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Simulated single-cell data is essential for designing and evaluating computational methods in the7

absence of experimental ground truth. Existing simulators typically focus on modeling one or two8

specific biological factors or mechanisms that affect the output data, which limits their capacity to9

simulate the complexity and multi-modality in real data. Here, we present scMultiSim, an in silico10

simulator that generates multi-modal single-cell data, including gene expression, chromatin accessibility,11

RNA velocity, and spatial cell locations while accounting for the relationships between modalities.12

scMultiSim jointly models various biological factors that affect the output data, including cell identity,13

within-cell gene regulatory networks (GRNs), cell-cell interactions (CCIs), and chromatin accessibility,14

while also incorporating technical noises. Moreover, it allows users to adjust each factor’s effect15

easily. We validated scMultiSim’s simulated biological effects and demonstrated its applications by16

benchmarking a wide range of computational tasks, including cell clustering and trajectory inference,17

multi-modal and multi-batch data integration, RNA velocity estimation, GRN inference and CCI inference18

using spatially resolved gene expression data. Compared to existing simulators, scMultiSim can19

benchmark a much broader range of existing computational problems and even new potential tasks.20
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Introduction21

In recent years, technologies that profile the transcriptome and other modalities (multi-omics) of single cell have22

brought remarkable advances in our understanding of cellular mechanisms [61]. For example, technologies23

have enabled the joint profiling of chromatin accessibility and gene expression data [10; 8; 41], as well24

as the measurement of surface protein abundance alongside transcriptome [56; 47]. Additionally, spatial25

locations of cells can be measured together with transcriptome profiles using imaging-based [52; 19; 63] or26

sequencing-based [55; 50] technologies.27

The advent of single-cell multi-omics data has facilitated a more comprehensive understanding of cellular28

states, and more importantly, allowed researchers to explore the relationships between modalities and the29

causality across hierarchies [18]. Prior to the availability of single cell multi-omics data, gene regulatory30

network (GRN) inference methods were developed using only single-cell RNA sequencing (scRNA-seq) data [48].31

However, these methods mainly focused on transcription factors (TFs) as the sole factor affecting gene32

expressions. In reality, the observed gene-expression data is affected by multiple factors, such as the chromatin33

accessibility of corresponding regions. Consequently, newer methods utilizing both scRNA-seq and scATAC-seq34

data have been developed to infer GRNs [30; 62; 68]. Similarly, there has been a surge in the development35

of other computational tools that harness multi-modality information. For instance, Cell-Cell Interaction (CCI)36

inference methods seek to utilize both the gene expression and the spatial location modalities [16; 53; 5; 6] to37

learn the interactions with a lower false-positive rate than those using only scRNA-seq data [4; 26; 29]. Data38

integration methods combine multi-omics data to obtain a wholistic view of cells [58; 64; 1; 70; 36]. Moreover,39

RNA velocity can be inferred from unspliced and spliced counts using scRNA-seq data to indicate the near-future40

state of each cell [35; 3]. Recently, methods have also been proposed to infer RNA velocity from jointly profiled41

chromatin accessibility and transcriptomics data [38].42

Overall, a large number of computational methods have been developed using scRNA-seq data or single cell43

multi- and spatial-omics data [66]. However, the scarcity of ground truth in experimental data makes it difficult44

to evaluate the performance of proposed computational methods. To address this, de novo simulators have45

been widely used to evaluate the accuracy of computational methods by generating data that models biological46

mechanisms and provides ground truth for benchmarking. SymSim [69], for example, provides ground truth cell47

identity and gene identity and thus can benchmark clustering, trajectory inference and differential expression48

detection. SERGIO [15], BEELINE [48] and dyngen [7] can simulate scRNA-seq data with given ground truth49

GRNs for testing GRN inference methods; while SERGIO, dyngen and VeloSim [71] can provide ground truth50

RNA velocity for testing RNA velocity inference methods. mistyR [60] generates single cell gene expression data51

from a given CCI network and can test CCI inference methods. With the de novo simulators, users can easily52

control the input parameters and obtain the exact ground truth. In addition to de novo simulators, Crowell et53

al [12] discussed another category of single cell data simulators, namely the reference-based methods, which54
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learn a generative model from a given real dataset and generate synthetic data [13; 59; 54; 2]. By design, these55

methods can output datasets that mimic the input reference data, but their flexibility can be limited by the specific56

reference dataset. Although they can provide ground truth cluster labels using annotations in the reference57

dataset or pre-determined labels during the simulation, none of the reference-based methods provides ground58

truth that is rarely available via domain knowledge, like GRNs, CCIs, or RNA velocity.59

We consider that a desirable single cell simulator should meet several criteria: (1) it should generate as many60

modalities as possible to best represent a cell; (2) it should model as many biological factors and mechanisms that61

affect the output data as possible so that the output data has realistic complexity; and (3) it should provide ground62

truth of the biological factors to benchmark various computational methods. Most existing simulators generate63

only scRNA-seq data, and some generate only scATAC-seq data [44; 37]. Among the few ones that can generate64

multiple modalities, dyngen and SERGIO output unspliced and spliced counts with ground truth RNA velocity,65

while a reference-based simulator scDesign3 [54] can generate two modalities each with high dimensionality (eg.66

scRNA-seq and DNA methylation data), or one high-dimensional modality (eg. scRNA-seq) and spatial location67

data depending on the input reference dataset (Table S1).68

In terms of the biological factors modeled in the simulator, existing de novo simulators model only one or69

a small subset of the following biological factors that affect gene expression in a cell: cell identity (cluster70

labels or positions on cell trajectories), chromatin accessibility, GRNs, and CCIs (Table S1). Data generated71

by reference-based simulators can inherently have these effects but it is challenging to obtain the ground truth of72

the biological factors, thus unable to measure the accuracy of a computational method.73

In this paper, we present scMultiSim, a unified framework that models all the above biological factors as well74

as technical variations including sequencing noise and batch effect (Fig. 1a). For each single cell, it outputs75

the following modalities: unspliced and spliced mRNA counts, chromatin accessibility, and spatial location, while76

considering the cross-modality relationships. “Chromatin accessibility” is both an output modality (also called77

the scATAC-seq modality) and a biological factor that affects other output data (it affects the gene expression78

modality). scMultiSim provides ground truth information on cell identity (in terms of cell populations), RNA velocity,79

GRNs and CCIs, as well as relationships between chromatin accessibility and transcriptome data. Therefore, with80

one dataset, it can be used to evaluate methods for various computational tasks including clustering or trajectory81

inference, multi-modal and multi-batch data integration, RNA velocity estimation, GRN inference and CCI82

inference. Moreover, scMultiSim allows the users to adjust the effect of each biological factor on the output data,83

enabling them to investigate how the methods’ performance is affected by each factor when evaluating methods84

for a specific task. We present a comparison between scMultiSim and existing multi-modal simulators in Table S1.85

To our knowledge, scMultiSim is the most versatile simulator to date in terms of its benchmarking applications.86
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Results87

In the following sections, we will provide a brief overview of the core concepts and the simulation process of88

scMultiSim. We will then demonstrate its capability to simulate multiple biological factors simultaneously by89

validating the effects of each factor on the output data. Furthermore, we will showcase the applications of90

scMultiSim by using it to benchmark a wide variety of computational tools.91

scMultiSim overview92

The kinetic model and control of intrinsic noise. In general, scMultiSim runs the simulation in two phases93

(Fig. 1b). In the first phase, scMultiSim employs the widely-accepted kinetic model [46] to generate the true94

gene expression levels in cells ("true counts"). In the second phase, scMultiSim introduces technical variations95

(library preparation noise, batch effects, etc) and generate scRNA-seq and scATAC-seq data that are statistically96

comparable to real data ("observed counts"). To model cellular heterogeneity and gene regulation effects,97

scMultiSim introduces two main concepts: Cell Identity Factors (CIFs) and Gene Identity Vectors (GIVs) (Fig. 1b98

(i, ii)). Biological factors, including cell population (cell identity), GRNs, and CCIs, are encoded in CIFs and GIVs99

(Fig. 2a). Additionally, to model single-cell chromatin accessibility, we also introduce Region Identity Vectors100

(RIVs, Fig. 1b(iii)). Further details on CIF, GIV and RIVs are provided in the next section.101

When simulating single cell gene expression data, scMultiSim extends the idea of SymSim [69], where a kinetic102

model with three major parameters kon, koff, s was used to determine the expression pattern of a gene in a cell103

(Fig. 1b (vi)). In the kinetic model, a gene can switch between on and off states, with kon and koff be the rates of104

becoming on and off. When a gene is in the on state (which can be interpreted as promoter activation), mRNAs105

are synthesized at a rate s and degrade at a rate d. It is common to fix d at 1 and use the relative values for the106

other three parameters [43]. The kinetic parameters kon, koff, s are calculated from the CIF and GIV, as well as107

the corresponding scATAC-seq data (because chromatin accessibility is considered to affect gene expression).108

Since GIVs and CIFs encode information on cell identity, GRNs, and CCIs, the kinetic parameters thus capture109

the four biological factors that affect gene expression: cell identity, chromatin accessibility, GRNs, and CCIs.110

The kinetic model used in scMultiSim provides two modes for generating true counts from the parameters,111

as shown in Fig. 1b (vii). The first mode is the full kinetic model, where genes undergo several cell cycles over112

time with on/off state changes, and the spliced/unspliced RNA counts are calculated. This mode provides the113

ground truth for RNA velocity since the RNA synthesis rate is known. The second mode is the Beta-Poisson114

model, which is equivalent to the kinetic model’s master equation [31], and is faster to run than the full kinetic115

model. The Beta-Poisson model is recommended when RNA velocity is not needed. In the Beta-Poisson model,116

scMultiSim also introduces an intrinsic noise parameter σi that controls the amount of intrinsic noise caused by117

the transcriptional burst and the snapshot nature of scRNA-seq data. This parameter allows users to examine118

the influence of intrinsic noise on the performance of the computational methods. The two modes and the σi119
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parameter are described in Methods.120

