid (20:4n6) and

gamma-linoleic acid (18:3n6) and higher levels of linoleic acid (18:2n6) and adrenic acid (22:4n6))

with reduced risk of CRC; for the omega-3 polyunsaturated FAs (alpha-linoleic acid,

eicosapentaenoic acid, docosahexaenoic acid) and breast cancer risk, and arachidonic acid and

endometrial cancer.

A relationship between longer lymphocyte telomere length (LTL) and an increased risk of six of the

eight cancer types was identified - robust with respect to renal and lung cancers, probable for breast

and prostate cancers and suggestive for colorectal and ovarian cancers.

In addition to a robust association between higher HLA-DR dendritic plasmacytoid levels and risk of

prostate cancer, 26 probable associations between genetically predicted levels of other circulating

immune and inflammatory factors were shown across the cancers studied. These included higher

levels of IL-18 with reduced risk of lung cancer, with specificity for lung cancer in never smokers.

Our MR analysis provides support for the known relationship between colonic polyps and CRC41,

benign breast disease and breast cancer42, oesophageal reflux with risk of oesophageal cancer

(Supplementary Table 13)43. Other associations included possible relationships between pulmonary

fibrosis and lung cancer44, as well as the relationship between a diagnosis of schizophrenia and lung

cancer, which has been observed in conventional epidemiological studies45. It was noteworthy,

however, that we did not find evidence to support the purported relationship between

hypertension and risk of developing RCC. Similarly, our analysis did not provide evidence to support

a causal relationship between either type 1 or type 2 diabetes and an increased cancer risk.
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Literature-mined support for MR causal relationships

To provide support for the associations and to gain molecular insights into the underlying biological

basis of relationships we performed triangulation through systematic literature mining. We

identified 55,105 literature triples across the eight different cancer types and 680,375 literature

triples across the MR defined putative risk factors (Supplementary Table 18). Overlapping risk

factor-cancer pairings from our MR analysis yielded on average 49 potential causal relationships.

Supplementary Table 19 stratifies the literature space size by trait category while recognising that

causal relationships with a small literature space could be reflective of deficiencies in semantic

mapping relationships with large literature spaces support triangulation. Supplementary Table 20

provides the complete list of potential mediators for each trait. Illustrating the use of triangulation

using a large literature space (defined herein as >50 triples) to support causal relationships, Fig. 4

highlights four notable examples (IGF-1, LAG-3, IL-18, and PRDX1).

IGF-1, which is reported to play a role in multiple cancers, appears to mediate its effect in part

through beta-catenin and BRAF signalling, modulating CRC and breast cancer risk46,47. Whilst LAG-3

inhibition is an attractive therapeutic target in restoring T-cell function, we demonstrate genetically

elevated LAG-3 levels as being associated with reduced CRC, endometrial and lung cancer. In all

three of these cancers, the association appears to be at least partly mediated through IL-10 and the

seemingly paradoxical relationship between LAG-3 levels and tumourgenesis suggests potentiation

of T-cell function by serum LAG-3 rather than cell membrane expressed LAG-348. We identify

genetically predicted IL-18 levels as being associated with an increased risk of lung cancer. Our

literature mining also supports a role for the decoy inhibitory protein, IL-18BP as being a mediator

of lung cancer risk as well as IL-10, IL-12, IL-4 and TNF49. Finally, PRDX1, a member of the

peroxiredoxin family of antioxidant enzymes, interacts with the androgen receptor to enhance its

transactivation resulting in increased EGFR-mediated signalling and an increased prostate cancer

risk46.
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DISCUSSION

By performing a MR-PheWAS we have been able to agnostically examine the relationship between

multiple traits and the risk of eight different cancer types, restricted only by the availability of

suitable genetic instruments. Importantly, many of the traits we examined have not previously been

the subject of conventional epidemiological studies or been assessed by MR. Even for risk factors

that were examined in many previous analyses, the number of cases and controls in our study has

afforded greater power to identify potential causal associations. This has allowed us to exclude large

causal effects on cancer risk for the majority of exposure traits examined in our study.

