Skip to main content
. 2023 Jan 19;14(13):3400–3414. doi: 10.1039/d2sc06298d

Electrochemical performances of highly active Ni–Mo-based catalysts with alloy–hydroxide interfaces in 1 M KOH.

Electrocatalyst Synthesis method Composition and structure Overpotential (mV) TOF (s−1) Tafel slope (mV per decade) Stability Ref.
Mo0.84Ni0.16@Ni(OH)2 Hydrothermal, reduction @ 500 °C and electrodeposition NiMoO4, Mo0.84Ni0.16, Ni(OH)2, nanowires η 10 = 10, η100 = 91 0.93 @ η100 71 3000 CV cycles; 20 mA cm−2, 100 h 59
P–Mo–Ni(OH)2 Hydrothermal and low-temperature H2/N2 plasma activation MoNi4, Ni(OH)2, Ni3N, MoNiN, nanosheet η 10 = 22, η100 = 98 1.325 @ η50 80 10 mA cm−2, 100 h, 50 mA cm−2, 50 h 60
Co(OH)2/NiMo CA@CC Electrodeposition NixMoy, Co(OH)2, nanosheet η 10 = 30 41 10 mA cm−2, 24 h, 50 mA cm−2, 24 h, 100 mA cm−2, 24 h 61
h-NiMoFe Hydrothermal and reduction @ 500 °C MoO2, Ni4Mo, Fe–(OH)4–Ni4, nanosheet η 10 = 14, η500 = 74, η1000 = 97 2 @ η50 30.6 200, 600, 1000, and 1500 mA cm−2 for total 40 h 50
Ni0.33Mo0.67-900 High-temperature sintering Ni0.33Mo0.67, MoOx, Ni(OH)2, nanosponge η 10 = 37, η1000 = 316 39.2 2 A cm−2, 300 h 62
RANEY®-type NiMo Atmospheric plasma spraying and activation MoNi, Mo1.08Ni2.93, Ni(OH)2, nanosponge η 200 = 82 (30 wt% KOH) 36 2 A, 47 days (30 wt% KOH) 63
NiMo/Ni(OH)2/CC Hydrothermal and electrodeposition NiMo, Ni(OH)2, nanosheet η 10 = 132 134.1 10 mA cm−2, 24 h 41
NiMo@Ni(OH)2MoOx Electrodeposition Ni(OH)2, MoO3, MoO2, nanoparticles η 100 = 160 115 10 mA cm−2, 24 h, 100 mA cm−2, 24 h 42