Modeling cellular heterogeneity and various biological effects. The design of Cell Identity Factors (CIFs) and Gene121

Identity Vectors (GIVs) allows scMultiSim to encode cell identities and gene-level mechanisms (such as GRNs122

and CCIs) into the kinetic parameters and thereby impact the gene expression levels. This design also provides123

easy ways to adjust the effect of each factor on the output gene expression data.124

The CIF of a cell is a 1D vector representing various biological factors that contributes to cellular heterogeneity,125

such as the cell condition (e.g. treated or untreated), or the expression of key TFs. The GIV of a gene act as126

the weights of the corresponding factors in the CIF, representing how strongly the corresponding CIF affect the127

gene’s expression (Fig. 2a, Methods). By multiplying the CIF and GIV matrices, scMultiSim therefore generates128

a ncell ◊ngene matrix, which is the desired kinetic parameter matrix with the cell and gene factors encoded.129

Each CIF vector and GIV vector consists of four segments, each representing one type of extrinsic variation.130

They encode biological factors including cell identity (cell population, i.e., the underlying cell trajectories or131

clusters), GRNs, and CCIs (Figs. 2a, S1a-b). We introduce the four segments in the following.132

(i) Non-differential CIFs (non-diff-CIF) model the inherent cellular heterogeneity. They represent various133

environmental factors or conditions that are shared across all cells and are sampled from a Gaussian distribution134

with standard deviation σcif.135

(ii) Differential CIFs (diff-CIF) control the user-desired cell population. These are the biological conditions that136

are unique to certain cell types. These factors lead to different cell types in the data. For a heterogeneous cell137

population, cells have different development statuses and types. Values for diff-CIFs are used to represent these138

cell differential factors, which are generated based on the user-input cell differential tree. When generating data139

for cells from more than one cell type, the minimal user input of scMultiSim is the cell differential tree, which140

controls the cell types (for discrete populations) or trajectories (for continuous populations) in the output. The141

process of generating diff-CIFs is described in Methods.142

(iii) CIFs corresponding to Transcription Factors (tf-CIF) control the effects of GRNs. This segment, together143

with the TF segment in the GIV, model how a TF can affect expression of genes in the cell (Methods). Its length144

equals to the number of TFs. In other words, the GRN is encoded in the tf-CIFs and GIVs.145

(iv) CIFs corresponding to ligands from neighboring cells (lig-CIF) control the effect of CCI. If CCI simulation146

is enabled, this segment together with the ligand segment in the GIV of the receptor gene encodes the ground147

truth CCI between two cells. This encoding ensures that a ligand and its interacting receptor have correlated148

gene expression. A receptor can also interact with ligands of multiple neighbors (Fig. 2a (viii)). The GIV matrices149

are generated carefully considering the nature of the kinetic model (Methods).150
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The simulation process. Fig. 1b shows an overview of the simulation process. The scATAC-seq data is generated151

at first (Fig. 2b(iv)), because we consider that the chromatin accessibility of a cell affects its gene expression.152

The scATAC-seq data also follows a pre-defined clustering or trajectory structure represented by the input cell153

differentiation tree. Similar to the gene expression, we multiply the CIF with a Region Identity Vector (RIV)154

matrix, which represents the effect of each CIF on the accessibility of chromatin regions. Details on generating155

the scATAC-seq data are included in Methods. The scATAC-seq data affects scRNA-seq data through the kon156

parameter, because chromatin accessibility controls the activated status of genes (Methods).157

After obtaining all the kinetic parameters, scRNA-seq data can be generated in different modes: with or without158

CCIs and spatial locations, and with or without outputting RNA velocity data (Fig. 1b (vii, viii)). If the user specify159

to generate RNA velocity, the full kinetic model is used, where cells undergo several cycles before the spliced160

and unspliced counts are outputted (Methods). Otherwise, if the Beta-Poisson model is used, and the true counts161

are sampled from the Beta-Poisson distribution. In this mode, RNA velocity and unspliced count data are not162

outputted.163

Simulating cell-cell interaction. If specified to generate spatial-aware single cell gene expression data including164

cell spatial locations and CCI effects, scMultiSim uses a multiple-step approach that considers both time and165

space (Fig. 1b (viii), Fig. S1c). The simulation consists of a series of steps, with each step representing a time166

point. Cells are placed in a grid (Fig. 2a (ix), Fig. S1d), and one cell is added to the grid at each step, representing167

a newborn cell. Users can use the parameter pn to control the probability for the newborn cell to locate with cells168

of the same type (Methods). As experimental data cannot measure cells at previous time points, scMultiSim169

outputs data only for cells at the final time point, which contains the accumulated CCI effects during the cells’170

developmental process.171

To simulate CCI, scMultiSim requires a user-inputted list of ligand-receptor gene pairs that can potentially172

interact, which is called a ligand-receptor database. Users can input cell-type-level or single cell level CCI ground173

truth. If users do not provide ground truth CCIs, scMultiSim can randomly generate the ground truth from the174

ligand-receptor database.175

Technical variations and batch effects. The steps described above belong to the first phase, which generates the176

“true” mRNA counts (and unspliced counts if RNA velocity mode is enabled) in the cells. In the second phase,177

scMultiSim simulates key experimental steps in wet labs that lead to technical noises in the data and output the178

observed scRNA-seq data. Batch effects can also be added to simulate datasets from a user-specified number179

of batches. Users can also control the amount of technical noise and batch effects between batches. These180

procedures are described in Methods. Next, we show the various output of scMultiSim and validate the effects181

present in the simulated data.182
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Design of simulation and datasets183

We have generated a comprehensive set of datasets using scMultiSim to demonstrate the effects of different184

parameter configurations and to benchmark computational methods. These datasets contain both main and185

auxiliary datasets. The main datasets consists of 144 datasets with varying configurations of important186

parameters, including σcif œ {0.1,0.5}, ncell œ {500,800}, ngene œ {110,200,500}, and three different cell187

trajectories. The σcif parameter controls the standard deviation of the CIF and affects the within-cluster or188

within-neighborhood heterogeneity between cells. These main datasets contain all effects scMultiSim can189

simulate: GRN, chromatin accessibility, cell-cell interaction, technical noise and batch effect. Thus, the 144190

main datasets cover a wide range of variety, including different numbers of cells, genes, and trajectory shapes,191

to minimize potential bias and provide a more comprehensive benchmark of the computational methods.192

As presented in Table 1, we label the main datasets with the following format: M{p}{c}{s}. The first letter M193

denotes the main dataset, followed by a letter p œ {L,T,D} that specifies the cell population as linear trajectory,194

tree trajectory or discrete, respectively. The number c œ [1,12] denotes a particular configuration of σcif, ncell, and195

ngene, while the last lowercase letter s œ {a,b,c,d} represents random seed 1-4. For instance, the dataset MD5c196

has a discrete cell population, σcif = 0.1, 800 cells, 200 genes and random seed 3.197

We have also generated auxiliary datasets with fewer types of effects and presented them in Table 2. These198

datasets allow us to explore the effect of other parameters and are compatible with computational methods199

that impose additional constraints on the input. In the remaining, we will primarily use the main datasets M for200

benchmarking and demonstration, while the auxiliary datasets will serve as additional and supplementary results.201

scMultiSim generates multi-batch and multi-modality data from pre-defined clusters or trajectories202

scMultiSim offers a key advantage in its ability to generate coupled scRNA-seq and scATAC-seq data while203

allowing users to control the shape of trajectories or clusters. It is accomplished by offering various parameters204

to control the structure of cell populations. First, the user can choose to generate “continuous” or “discrete”205

populations, and input a tree that represents the cell trajectories (in the case of “continuous” populations) or206

relationship between clusters (in the case of “discrete” populations). We name the tree “differentiation tree”.207

scMultiSim provides three example differentiation trees: Phyla1, Phyla3, and Phyla5, each having 1, 3, and208

5 leaves, as illustrated in Fig. 2b. The main datasets were simulated using these trees (Table 1). From a209

differentiation tree, scMultiSim is able to generate both discrete and continuous cell populations (Fig. 2c). Then,210

users can use these three parameters: intrinsic noise σi, CIF sigma σcif and Diff-to-nonDiff CIF ratio rd, to211

control how clean or noisy the population structure is in the data (Fig. 2c-e).212

For the continuous population, we visualize a dataset MT3a generated using tree Phyla3 in Fig. 2c. We213

can observe that the trajectories corresponding to the input differentiation tree are clearly visible for both the214

scRNA-seq and the scATAC-seq modality. For the discrete population, we visualize dataset MD3a and MD9a215
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generated with tree Phyla5 in Fig. 2d. The parameter σcif controls the standard deviation of the CIF, therefore216

with a smaller σcif, the clusters are tighter and better separated from each other. We then used the auxiliary217

dataset A (Table 2) to explore the effect of the intrinsic noise parameter σi and rd, the ratio of number of diff-CIF218

to non-diff-CIFs. In Fig. 2e, we visualize the scRNA-seq modality generated using Phyla5 continuous mode219

with the same σcif. With a smaller Diff-to-nonDiff CIF ratio rd, the trajectory is vague and more randomness is220

introduced, as the tree structure is encoded in the differential CIFs. With a smaller intrinsic noise σi, a fraction221

of the expression value is directly calculated from kinetic parameters without sampling from the Poisson model;222

As a result, the trajectory is more prominent. These patterns are much cleaner than real data because real data223

always has technical noise. We will show more results with technical noise in later sections and in Fig. S2.224