In addition to identifying causal relationships for the well-established lifestyle traits, which validates

our approach, we implicate other lifestyle factors that have been putatively associated by

observational epidemiology contributing to cancer risk. For example, the protective effects of

physical activity, coffee, oily fish, fresh/dried fruit intake for CRC risk. A number of the causal

relationships we identify have been the subject of studies of individual traits and include the

association between longer LTL with increased risk of RCC and lung cancers; sex steroid hormones

and risk of breast and endometrial cancer; and circulating lipids with CRC and breast cancer. Using

genetic instruments for plasma proteome constituents has allowed us to identify hitherto

unexplored potential risk factors for a number of the cancers, including: the cytokine like molecule,

FAM3D, which plays a role in host defence against inflammation associated carcinogenesis with lung

cancer50; the autophagy associated cytokine cardiotrophin-1 with lung, endometrial, prostate and

breast cancer and the tumour progression associated antigen CD63 with endometrial cancer51,52.

Levels of these and other plasma proteins potentially represent biomarkers worthy of future

prospective studies. Clustering of MR causal effect sizes for each trait cancer relationship highlights

the importance of risk factors common to many cancers but also reveal differences in their impact

in part likely to be reflective of underlying biology (Fig. 5).

A principal assumption in MR is that variants used as IVs are associated with the exposure trait

under investigation. We therefore used SNPs associated with exposure traits at genome-wide

significance. Furthermore, only IVs from European populations were used to limit bias from

population stratification. Our MR analysis does, however, have limitations. Firstly, we were limited

to studying phenotypes with genetic instruments available, moreover traits such as food intake or

television watching can be highly correlated with other exposures making deconvolution of the
11
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causal risk factor problematic53,54. Secondly, correcting for multiple testing guards against false

positives especially when based on a single exposure outcome. However, the potential for false

negatives is not unsubstantial. Since we have not adjusted for between trait correlations, our

associations are inevitably conservative. Thirdly, for a number of traits, we had limited power to

demonstrate causal associations of small effect. Fourthly, not unique to our MR analysis, is the

inability of our study to deconvolute time-varying effects of genetic variants as evidenced by the

relationship between obesity and breast cancer risk55. Finally, as with all MR studies, excluding

pleiotropic IVs is challenging. To address this, we incorporated information from weighted median

and mode-based estimate methods, to classify the strength of causal associations. However, there

are inevitably limitations to such modelling as exemplified by the strong relationship between

plasma FA and risk of CRC which has been shown to be driven by the pleiotropic FADS locus which

has a profound effect on the metabolism of multiple FA through its gene expression56.

A major concern articulated regarding any MR-PheWAS is the need to provide supporting evidence

from alternative sources. Herein we have sought to address this by conducting a systematic

interrogation of the literature space and potentially identify intermediates to explain relationships.

Although literature mined data is inevitably noisy and driven by publication bias, we have been able

to provide a narrative of the causal relationships for a number of risk factors, which are attractive

candidates for molecular validation.

Complementary studies are required to delineate the exact biological mechanisms underpinning

associations. Our analysis does however highlight important targets for primary prevention of

cancer in the population. The limited power to robustly characterise relationships between

exposure traits and cancer in this study, provides an impetus for larger MR studies. Finally, we

recognise that MR is not infallible and replication and triangulation of findings using different data

sources, and if possible, benchmarking against RCTs is highly desirable. Such efforts could identify

additional  factors as targets to reduce the overall burden of cancer.
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TABLES AND FIGURES LEGENDS

Figure 1. Principles of Mendelian randomisation (MR) and study overview: (a) Assumptions in MR

that need to be satisfied to derive unbiased causal effect estimates. Dashed lines represent direct

causal and potential pleiotropic effects that would violate MR assumptions. A, indicates genetic

variants used as IVs are strongly associated with the trait; B, indicates genetic variants only influence

cancer risk through the trait; C, indicates genetic variants are not associated with any measured or

unmeasured confounders of the trait-cancer relationship. SNP, single-nucleotide polymorphism; (b)

Study overview. Created with BioRender.com.

Figure 2. Power to demonstrate causal relationship in the Mendelian randomisation analysis

across the eight different cancers. Each line represents one trait with line colour indicating

F-statistic, a measure of instrument strength. The analysis of most traits is well powered

across a modest range of odds ratios and this generally corresponds to those with a higher

F-statistic. F-stat, F-statistic

Figure 3. Bubble plot of the causal relationship between selected traits and risk of different

cancers. Each column corresponds to cancer type. Colours on the heatmap correspond to the

strength of associations (odds ratio) and their direction (red positively correlated, blue negatively

correlated), the size of each node corresponding to the -log10 P-value, with increasing size indicating

a smaller P-value. In the available R/Shiny app (https://mrcancer.shinyapps.io/mrcan/), moving the

cursor to each bubble will reveal the underlying MR statistics.

