Skip to main content
. 2023 Mar 16;9(3):69. doi: 10.3390/jimaging9030069

Table 1.

List of the different hyperparameters optimized over.

Hyperparameters Values
Differentiable augmentation [34] TRUE/FALSE
Activation fn of discriminator ReLU/LeakyRelu/Elu/Selu
Activation fn of generator ReLU/LeakyRelu/Elu/Selu
Normalization layer of discriminator BatchNorm [35]/InstanceNorm [36]
Normalization layer of generator BatchNorm [35]/InstanceNorm [36]
Number of filters of discriminator 16/32/64/128
Number of filters of generator 16/32/64/128
Use spectral norm for discriminator TRUE/FALSE
Use spectral norm for generator TRUE/FALSE
Weight initialization function Normal/Xavier/Xavier Uniform/Kaiming He
Weight initialization gain 0.01/0.02/0.1/1.0
Gradient penalty loss weight (WGAN-GP only) 0/0.1/1.0/10.0
Weight clipping value (WGAN only) 0/0.01/0.1
Feature matching loss weight 0/1.0/10.0
VGG loss weight 0/1.0 /10.0
Learning rate 0.00004/0.00005/0.0001/0.0002/0.001
Use of label smoothing [29] TRUE/FALSE
Use of data augmentation TRUE/FALSE