Coupling between scATAC-seq and scRNA-seq data. In paired scATAC-seq and scRNA-seq data, these two225

data modalities are not independent of each other, as it is commonly considered that a gene’s expression226

level is affected by the chromatin accessibility of the corresponding regions. If a gene’s associated regions227

are accessible, this gene is more likely to be expressed. This mechanism can be naturally modeled in scMultiSim228

through the kinetic parameter kon (Methods).229

We provide a user-adjustable parameter, the ATAC-effect Ea, to control the extent of scATAC-seq data’s effect230

on kon (ranging from 0 and 1). In order to validate the connection between the scATAC-seq and scRNA-seq data,231

we calculate the mean Spearman correlation between these two modalities for genes that are controlled by one232

region in the scATAC-seq data. In Fig. 2f, we present the correlations under different Ea values. An averaged233

0.2-0.3 correlation can be observed using the default value (0.5), and the correlation increases with higher values234

of Ea. These results demonstrate that scMultiSim successfully models the connection between scATAC-seq and235

scRNA-seq data, enabling the generation of more realistic multi-omics datasets.236

scMultiSim simulates technical noise and batch effect. The single cell gene expression data shown in Figs. 2c-f237

are “true” mRNA counts which do not have technical noise. scMultiSim can add technical noise including batch238

effects to the true counts to obtain observed counts (Methods). The amount of technical noise and batch effects239

can be adjusted through parameters, for example, the parameter Ebatch can be used to control the amount of240

batch effect. Users can also specify the number of batches.241

Fig. 2g shows the observed mRNA counts of dataset MD9a (true counts shown in Fig. 2d). The left plot shows242

data with one batch, and the right plot shows two batches. Technical noise and batch effects are also added to243

the scATAC-seq matrix. We further use the auxiliary dataset A to demonstrate the ability of scMultiSim to adjust244

the amount of technical noise and batch effect in both scRNA-seq and scATAC-seq modalities, in both continuous245

and discrete populations (Fig. S2). Here, we vary a main parameter for technical noise, α, which denotes the246

capture efficiency that affects the detection ability of the dataset. Lower α values correspond to poorer data247

quality.248
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scMultiSim generates spliced and unspliced mRNA counts with ground truth RNA velocity249

If RNA velocity simulation is enabled, the kinetic model outputs the velocity ground truth using the RNA splicing250

and degradation rates. The Phyla5 tree in Fig. 2b is used to generate the results in Fig. 2h. The figure shows both251

the true spliced and unspliced counts, as well as the ground truth RNA velocity averaged by k nearest neighbor252

(kNN), which can be used to benchmark RNA velocity estimation methods. The RNA velocity vectors follow the253

cell trajectory (backbone and directions shown in red), which is specified by the user-inputted differentiation tree.254

scMultiSim generates single cell gene expression data driven by GRNs and cell-cell interactions255

The strength of scMultiSim also resides in its ability to incorporate the effect of GRN and CCI while preserving256

the pre-defined trajectory structures. In this section, we show that the GRN and CCI effects both exist in the257

simulated expression data. The main datasets (Table 1) used the 100-gene GRN from [15] as the ground truth258

GRN, which is visualized in Fig. 3a. We also incorporate CCIs by adding cross-cell ligand-receptor pairs to the259

within-cell GRNs. Specifically, we connect each cell’s gene 99,101-104 to a neighbor cell’s gene 91, 2, 6, 10260

(TFs), and 8 (non-TF) in the GRN (green edges in Fig. 3a). Next, we use one dataset (MT3a with a tree trajectory,261

500 genes, 500 cells, and σcif = 0.1) to inspect the simulated effects in detail (Fig. 3b-e).262

GRN guided expression data. We illustrate the gene regulation effects for dataset MT3a using a gene module263

correlation heatmap as shown in Fig.3b. The clustered heatmap is constructed by computing pairwise Spearman264

correlations between the expression levels of all genes. Each color on the top or left side of the heatmap265

represents a TF in the GRN. The figure shows that gene modules regulated by the same TF (genes with the266

same color) tend to be clustered together and have higher correlations with each other. These results suggest267

the presence of GRN effects in the expression data. To further illustrate the regulatory effects, we plot the268

expression of a specific regulator-target pair (gene 19-20) along one lineage (4-5-3 in Phyla3) in Fig. 3c. The269

plot clearly shows a correlation between the expression levels of the regulator and target genes. Moreover, we270

plot the accessibility levels for the corresponding chromatin region of gene 19 in Fig.3c. The plot indicates that271

significant drops in gene 19’s expression occur when the related chromatin region is closed, providing further272

evidence for the regulatory effects of chromatin accessibility.273

Cell spatial locations. scMultiSim provides convenient helper methods to visualize the cell spatial locations, as274

shown in Fig. 3d (dataset MT3a). For each ligand-receptor pair, arrows can be displayed between cells to show275

the direction of cell-cell interactions. We consider various biological scenarios when assigning the spatial location276

to each cell (Methods), for example, a newborn cell has a probability pn of staying with a cell of the same type.277

Changing pn allows us to generate different tissue layouts. In real data, how likely cells from the same cell type278

locate together depends on the tissue type, and scMultiSim provides pn to tune this pattern. Fig. 3f shows the279

effect of varying pn. The left figure in the panel was generated with pn = 1, showing strong spatial clustering of280
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cells from the same cell type. The right figure in the panel was generated with pn = 0.8, where cells from the281

same cell type are more spread out to enable more interactions across cell types.282

Correlations between interacting ligands and receptors. scMultiSim simulates CCIs between single cells as well283

as between cell types. We validate the simulated CCI effects by comparing the correlations of expression levels284

between (i) neighboring cells with CCI, (ii) neighboring cells without CCI, and (iii) non-neighbor cells (Methods).285

As shown in Fig. 3e (using dataset MT3a), cells with CCI have an average pairwise correlation of 0.1, whereas286

cells without CCI exhibit approximately zero correlation, which is expected. We noticed that neighboring cells287

without CCI still have a slightly higher correlation compared to non-neighbor cells, which may be attributed to288

the dynamic nature of cell differentiation, where cells are evolving into new cell types over time, and CCI effects289

involved in an earlier cell type may remain in the final step.290

scMultiSim simulated datasets match real data291

We show that scMultiSim’s output single cell gene expression data can statistically resemble real data. We292

used a spatially resolved single cell gene expression dataset measured with seqFISH+ technology [19; 16], and293

generated simulated data to match this real dataset (Methods). We used dyngen [7] as a baseline simulator to294

compare with, as it is also a de novo multi-modality simulator that shares a few functionalities with scMultiSim295

(Table S1). We compare the simulated data with real data in terms of the following properties: library size, zero296

counts per cell, zero counts per gene, mean count per gene, variation per gene, and the ratio between zero count297

and mean count per gene (Fig. 3g).298

Fig. 3g shows that the library size, zero counts per cell, zero counts per gene and mean counts per gene299

simulated by scMultiSim are closer to that of real data than the dyngen simulated data, and both scMultiSim and300

dyngen are able to simulate data with realistic variation per gene. There is also usually a negative correlation301

between zero counts and mean counts in real data, and scMultiSim is able to simulate this relationship, matching302

well with the reference data.303

Benchmarking computational methods using scMultiSim304

We next show that scMultiSim can be used to benchmark a board range of computational tasks in single cell305

genomics, including clustering, trajectory inference, multi-modal data integration, RNA velocity estimation, GRN306

inference and CCI inference using spatially resolved single cell gene expression data. Using scMultiSim, we307

studied the performance of several recent methods on each task, and also investigated the effect of particular308

parameters for some of the benchmarks. As far as we know, scMultiSim is the only simulator that can benchmark309

all these tasks. It is noteworthy that our intention is not to perform a comprehensive benchmarking analysis, but310

rather to show evidence of scMultiSim’s broad applications. We anticipate that these benchmarks can encourage311

forthcoming researchers to discover more use cases of scMultiSim.312
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Benchmarking clustering and trajectory inference methods313

We first applied scMultiSim to test methods for two classic problems: cell clustering and trajectory inference,314

using the scRNA-seq modality in our discrete main datasets (MD, Table 1). We tested five clustering methods,315

PCA-KMeans, CIDR [39], SC3 [33], TSCAN [28], and Seurat [23] (Fig. 4a). For each method and each dataset in316

the main datasets, we vary the parameter “number of clusters”. Since Seurat does not provide direct control over317

the number of clusters, we varied the resolution parameter instead and plotted using the number of clusters318

in the results. From Fig. 4a, all methods have the best performance when the cluster number is the true319

value. In general, Seurat and SC3 have better performance than the others, which is consistent with previous320

benchmarking [17]. TSCAN performs better than PCA-KMeans in our results which is not the case in [17]. We321

also show the comparison separately for σcif = 0.1 and σcif = 0.5 in Fig. S3a-b. Comparing Fig. S3a with Fig. S3b,322

the methods generally have higher ARI with a smaller σcif, which is expected. Additionally, Seurat’s recommended323

resolution range (0.4-1.2) provides an accurate estimation of the number of clusters (Fig. S3c).324

We evaluated the performance of five trajectory inference methods (PAGA [65], Monocle [49], Slingshot [57],325

MST [51], pCreode [25]) on tree-structured trajectories using the MT datasets. The result is shown in Fig. 4b,326

where we calculated the R2 and kNN purity (Methods) for each separate lineage in each dataset. Overall, PAGA327

Tree and Slingshot have the best performance, which is in line with results shown in previous benchmarking328

efforts [51; 69]. When comparing results on datasets with σcif = 0.1 and σcif = 0.5 (Fig. S4a-b), we again see329

that smaller σcif corresponds to better results. Furthermore, we tested on a simpler linear trajectory dataset ML1a330