Figure 4. Sankey diagram of literature spaces for exemplar cancer risk factors. Relationship

between: (a) IGF-1 and colorectal cancer; (b) IL-18 and lung cancer; (c) LAG-3 and endometrial

cancer; (d) PRDX1 and prostate cancer.

Figure 5. Heatmap and dendrogram showing clustering of causal associations between traits and

cancer risk. Heatmap based on Z-statistics using the clustering method implemented in the

pheatmap function within R. Colours correspond to the strength of associations and their direction

(red positive association with risk, blue inverse association with risk). Trait classes are annotated on

the left. Only traits showing an association for at least one cancer type are shown.
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Table 1. Details of cancer genome-wide association studies used in the Mendelian randomisation

analysis.
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SUPPLEMENTARY TABLES LEGENDS

Supplementary Table 1. List of traits examined in the Mendelian randomisation analysis and

estimate of power for each trait and cancer type.

Supplementary Table 2. Effect allele, frequency, effect on trait and strength of association with

each cancer type for SNPs used as instrumental variables.

Supplementary Table 3. Causal estimates from the Mendelian randomisation analysis for

continuous traits and cancer risk.

Supplementary Table 4. Causal estimates from the Mendelian randomisation analysis for

continuous traits and  breast cancer subtype.

Supplementary Table 5. Causal estimates from the Mendelian randomisation analysis for

continuous traits and lung cancer subtype.

Supplementary Table 6. Causal estimates from the Mendelian randomisation analysis for

continuous traits and ovarian cancer subtype.

Supplementary Table 7. Weighted median estimate and mode-based estimates for each trait and

cancer type.

Supplementary Table 8. MR-Egger regression analysis for each trait and cancer type.

Supplementary Table 9. MR Steiger analysis for each continuous trait and cancer type.

Supplementary Table 10. Lifetime risk of each cancer used to calculate the proportion of variance

explained.

Supplementary Table 11. Leave one out inverse variance weighted random-effects MR analysis for

each exposure trait and cancer type.
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Supplementary Table 12. The hierarchical levels of statistical support used to classify associations.

Supplementary Table 13. Causal estimates for each Mendelian randomisation method for each

binary trait and cancer risk.

Supplementary Table 14. Causal estimates for each Mendelian randomisation method for each

binary trait and breast cancer subtype.

Supplementary Table 15. Causal estimates for each Mendelian randomisation method for each

binary trait and lung cancer subtype.

Supplementary Table 16. Causal estimates for each Mendelian randomisation method for each

binary trait and ovarian cancer subtype.

Supplementary Table 17. Details of filtering applied to instrumental variables used in the

Mendelian randomisation analysis.

Supplementary Table 18. Literature triples identified across eight different cancer types and

Mendelian randomisation defined risk factors using SemMedDB.

Supplementary Table 19. Stratification of literature space size by trait category.

Supplementary Table 20. List of potential mediators for each trait identified using SemMedDB.
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TABLES

Cancer Cases Controls PubMed ID
Number of

contributing studies
GWAS Catalogue ID

Breast 133,384

Triple negative 2,006

20,815
(subtype
analysis)

113,789 32424353 82
GCST010098
GCST010099
GCST010100

Luminal A 7,325

Luminal B 1,682

HER2 enriched 718

HER2 negative luminal B 1,779

Colorectal 73,673 86,854 36539618 16 GCST90129505

Endometrial 8,758 46,126 30093612 17 GCST006465

Lung 29,266

Ever-smoked 23,223 16,964

56,450 28604730 26

GCST004744
GCST004746
GCST004747
GCST004748
GCST004749
GCST004750

Never-smoked 2,355 7,504

Adenocarcinoma 11,273 55,483

Squamous cell carcinoma 7,426 55,627

Small cell lung cancer 2,664 21,444

Oesophageal 16,790 32,476 35882562 5 NA

20



Ovarian 26,293

Invasive high grade
serous

13,037

40,941
(subtype
analysis)

68,502 28346442 77

GCST004415
GCST004416
GCST004417
GCST004418
GCST004419
GCST004461
GCST004462
GCST004478
GCST004479
GCST004480
GCST004481

All serous 16,003

Invasive mucinous 1,417

All mucinous 2,566

All low malignant
potential

3,103

Invasive low grade serous
and low malignant

potential serous
2,966

Invasive low grade serous
cases

1,012

Endometrioid 2,810

Clear cell 1,366

Low malignant potential
serous

1,954

Low malignant potential
mucinous

1,149

Prostate 79,194 61,112 29892016 8 GCST006085

Renal 10,784 20,406 28598434 5 GCST004710

Table 1
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