(Fig. S4d), and the result was in line with a previous result shown in scDesign3 [54], which used a similar linear331

trajectory.332

Benchmarking multi-modal and multi-batch data integration methods333

A number of computational methods have been proposed to integrate single cell genomics data from multiple334

modalities and multiple batches [1]. We benchmarked three recently proposed multi-modal integration methods:335

Seurat bridge integration (Seurat-bridge) [24], UINMF [34] and Cobolt [21] that can integrate data matrices from336

multiple batches and modalities. We use all 144 main datasets to test their performance under various types of337

cell population. Each main dataset is divided into three batches (with batch effect 3), then the scRNA-seq data338

from batch 2 and scATAC-seq data from batch 3 are dropped intentionally to mimic a real scenario where some339

modalities are missing in certain batches (Fig. 4d). We use the following metrics to evaluate the performance340

of the integration methods: Adjusted Rand Index (ARI) and Normalized Mutual Information (NMI) as the metrics341

for cluster identity preservation, and Graph Connectivity and Average Silhouette Width (ASW) as metrics for342

batch mixing (Methods). These metrics were used in a recent paper on benchmarking single cell data integration343

methods [40].344

The result is shown in Fig. 4c. Since Seurat-bridge does not output the latent embedding for the “bridge”345
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dataset (batch 1 in Fig 4d), only the two matrices from batches 2 and 3 (colored in Fig. 4d) were used for346

evaluation. We observe that UINMF has the best performance in terms of all four measurements. Seurat-bridge347

and Cobolt have comparable ARI and NMI but Cobolt has better batch mixing scores. When comparing the348

ARI and NMI scores for σcif = 0.1 and σcif = 0.5, one can observe that these cell identity preservation scores349

are higher with smaller σcif. Comparing different cell population structures, we see that continuous populations350

(“Linear” and “Tree”) have lower ARI and NMI scores than discrete populations, potentially because that metrics351

like ARI and NMI are better suited for discrete populations.352

We then ran the integration methods on a large dataset with 3000 cells and visualized the integrated353

latent embedding in Fig. S5, which helped us to understand each method’s behavior. We noticed that while354

Seurat-bridge has lower graph connectivity and ASW scores, different batches are located closely (but do not355

overlap) in the visualized latent space. That the reference and query data in the latent space do not overlap can356

cause the low batch mixing scores, but may not affect the ability of label transfer.357

Benchmarking RNA velocity estimation methods358

We demonstrate scMultiSim’s ability of benchmarking RNA velocity estimation methods by running two359

representative RNA velocity inference methods, scVelo [3] and VeloCyto [35], on the simulated data. We compare360

all three models in scVelo package, including the deterministic, stochastic, and dynamical models. The auxiliary361

dataset V (Table 2) was used, which contains 72 datasets of different numbers of cells and genes, with or without362

GRN. We evaluate the accuracy of inferred RNA velocity using cosine similarity score. The score measures the363

degree of mismatch between the direction of inferred and ground truth velocity, where a higher score shows a364

better inference result (Methods).365

From the result shown in Fig. 4f, scVelo’s deterministic model has the highest cosine similarity score on all366

datasets. On the other hand, the dynamical model of scVelo, being considered a generalized version of VeloCyto,367

does not produce the best result. Interestingly, Gorin et al. also discussed a similar performance issue of the368

dynamical scVelo. They mentioned that the mismatch between the implicit assumption of dynamical scVelo and369

the true biological dynamics could be the cause of the performance issue [22]. In spite of the performance370

differences, the similarity scores are shown to be only around 0.2 for all methods. We suspect that it is the371

intrinsic noise within the simulated dataset that affect the inference accuracy of all methods. We further conduct372

experiments comparing the accuracy of inferred RNA velocity with and without kNN smoothing (Methods). By373

using kNN smoothing, the inferred RNA velocity of each cell is further averaged with the velocity of all its374

neighboring cells. Since kNN smoothing helps to reduce the noise effect on the inferred velocity, we expect375

that the overall performance should improve after the smoothing. The experiment results validate our assumption376

(Fig. 4e), where the average performance of all methods increases to 0.63. The experiments show that the377

intrinsic noise within the sequencing dataset heavily affects the accuracy of RNA velocity inference methods, and378

it is still a challenging task to infer RNA velocity from noisy scRNA-seq datasets.379
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Benchmarking GRN inference methods380

Using scMultiSim, we benchmarked 11 GRN inference methods which were compared in a previous381

benchmarking paper [48]. Using the predicted networks, we calculate the AUROC (area under receiver operating382

characteristic curve) as well as the AUPRC (area under precision-recall curve) ratio, which is the AUPRC divided383

by the baseline value (a random predictor). These metrics were also used in previous benchmarking work [48].384

We show results on the 144 main datasets in Fig. 5a. To further inspect the performance in a less-noisy385

scenario, we also generated auxiliary datasets G (Table 2) with a linear trajectory and without CCI effect.386

We benchmarked the methods using true counts and observed counts in G, respectively. The result of G is387

shown in Fig. 5b. All datasets use the same 100-gene GRN from [15]. We observed that PIDC [9] has the388

best overall performance, especially on true counts. Other methods like GENIE3 [27] and GRNBOOST2 [42]389

also have noteworthy precision. We then examined the effect of technical noise on the performance of GRN390

inference methods. On observed counts, both the AUPRC ratio and AUROC value suffer from a decline,391

indicating that it is significantly harder to infer the GRN from noisy data. However, PIDC continues to have392

the highest AUPRC and AUROC values, showing that its performance is more resistant to technical noises.393

SINCERITIES [45], PPCOR [32] and SINGE [14] perform well and beat GENIE3 and GRNBOOST2 on observed394

counts. Nevertheless, the absolute AUPRC values of all methods, even on true counts, are still far from satisfying,395

indicating that GRN inference is still a challenging problem.396

Notably, the ordering of the methods tested using true counts is generally consistent with the ordering reported397

in [48] even though a different ground truth GRN was used. This fact not only validates the previous results398

but also suggests that scMultiSim can generate GRN-incorporated gene expression data comparable to other399

simulators. It indicates scMultiSim’s practicality in benchmarking computational methods that involve GRNs.400

Benchmarking CCI inference methods401

Spatially resolved single cell gene expression data provides a powerful tool for understanding cellular processes,402

tissue organization, and disease mechanisms at the single cell level. Multiple methods have been proposed403

recently to infer CCIs based on spatial cell locations. However, these methods have yet to be compared in this404

relatively new field due to the scarcity of biological ground truth and spatial transcriptomics simulators.405

We benchmarked three CCI inference methods based on spatially resolved single cell gene expression data,406

namely Giotto [16], SpaOTsc [5] and SpaTalk [53]. We run Giotto and SpaOTsc on the main datasets and show407

the result in Fig. 5c. Since SpaTalk needs a minimum of 3 genes from the receptor to a downstream activated408

TF, we also generated an auxiliary dataset C (Table 2) using an artificial GRN with long pathways to satisfy such409

requirement (Fig. S6a). There are totally eight C datasets with 500 cells, 200 genes and a linear trajectory, and the410

result is shown in fig. S6b. Again, we used AUPRC and AUROC as the metrics. When calculating the PRC and411

ROC curves, we applied different thresholds on Giotto’s significance score and SpaTalk’s Bonferroni corrected412
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p-values. Considering both AUROC and AUPRC, Giotto has the best performance with an average AUROC of413

0.68 and AUPRC of 0.54 on the main datasets. SpaTalk outputs too many identical p-values for different datasets414

on dataset C, causing the ROC and PRC curves to look unusual. Nevertheless, it has noteworthy performance in415

terms of AUROC and AUPRC values but is less accurate and stable than Giotto. The benchmarking results show416

that Giotto could be a versatile yet robust choice for CCI inference.417

Discussion418

We presented scMultiSim, a simulator of single cell multi-omics data which is able to incorporate biological419

factors including cell population, chromatin accessibility, RNA velocity, GRN and spatial CCIs to the output420

data. We demonstrated the presence of these simulated factors in the generated data, verified the relationship421

across modalities, and showcased the versatility of scMultiSim through benchmarking on various computational422

problems. Furthermore, by obtaining consistent benchmarking results with previous works like BEELINE [48] and423

dyngen [7], the simulated biological effects are validated to be practical and ready for real-world use.424

Compared to existing simulators that mainly model one or two biological factors, scMultiSim generates data425

with more biological complexity similar to real data. This additional complexity enables researchers to better426

estimate the real-world performance of their methods on noisy experimental data. Furthermore, with the coupled427

data modalities in the output, researchers can benchmark computational methods that use multiple modalities,428

which was previously impossible.429

scMultiSim’s extensibility and versatility are central to its design, making it easy to include more biological430

factors and modalities in its simulations. For example, the framework used to model chromatin regions (RIV)431

and genes (GIV) can also be extended to include other data modalities, such as the protein abundance data.432

Additionally, we have shown that our CIF/GIV model is versatile enough to mathematically represent the effects433

of various biological mechanisms like GRNs and CCIs. In addition to the standard functions of scMultiSim, the434

model can be expanded to consider more realistic scenarios. For instance, the GRN can be set to a cell-specific435

and cell-type-specific mode, allowing for a more precise simulation of regulatory interactions. Moreover, the436

scATAC-seq data and scRNA-seq data can follow different trajectories or clustering structures, while the cell437

clusters can form less regular shapes than the current convex shapes.438

scMultiSim’s usability is supported by several key features. First, it requires minimal and easy-to-construct439

input. For example, users do not need to prepare a backbone for the trajectory to control the cell population;440

instead, only a plain R phylogenetic tree or a text file with the Newick format tree is needed. Second, scMultiSim441

has transparent parameters that are self-explanatory and have a clear effect on the result. The user explicitly sets442

crucial metrics such as the number of cells and genes. Third, scMultiSim’s separated biological effects provide443

great flexibility. For example, the GRN can affect cell population shapes, but obtaining the desired trajectory using444

GRN alone is difficult without explicit control of the cell population. scMultiSim’s diff and non-diff CIF mechanism445

Hechen Li et al. | scMultiSim 14



allows users to set the trajectory to any shape without affecting the GRN effects. Users can also let the GRN446

control the trajectory by increasing the number of non-diff CIF.447

We underline that scMultiSim’s major advantage is its ability to encode various factors into a single versatile448

model, thus creating a comprehensive multi-modal simulator that can benchmark an unprecedented range449

of computational methods. More importantly, the coupled data modalities in the output jointly provide more450

information than a single modality alone, making it ideal for designing and benchmarking new methods on451

multi-omics data. We believe that scMultiSim has the potential to be a powerful tool for fostering the development452

of new computational methods for single-cell multi-omics data. Moreover, as more benchmarks are conducted, it453

can help researchers select the appropriate tool based on the type of data they are working with, leading to more454

accurate and reliable analyses.455
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A The Beta-Poisson model and intrinsic noise

Methods456

A. The Beta-Poisson model and intrinsic noise457

The master equation of the kinetic model represents the steady state distribution of a gene’s expression level

given its kinetic parameters, kon, koff, and s [43]. The Beta-Poisson model was shown to be equivalent to the

master equation [31] with faster calculation. The gene expression level x (which is also the mRNA count) can be

sampled from the following distribution:

y = Beta(kon,koff)

x = Poisson(y ·s)

Using the above Beta-Poisson distribution to generate the gene expression level is one mode to obtain mRNA458

count for a gene in a cell. This works if we only need to generate the spliced mRNA counts. If users also need to459

generate unspliced mRNA counts and RNA velocity, the other mode, called the “full kinetic model” is used. The460

Beta-Poisson model is used by default when only generating spliced counts for lower running time.461

The sampling process from the Beta-Poisson distribution to obtain x introduces intrinsic noise to the data,

which corresponds to the intrinsic noise in real data caused by transcription burst. The theoretical mean of

the kinetic model, which is ( kon
kon+koff

· s), corresponds to the gene expression level of the gene with no intrinsic

noise. We introduced parameter σi which controls the intrinsic noise by adjusting the weight between the random

samples from the Poisson distribution and the theoretical mean:

xσi
= σi ·x+(1≠σi) · (

kon

kon +koff

·s)

The intrinsic noise in scRNA-seq data is hard to reduce in experiments due to the snapshot nature of scRNA-seq462

data. The parameter σi allows users to investigate the effect of intrinsic noise on the performance of the463

computational methods.464

B. Cell Identity Factors (CIFs) and Gene Identity Vectors (GIVs)465

The length of the CIF and GIV, denoted by ncif, can be adjusted by the user. Overall, we have a ncell ◊ ncif CIF466

matrix for each kinetic parameter (Fig. S1a), where each row is the CIF vector of a cell. Correspondingly, we also467

have the ncif ◊ngene Gene Identity Vectors (GIV) matrix, (Fig. S1b) where each column is linked to a gene, acting468

as the weight of the corresponding row in the CIF matrix, i.e. how strong the corresponding CIF can affect the469

gene. In short, CIF encodes the cell identity, while GIV encodes the strength of biological effects. Therefore, by470

multiplying the CIF and GIV matrix, we are able to get a ncell ◊ngene matrix, which is the desired kinetic parameter471

matrix with the cell and gene effects encoded. Each cell has three CIF vectors corresponding to the three kinetic472

parameters kon, koff, and s, and similarly for the GIV vectors (Fig. S1a-b).473
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C diff-CIF generates user-controlled trajectories or clusters.

C. diff-CIF generates user-controlled trajectories or clusters.474

When generating data for cells from more than one cell type, the minimal user input of scMultiSim is the cell475

differentiation tree, which controls the cell types (for discrete population) or trajectories (for continuous population)476

in the output. The generated scRNA-seq and scATAC-seq data reflect the tree structure through the diff-CIF477

vectors. The diff-CIF vectors are generated as follows: starting from the root of the tree, a Gaussian random walk478

along the tree (Fig. 2a) is performed for each cell to generate the ndiff-CIF dimension diff-CIF vector. Parameter479

σcif controls the standard deviation of the random walk, therefore a larger σcif will produce looser and noisier480

trajectory structures. Another parameter rd is used to control the relative number of diff-CIF to non-diff-CIF. With481

a larger rd, trajectories are clear and crisp in the output; with a smaller rd, the trajectory is vague, and the shape482

of the cell population is more controlled by other factors like GRN. For a discrete population, only the cell types at483

the tree tips are used; then cells of each type are shifted by a Gaussian distribution, controlled by the same σcif484

parameter. Therefore, a smaller σcif will produce clearer cluster boundaries.485

For a heterogeneous cell population, cells have different development stages and types. Users should input a486

cell differentiation tree where each node represents a cell type. The tree provides a backbone for the trajectory487

in the cell population. Each dimension of the diff-CIF vector is sampled along the tree via browning motion. First,488

cells start at the root of the tree; then for each dimension, the diff-CIF value for all cells v is489

vi =

i
ÿ

j=1

qj where qj = N (0,σj).

σj is the distance along the tree between cell j and j ≠ 1. Alternatively, users can use an impulse model (using490

the implementation in SymSim). The lengths of the non-diff-CIF and diff-CIF vectors can be controlled by the491

user. More diff-CIFs will result in a more clear trajectory pattern in the cell population, which corresponds to the492

input tree. With very few diff-CIFs, the cell population is mainly controlled by the GRN.493

D. tf-CIF and GIV encode the GRN effects494

To encode GRN effect in the simulated single cell gene expression data, the GIVs and CIFs are designed to495

include a “TF part” (Fig. S1a). Cells are generated one by one along the given cell differentiation tree, where the496

expressions of the TFs in the tth cell affect the gene expression of cell t + 1. Formally, the ith position of the TF497

part (corresponding to the ith TF) of in the CIV of cell t+1 is calculated as:498

tf-CIF(t+1)
i =

x
(t)
i

x
(t)
i + 1

n

q

l x
(t)
l

’i œ TFs (1)

where x
(t)
i is the expression level of the ith TF in the tth cell. The corresponding tf-CIF for the root cell is sampled499

randomly from the Gaussian distribution Ncif supplied by the user.500

The TF part of the GIV for a gene also has length of nTF(Fig. S1b). Considering all genes, we have a ngene ◊501

nTF matrix, which we call the GRN effect matrix. This matrix encodes the ground truth GRN that is supplied by502
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E lig-CIF and GIV encode cell-cell interactions

the user. Naturally, the GRN effect matrix is included in the GIV when calculating the s parameter, where the503

value at (i, j) is the regulation strength of TF j on gene i. Therefore, a larger regulation strength will lead to504

higher s, and consequently, higher expressions for the target genes. For kon and koff, the tf-CIF vector is sampled505

using Ncif, assuming that the GRN does not affect the active state of a gene. However, in the scenario where it506

is desired to model GRN effect also in kon and koff, similar GRN effect matrix for s can be used for kon and koff.507

scMultiSim also allows the use of ground truth GRNs which are cell specific. In this mode, random GRN edges508

are generated or deleted gradually along the pseudotime at a user-controlled speed. When simulating each cell,509

the tf-GIV will be filled with the current GRN effect matrix. The cell-specific GRN ground truth is outputted in this510

mode.511

E. lig-CIF and GIV encode cell-cell interactions512

When simulating spatial transcriptomics data with CCI effects, we used a 2-D k ◊ k grid to model the spatial513

locations of cells (Fig. S1d). The grid size k is large enough to accommodate the n cells (can be specified by514

the user; if not provided, use 250% of cell number by default). A cell can have at most nnbs neighbors with CCI515

(within the blue circle’s range in Fig. 2a, and this radius can be adjusted). Therefore, the ligand CIF and GIV are516

of length nlig ·nnbs, where nlig is the number of ligands.517

The lig-GIV vector contains the CCI strength values, for example, the "n2 lg3" entry in Fig. 2a indicates how518

strong the ligand 3 from the neighbor at position 2 can affect the receptor 2 of this cell. The lig-CIF of each cell519

will inherit from its previous cell during the simulation process, which is similar to the tf-CIF mentioned above.520

Each entry of the lig-CIF vector corresponds to a ligand from one neighbor. The same Gaussian distribution Ncif521

is used for kon and koff. For s, due to the similarity of the ligand-receptor pairs and the TF-target pairs, we use a522

similar strategy as tf-CIF (shown in Eq. 1): cell i’s lig-CIF is the normalized vector of cell i ≠ 1’s gene expression523

counts of the ligand genes (See Fig. 2a, Fig. S1).524

At each step t, a new cell is considered to be born and added to the grid. When adding a new cell, it has a525

probability of pn to be a neighbor of an existing cell with the same cell type. We also provide other strategies to526

place a new cell, including (1) all cells placed at a random location, and (2) only the first m cells are randomly527

placed, and the remaining follow pn. A pre-defined cell differentiation tree is required as input to define the528

differentiation topology in the cells. A new cell will always be in the initial state at the root of the differential tree.529

At each step, an existing cell moves forwards along a random path in the cell differential tree, representing the530

cell development. The gene expressions in the final step are output as the observed data. Fig. S1 shows the531

structure for the CCI mode.532

To generate ground truth CCIs both at the cell types level and single cell level, scMultiSim pre-defines a533

ligand-receptor database, represented by a user input m ◊ 3 matrix S. There are m ligand-target pairs in total534

that correspond to each row of S. For each pair i, there are three parameters: ligand gene Li, receptor gene535
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F Generating the Gene Identity Vectors

Ti, and the effect Ei, representing how strongly the ligand can affect the expression of the receptor. For each536

cell type pair, the ground truth CCI beetween these two cell types are sampled from the ligand-receptor database537

(corresponds to the columns in S). For each neighboring cell pair, the ground truth CCIs between them follow538

the cell-type-level ground truth CCIs: if the two cells belong to two cell types C1 and C2 respectively (where C1539

can be the same as C2), the CCIs between these two cells follow the CCIs defined in S corresponding to pair540

(C1,C2). Users can have further fine-grained control for each cell pair by letting it use a subset of ligand-receptor541

pairs sampled from the cell-type level ground truth.542

Although we collect cells at the last time point as our output (which is the case for real data), different cell543

types are guaranteed to present in the last step since the cells are added at different time steps, therefore having544

different development stages. In addition, we let the same cell (at the same location) have the same diff-CIF545

across different time steps, so the trajectory encoded in the diff-CIF is preserved in the final step. A cell’s TF and546

ligand CIF for the current step is inherited from the previous one to make sure other factors stay the same.547

We use the following steps to calculate the correlation between the expressions of neighboring cells in Fig. 3e.548

First, a specific ligand-receptor pair (l,r) is chosen. Let T (a,b) = {true, false} denote that there is CCI between549

cell a and cell b for (l,r). Then, for each cell i, we get its neighbor list ni, which is a vector of 4 cells. A vector of 4550

non-adjacent cells mi is also randomly sampled for this cell. Thus, let xg
c denote the gene expression of cell c and551

gene g. we calculate the "neighbor cells with CCI" correlation using the pairs {(xl
i,x

r
j)|j œ ni,T (i, j) = true}, the552

"neighbor cells without CCI" correlation using the pairs {(xl
i,x

r
j)|j œ ni,T (i, j) = false}, and the "non-neighbor553

cells" correlation using the pairs {(xl
i,x

r
j)|j œ mi}. Cell pairs of the same type are ignored while calculating the554

correlations because they tend to have similar expressions.555

F. Generating the Gene Identity Vectors556

A gene’s GIV vector has the same length as the CIF vectors. The values in the GIV of a gene act as the weights557

of the corresponding factors in the CIF, i.e., how strong the corresponding CIF can affect the gene (Fig. 2a). If we558

have ngene genes, we obtain a GIV matrix of size ncif ◊ngene.559

It can be divided into four submatrices as shown in Fig. S1b. For kon and koff, the nd-CIF and diff-CIF are560

sampled from distribution G as shown below:561

Y

_

]

_

[

Ngiv w.p. 1≠pG
0

0 w.p. pG
0

where pG
0 is a parameter specifying the probability of being zero, and Ngiv is a user-adjustible gaussian562

distribution. tf-GIV and lig-GIV are all zeros since TF/ligands affect s only. For s, the tf-GIV submatrix is the563

GRN effect matrix, i.e. a nTF ◊ ngene matrix where the entry at (i, j) is the regulation effect between TF i and564

gene j. Similarly, the lig-GIV submatrix is the cell-cell interaction effect matrix. The nd-GIV submatrix is sampled565

from G. For diff-GIV, we do the following steps to incorporate the connection between TFs and regulated genes:566
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G Simulating scATAC-seq data and relationship between scATAC-seq and scRNA-seq

(1) Randomly select 2 GIV entries for each TF gene and give them a fixed small number. (2) For every target567

gene, it should use the same GIV vector as its regulators. If a gene has multiple regulators, its gene effects will568

be the combination of that of the regulators. This is achieved by multiplying the ndiff ◊ nTF GIV matrix in (1) and569

the nTF ◊ngene effect matrix. If a gene is both a TF and target, its GIV will be 0.5 · ((1)+(2)).570

G. Simulating scATAC-seq data and relationship between scATAC-seq and scRNA-seq571

Since scMultiSim incorporates the effect of chromatin accessibility in the gene expressions, the scATAC-seq data572

is simulated before the scRNA-seq data. The cell types in the scATAC-seq data can follow the same differentiation573

tree as in the scRNA-seq data (the scATAC-seq and scRNA-seq data share the same cells) or can follow a574

different tree (to reflect the difference between modalities).575

Similar to GIV, we use a randomly sampled Region Identity Vector (RIV) matrix to represent the chromatin576

regions. Following the same mechanism, we multiply the CIF and RIV matrix, and obtained a “non-realistic577

scATAC-seq” data matrix. Next, the scATAC-seq data matrix is obtained by scaling the “non-realistic” scATAC-seq578

data to match a real distribution learned from real data. This is a step to capture the intrinsic variation of579

the chromatin accessibility pattern, which we will also apply to the kinetic parameters when generating gene580

expressions.581

The RIV matrix is sampled from a distribution R similar to G:582

Y

_

]

_

[

Nriv w.p. 1≠pR
0

0 w.p. pR
0

where pR
0 is the probability of being zero and Nriv is a user-adjustable Gaussian distribution. With the CIF and583

RIV matrices, the ncell ◊nregion scATAC-seq can be generated by (1) multiplying the CIF matrix by the RIV matrix,584

(2) scale the matrix to match the real data distribution, and (3) adding intrinsic noise (sampled from a small585

Gaussian) to the scATAC-seq data. In Step (2), we use the same rank-based scaling process as used for the586

kinetic parameters as described in Section “Preparing the kinetic parameters” above, and the real scATAC-seq587

data distribution is obtained from the dataset in [11].588

To incorporate the relationship between scATAC-seq and scRNA-seq data, we use the scATAC-seq data to589

adjust the kon parameter that is used to generate the scRNA-seq data, considering that chromatin accessibility590

affects the activated status of genes. First, a region-to-gene matrix (Fig.1b) is generated to represent the mapping591

between chromatin regions and genes, where a gene can be regulated by 1-3 consecutive regions. Users592

can input a region distribution vector r, for example, (0.1,0.5,0.4) means a gene can be regulated by three593

regions, and the probability of it being regulated by one, two and three consecutive regions are 0.1, 0.5 and 0.4,594

respectively. The scATAC-seq data is also used to adjust kon as described in the following section.595
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H. Preparing the kinetic parameters596

The kinetic parameters, kon, koff and s are needed when generating single cell gene expression data (mRNA597

counts) using the kinetic model or Beta-Poisson distribution (Fig. 1b). While the basic idea is to get the parameter598

matrix using CIFs and GIVs (Fig. 1b), the three parameters go through different post-processing after the step of599

CIF ◊ GIV. We first denote the result of CIF ◊ GIV for kon, koff and s as M1, M2 and M3, respectively.600

(i) kon. Since chromatin accessibility controls the activation of the genes, the scATAC-seq data is expected601

to affect the kon parameter. We first prepare a nregion ◊ ngene 0-1 region-to-gene matrix Z using r, where Zij602

indicates region i is associated with gene j (Z is outputted as the region-to-gene matrix). We multiply the603

scATAC-seq matrix with Z to get the ncell ◊ ngene parameter matrix M Õ

1. Since the scATAC-seq data is sparse,604

there are many zeros in M Õ

1. Thus, we replace the zero entries in M Õ

1 with the corresponding entries in M1605

(scaled to be smaller than the smallest non-zero entry in M Õ

1) to help differentiate the zero entries. Finally, M Õ

1 is606

sampled to match the distribution of kon inferred from real data.607

(ii) koff. The parameters are obtained by scaling M2 to match the real data distribution. For both kon and koff,608

it is possible to adjust the bimodality of gene expressions [69] through an optional bimodal factor B. A larger B609

will downscale both kon and koff, therefore increasing the bimodality.610

(iii) s. The parameters are obtained by scaling M3 to match the distribution of s inferred from real data. Then,611

users can also use a “scale.s” parameter to linearly scale s. It allows us to adjust the size of cells – some datasets612

may tend to large cells and some tend to have small cells depending on the cell types being profiled.613

When scaling a matrix (M Õ

1, M2, or M3) to match a reference distribution (eg. the distributions of kon, koff614

and s estimated from real data), the procedure is as follows: denoting the reference distribution by D, the matrix615

to rescale by X, and the number of elements in X by n, we sample n ordered values from D, then replace616

the data in X using the same order. scMultiSim uses the reference kinetic distribution parameters provided in617

SymSim [69], where the kinetic parameters are estimated from real data via an MCMC approach. The data618

used are the UMI-based dataset of 3005 cortex cells by Zeisel et al. [67], and a non-UMI-based dataset of 130619

IL17-expressing T helper cells (Th17) by Gaublomme et al [20].620

I. Generating RNA velocity with the full kinetic model621

When using the full kinetic model, scMultiSim can generate the spliced and unspliced counts for each cell from

the kinetic parameters. The starting spliced count xs and unspliced count xu for a cell are the previous cell’s

counts on the differential tree. For the first cell, the spliced/unspliced counts are

xs =
s ·kon ·β

kon +koff

xu =
s ·kon ·d

kon +koff

where β and d respectively represent the splicing and degradation rate of genes. Both γ and d are sampled from622

a user-controlled normal distribution.623
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We set the cell cycle length to be L = 1
kon

+ 1
koff

, and divide it into multiple steps. The number of steps follows

m =
Ï

L
min(1/kon,1/koff)

Ì

. We also provide an optional cell length factor ηL parameter to scale the cycle length. The

probabilities of gene switching on or off are then calculated with pon = kon
m·L and poff = koff

m·L . In each simulation

step, we update the cell’s current on/off state based on pon and poff, and generate the spliced/unspliced counts

xs and xu. The spliced counts at step t are obtained by:

xt
s = xt≠1

s +
L

m
(β ·xt≠1

u ≠d ·xt≠1
s )

and the unspliced counts are obtained by:624

xt
u =

Y

_

]

_

[

xt≠1
u + L

m (s≠β ·xt≠1
u ) if state is on

xt≠1
u ≠ L

m (β ·xt≠1
u ) if state is off

The outputted xs and xu are the values at the final step t = m. The ground truth RNA velocity is calculated as:

v = β ·xu ≠d ·xs

We obtain the KNN averaged RNA velocity by applying a Gaussian Kernel KNN on the raw velocity data, with625

k = Áncell/50Ë. Then we normalize the velocity by calculating each cell’s normalization factor si = |vi|, where vi626

is the velocity vector for cell i.627

J. Adding technical noise and batch effects to data628

Technical noise is added to the true mRNA counts to generate observed counts (observed scRNA-seq data)629

(Fig. 1b). The workflow follows SymSim’s approach [69]: we simulate multiple rounds of mRNA capture and PCR630

amplification, then sequencing and profiling with UMI or non-UMI protocols. The parameter α controls the capture631

efficiency, that is, the rate of subsampling of transcripts during the capture step, which can vary in different cells,632

and user can specify it using a Normal distribution α ≥ N (αµ,ασ). The sequencing depth d ≥ N (dµ,dσ) is633

another parameter that controls the quality of the observed data.634

Batch effects are added by first dividing the cells into batches, then adding gene-specific and batch-specific635

Gaussian noise based on shift factors. For each gene j in batch i, the shift factor is sampled from Unif(µj ≠636

eb,µj + eb), where µj ≥ N (0,1), and eb is the parameter controlling the strength of batch effects. We provide637

several settings for adding highly expressed genes to help researchers fit the housekeeping genes in real data.638

scMultiSim also supports cell- and gene-wise tuning of the mRNA capture efficiency during the PCR process;639

therefore per-cell and per-gene metrics (such as zero count proportion and count variance) in the observed data640

can be controlled separately.641

For scATAC-seq data, as the data is sampled from real data we do not explicitly simulate the experimental642

steps. We do provide methods to add batch effects to obtain multiple batches of scATAC-seq data.643
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K. Comparing statistical properties of simulated data with experimental data644

To measure scMultiSim’s ability to generate realistic data while incorporating all the effects, we compare the645

statistical properties of a real mouse somatosensory cortex seqFISH+ [19] dataset with simulated data generated646

using selected parameters. The dataset, with 10000 genes and spatial locations of 523 cells, is featured in647

Giotto [16]’s tutorial.648

The scMultiSim simulated data has both GRN and CCI effects. The GRN used as input to scMultiSim is649

obtained as follows: GENIE3 [27] was used to obtain an inferred GRN from the dataset, then after looking at the650

output edge importance values, the top 200 edges were utilized to form a reference GRN. We used this GRN651

(96 genes) and another randomly sampled 104 genes to generate a subsample of the data. We then simulated652

a dataset with 200 genes and 523 cells using scMultiSim. After observing the dimension reduction of the real653

dataset, a discrete cell population is assumed. We specify the cluster ground truth using the exact cell type labels654

in the dataset. There are 10 cell types in total. We also used Giotto [16] to infer the cell-cell interactions between655

cells. We chose the top-seven most significant ligand-receptor pairs from Giotto’s output, with p-value Æ 0.01,656

more than 10 ligand and 10 receptor cells, and the largest log2fc values.657

We used dyngen [7] as a baseline simulator to compare with scMultiSim. We generated a simulated dataset658

with dyngen, using the same GRN and number of cells. The cell types and cell-cell interaction ground truth were659

not provided since dyngen does not support them. Yet, we supplied the raw mouse SS cortex count matrix to660

dyngen’s experiment_params as a reference dataset.661

We used the following metrics to compare the distribution of simulated and experimental datasets, which is662

also used in [15]: library size (per cell), zero counts proportion (per cell), zero counts proportion (per gene), mean663

counts (per gene), counts variance (per gene), and the relationship between zero counts and mean counts per664

gene.665

L. Evaluation metrics for benchmarking computational methods666

When evaluating the trajectory inference methods, we calculate the coefficient of determination R2 and the kNN

purity for all cells on each lineage. Given the cells’ ground truth pseudotime vector t and the inferred pseudotime

t̂, the R2 is equal to the square of the Pearson correlation coefficient:

R2 = 1≠

q

i(ti ≠ t̂i)
2

q

i(ti ≠ t̄)2
= ρ2(t, t̂)

where t̄ is the mean of t. Given a cell i’s kNN neighborhood N t̂
i in t̂ and its kNN neighborhood N t

i in t, the kNN667

purity Kp for the cell is the Jaccard Index of N t
i and N t̂

i .668

The evaluation metrics used for multi-model data integration methods, Graph Connectivity and ASW, are669

described as following.670
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Graph Connectivity is defined as:671

GC =
1

|C|

ÿ

cœC

|LCC(c)|

|c|

where C is all cell types, LCC(c) is in the largest connected component for cells of type c.672

For the ASW:673

batchASW =
1

|M |

ÿ

kœM

1

|Cj |

ÿ

iœCj

1≠ |silhouette(i)|

where M is the set of all cell types, and Cj is all the cells of type j. We used the implementation in [40].674

When evaluating RNA velocity inference methods, we used the cosine similarity between the averaged

estimated velocity and the ground truth. Calculating the average of estimated velocity vectors is commonly

used to reduce local noise [7]. In dyngen [7], averaged RNA velocities were calculated across cells at trajectory

waypoints weighted through a Gaussian kernel using ground truth trajectory; while in scMultiSim, we averaged

the raw velocity values by kNN with a Gaussian kernel and k = ncells/50 to achieve a similar averaging effect.

Finally, cosine similarity is calculated as:

1

ncells

ÿ

i

vi ·ui

ÎviÎÎuiÎ

where vi is the ground truth velocity vector for cell i, and ui is the predicted velocity vector.675

M. Details on running clustering methods676

We used CIDR 0.1.5, SC3 1.24.0, Seurat 4.1, and TSCAN 2.0. The parameters we specified are (1) SC3:677

pct_dropout = [0,100], (2) Seurat: dims.use = 30. For PCA-Kmeans, we simply ran Kmeans clustering on678

the first 20 principle components using the default R implementation prcomp and kmeans. ARI is calculated by679

adjustedRandIndex from the R package mclust. Some code was adapted from [17].680

N. Details on running trajectory inference methods681

We used the latest dynverse [51] package to run the trajectory inference methods. When running them, we682

provide the correct root cell ID, number of starting clusters and number of ending clusters. The R2 values are683

calculated between the inferred pseudotime and the ground truth for each separate lineage. The kNN purity value684

is calculated for each lineage as: for cell i, we obtain its k Nearest Neighbors Ni on the pseudotime with k = 50.685

Then the kNN purity for i is the Jaccard Index of Ni on the inferred pseudotime and Ni on the true pseudotime.686

R2 measures the correctness of inferred pseudotime, but when there are multiple branches in the trajectory, R2
687

does not distinguish cells with similar pseudotime but are on different branches. In this case, the kNN purity688

serves as a complementary measurement that measures the correctness of inferred trajectory backbone.689
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O. Details on running data integration methods690

We use all 144 main datasets. Technical noise and batch effects were added using default parameters (non-UMI,691

α ≥ N (0.1,0.02), depth ≥ N (105,3000), ATAC observation probability 0.3). All integration methods were run on692

the scRNA and scATAC data with technical noise and batch effect. For Seurat-bridge, we followed the vignette693

“Dictionary Learning for cross-modality integration” in Seurat 4.1.0 using the default parameters. For UINMF,694

we used the latest GitHub release. We followed the “UINMF integration of Dual-omics data” tutorial and ran the695

optimizeALS method using k = 12. For Cobolt, we used the GitHub version cd8015b, with 10 latent dimensions,696

learning rate 0.005. If the loss diverged, we automatically retry with learning rate 0.001. The metrics, including697

ARI, NMI, Graph Connectivity, and ASW were computed using the scib [40] package.698

P. Details on running RNA velocity estimation methods699

We use the datasets V to benchmark RNA velocity inference methods as shown in Table 2. We used scVelo700

0.2.4 and VeloCyto 0.17.17. We benchmarked scVelo with three modes: deterministic, stochastic, and701

dynamical. For VeloCyto, we used the default options.702

Q. Details on running GRN inference methods703

We use the BEELINE [48] framework to benchmark GRN inference methods. Apart from the main datasets, The704

dataset G (Table 2) was generated using the following configurations: The 100-gene GRN in Fig. 3, 1000 cells,705

50 CIFs, rd = 0.2, σi = 1, with other default parameters. Eight datasets were generated for random seed 1 to 8,706

and technical noise and batch effect was added using default parameters. We ran the BEELINE GitHub version707

79775f0. In order to resolve runtime errors, all docker images were built locally, except that we used the provided708

images on Docker Hub for PIDC and Scribe. We use BEELINE’s example workflow to infer GRN and calculate the709

AUPRC ratio and AUROC for (a) true counts in the eight datasets, and (b) observed counts with batch effects in710

the eight datasets. The AUPRC ratio is the AUPRC divided by the AUPRC of a random predictor, which equals to711

the network density of the ground truth network. Eleven methods were benchmarked in total: PIDC, GRNBoost2,712

GENIE3, Sincerities, PPCOR, LEAP, GRISLI, SINGE, GRNVBEM, Scribe and SCODE.713

R. Details on running CCI inference methods714

We generated 12 datasets using the following procedure. Apart from the main datasets, for each C dataset715

(Table 2), we first construct the GRN (Fig. S6a): (1) let genes 1-6 be the transcription factors. Sample 70716

edges from gene 1-6 to gene 7-53. (2) Connect gene 7-53 (regulator) to gene 54-100 (target) consecutively. (3)717

Connect gene 54-100 to gene 110-156. In this way, we can generate a GRN with reasonable edge density and718

make sure that there are three downstream genes for each TF, which is required by SpaTalk. Then we construct719
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the ligand-receptor pairs: let the ligands be gene 101-106 and receptors be gene 2, 6, 10, 8, 20, and 30. We720

divide a linear trajectory into 5 sections, corresponding to 5 cell types. Between each cell type pair (excluding721

same-type pairs), we sample 3-6 ligand-receptor pairs and enable cell-cell interactions with them for the two cell722

types. The dataset is then simulated using 160 genes in total, 500 cells, and 50 CIFs. We use the true counts to723

benchmark the methods.724

To run SpaTalk, we modify the original plot_lrpair_vln method to return the p-value from the Wilcoxon rank

sum test directly, rather than drawing a figure. Before using the p-values to calculate the precision and recall, we

adjusted them using Bonferroni correction:

p̂i = max(pi · |p|,1)

where p is the p-value vector for all cell types and ligand-receptor pairs. For Giotto, we used the R package 1.1.2725

and followed the mini_seqfish vignette. For SpaOTsc, we used default parameters.726
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Data and Code Availability727

The scMultiSim R package is available at https://github.com/ZhangLabGT/scMultiSim. The code728

for dataset generation and benckmarking is available at https://github.com/ZhangLabGT/scMultiSim_729

manuscript.730
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.

Name

(#datasets)

Label Trajectory σcif Cells Genes Velo GRN CCI Seed

Main (144) M

L: Continuous Linear

(Phyla1)

T: Continuous Tree

(Phyla3)

D: Discrete

(Phyla5)

0.1

500 1: 110 genes

2: 200 genes

3: 500 genes

F GRN_100 T

a: 1

b: 2

c: 3

d: 4

800 4: 110 genes

5: 200 genes

6: 500 genes

0.5

500 7: 110 genes

8: 200 genes

9: 500 genes

800 10: 110 genes

11: 200 genes

12: 500 genes

Table 1. The main dataset contains 144 datasets with varying trajectory, σcif,number of cells and genes. For each parameter

configuration, four datasets are generated using different random seeds. We number the datasets for easy referencing in

the text: starting with the letter M,then a letter {L,T,D} specifying the trajectory; followed by a number 1-12 identifying the

configuration of σcif, number of cells and genes; and last, a lowercase letter a-d indicating the random seed. For example,

MD5c uses a discrete cell population, σcif = 0.1, 800 cells, 200 genes and random seed 3. Phyla1, Phyla3 and Phyla5 are

the input tree structure used to generate the cell populations, and they are shown in Fig. 2b.
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Name

(#datasets)
Label Trajectory σcif Cells Genes Velo GRN CCI Seed

Other

Params

Auxiliary (144) A

Tree

(Phyla5) 0.1, 0.5, 1 200 1000 F GRN_100 F 1,2
Eatac = 0.2,0.5,0.9

σi = 0.3,1

rd = 0.2,0.8
Discrete

(5 clusters)

Velocity (72) V
Tree

(Phyla5)
0.1 500,750,1000 100,200,500 T

GRN_100
T 5-8

N/A

Realistic (1) R
Discrete

(10 clusters)
0.1 523 200 F Inferred F 1

Add. GRN (8) G Linear 0.1 110 1000 F GRN_100 F 1-8

Add. CCI (8) C Linear 0.1 200 500 F Fig. S6 T 1-8

Table 2. The auxiliary dataset and other datasets used in supplimental information.
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Figures903

Figure 1. Overview of scMultiSim. See the next page for descriptions.
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. Overview of scMultiSim. (a): The input, output, and use cases. The minimal required input is a cell differential tree

describing the differentiation relationship of cell types. It controls the cell trajectory or clusters in the output. A user-input

ground truth GRN is recommended to guide the simulation. Users can also provide ground truth for cell-cell interaction and

control each simulated biological effects using various parameters. (b): The overall structure of scMultiSim. The scATAC-seq

data (iv) is firstly generated using CIF (i) and RIV (iii). The kinetic parameters used to generate scRNA-seq data (vi) is

prepared using GIV (ii), CIF (i) and the scATAC-seq data with (v) a region-to-gene matrix. Using the parameters, either the

full kinetic model (when RNA velocity is required), or the Beta-Poisson model (when running speed matters) will be used to

generate the scRNA-seq data (vii). scMultiSim uses a multiple-step approach that considers both time and space when CCI

is enabled (viii). With the simulated true counts (viv), technical noise and batch effects can be added to obtain the observed

counts (x).
904
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Figure 2. scMultiSim generates multi-modal single cell data from pre-defined cell clustering structure or trajectories.

See the next page for descriptions.
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. scMultiSim generates multi-modal single cell data from pre-defined cell clustering structure or trajectories. (a)

The CIF and GIV matrix. We multiply the CIF and GIV matrix to get the cell×gene matrix for each kinetic parameter. CIFs

and GIVs are divided into segments to encode different biological effects, where each segment encodes a certain type of

biological factor. A cellular heterogeneity is modeled in the CIF, and regulation effects are encoded in the corresponding GIV

vector. (viii) is the illustration of the cell-cell interactions and in-cell GRN in our model. (ix) is the grid system representing

spatial locations of cells. A cell can have at most four neighbors (labeled 1-4) within a certain range (blue circle). The cell at

the bottom right corner is not a neighbor of the center cell. (b) Three trees are provided by scMultiSim and used to produce the

datasets. Phyla1 is a linear trejectory, while Phyla3 and Phyla5 has 3 and 5 leaves, respectively. (c) t-SNE visualization of the

paired scRNA-seq and scATAC-seq data (without adding technical noise) from the main dataset MT3a (continuous populations

following tree Phyla3), both having ncell = ngene = 500. (d) t-SNE visualization of the paired scRNA-seq and scATAC-seq data

(without adding technical noise) from the main datasets MD3a and MD9a (discrete populations with five clusters, following tree

Phyla5). (e) Additional results showing the effect of σi and rd using datasets A. (f) Additional results exploring the ATAC

effect parameter Ea using datasets A. Averaged Spearman correlation between scATAC-seq and scRNA-seq data for genes

affected by one chromatin region, from 144 datasets using various parameters (σi, σcif, rd, continuous/discrete). (g) The

observed RNA counts in dataset MD9a with added technical noise and batch effects. (h) The spliced true counts, unspliced

true counts, and the RNA velocity ground truth from dataset V. The velocity vectors point to the directions of differentiation

indicated by red arrows, from the tree root to leaves.
905
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Figure 3. scMultiSim generates realistic single cell gene expression data driven by GRN and cell-cell interaction. See

the next page for descriptions.
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. scMultiSim generates realistic single cell gene expression data driven by GRN and cell-cell interaction. (a) The

GRN and CCIs used to generate the main datasets. Red nodes are TF genes and green nodes are ligand genes. Green

edges are the added ligand-receptor pairs when simulating cell-cell interactions. (b-e) Results from dataset MT3a, which uses

Phyla3, 500 genes, 500 cells and σcif = 0.1. (b) The gene module correlation heatmap. The color at left or top represents the

regulating TF of the gene. Genes regulated by the same TF have higher correlations and tend to be grouped together. (c) The

log-transformed expression of a specific TF-target gene pair (gene19-gene20) for all cells on one lineage (4-5-3 in Phyla3).

Correlation between the TF and target expressions can be observed. We also show the chromatin accessibility level for the

TF gene 19, averaged from the two corresponding chromatin regions of the gene. Significant lower expression of gene 19 can

be observed when the chromatin is closed. (d) The spatial location of cells, where each color represents a cell type. Arrows

between two cells indicates that CCI exists between them for a specific ligand-receptor pair (gene101-gene2). By default,

most cell-cell interactions occur between different cell types. (e) Gene expression correlation between (1) neighboring cells

with CCI, (2) neighboring cells with CCI, and (3) non-neighbor cells. Cells with CCI have higher correlations. (f) scMultiSim

provides options to control the the cell layout. We show the results of 1200 cells using same-type probability pn = 1.0 and

0.8, respectively. When pn = 1.0, same-type cells tend to cluster together, while pn = 0.8 introduces more randomness. (g)

Comparison between a real dataset and simulated data using multiple statistical measurements. Parameters were adjusted

to match the real distribution as close as possible.
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Figure 4. Benchmarking clustering, trajectory inference, multi-modal data integration and RNA velocity estimation

methods. (a) Benchmarking clustering methods on dataset MD (discrete). Methods are grouped by number of clusters in

the result. The vertical red dashed line shows the true number of clusters. A higher ARI indicates better clustering. (b)

Benchmarking trajectory inference methods on dataset MT (continuous tree). Methods are evaluated based on their mean

R2 and kNN purity on each lineage (higher is better). (c) Benchmarking multi-modal data integration methods. Metrics for

the methods: ARI, NMI (higher = better at preserving cell identities), graph connectivity and average silhouette width of batch

(higher = better merging batches). (d) The task illustration of multi-modal data integration. Only cells in batch 1 and 3 (pink

and blue matrices) are used for evaluation. (e,f) Benchmarking RNA velocity estimation methods on auxiliary dataset V. The

result is measured using cosine similarity.
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Figure 5. Benchmarking GRN inference and CCI inference methods. (a) Benchmarking GRN inference methods. the

upper figure shows AUPRC ratios (versus a random classifier), and the lower figure shows AUROC values. (b) Additional

results on benchmarking GRN inference methods using datasets G that does not contain CCI effects. We also tested the

performance on observed counts with technical noise. (c) Benchmarking cell-cell interaction inference methods. Each curve

in the ROC/PRC plots correspondings to one dataset.
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