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Biomedical sensors are the key units of medical and healthcare systems. The develop-
ment focus of this topic is to use new technology and advanced functional biocompatible
materials to design miniature, intelligent, reliable, multifunctional, low-cost, and efficient
sensors. The last two decades have seen unprecedented growth in the employment of
advanced sensors, which enable the detection of critical biomarkers for the early diagnosis
of human diseases and the monitoring of human physiological signals for assessments
in healthcare and biomedical applications. This rapid progress in both sensor technology
development and its applications is mainly due to the quickly advancing development
of micro/nanofabrication, manufacturing techniques, and advanced materials, as well as
the increasing demand for the development of fast, simple, and sensitive measurement
techniques that are capable of accurately and reliably monitoring biological samples in
real time. The development of biomedical sensors is driven by the requirements of the
medical field. The screening and continuous monitoring of patients with sensors has be-
come increasingly important. A huge growth in the demand for home care will certainly
promote the development of disposable sensors or telemedicine. This also puts forward
requirements for future medical sensors.

This Special Issue aims to provide an overview of recent advancements in the area
of sensing technologies, including of sensors and platforms with a focus on functional
materials, novel sensing mechanisms, design principles, fabrication and characterization
techniques, performance optimization methods, multifunctional and multiplex sensing
platforms, and system integration strategies, which play crucial roles in many applications.

Gökhan Güney et al. [1] used MediaPipe artificial intelligence (AI)-based hand-
tracking technologies to quantitatively assess the hand movements of patients that were
suffering from Parkinson’s Disease (PD). First, they investigated the frequency and am-
plitude relationship between the video and accelerometer data. Then, they focused on
quantifying the effects of taking standard oral treatments. Their work achieved an auto-
matic estimation of the movement frequency and tremor frequency with a low error rate,
and this appears to be the first paper that has presented an automated tremor analysis
before/after the use of medication for PD, and, in particular, the first to use high-frame-rate
video data.

Athanasios Tsanas et al. [2] proposed a new acceleration summary measure, the Rate
of Change Acceleration Movement (ROCAM), and compared its performance against three
established approaches, summarizing the three-dimensional acceleration data to replicate
the minute-by-minute labels. Moreover, they compared findings where the acceleration
data was sampled at 10, 25, 50, and 100 Hz. Collectively, this study contributed new insights
into the analysis of wrist-worn actigraphy data in three areas, and provided insights into
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facilitating the deployment of large-scale, longitudinal actigraphy data processing for 24 h
physical activity and sleep profile assessments.

Negin Foroughimehr et al. [3] demonstrated the accuracy variation of the finite-
difference time-domain (FDTD) computational simulation system when different meshing
sizes were used, by using the interaction of the critically sensitive human cornea with EM
within the 30 to 100 GHz range. Different approaches to the base cell size specifications were
compared. The accuracy of the computation was determined by applying planar sensors
that showed the detail of the electric field distribution, as well as the absolute values of the
electric field that were collected by point sensors. The results of the presented simulations
suggested that using an adaptive cell size specification provided fewer radiation artifacts,
resulting in more accurate computational simulations. Furthermore, they found that the
adaptive cell size setup radically increased the required computation time compared with
the manual specification of the cell sizes.

David Burns et al. [4] presented an approach to personalized activity recognition that
was based on deep feature representation derived from a convolutional neural network
(CNN). They experimented with both categorical cross-entropy loss and triplet loss for
training, and described a novel loss function based on the subject triplets. These results
showed that the personalized algorithms they presented were more robust to inter-subject
variability in inertial time series datasets. They significantly outperformed impersonal
approaches in more challenging classification tasks, where there exists a high degree of
similarity between classes.

In the study by Zixi Gu et al. [5], a real-time muscular activity measurement system
using non-contact sensors was developed. The system used two inertial measurement unit
(IMU) sensors to collect the motion data that was produced during normal walking, in
order to estimate the knee extensor activity. An artificial neural network was used in the
estimation model training. An evaluation experiment was also conducted to validate the
estimation algorithm. The muscle activity estimation results, which were estimated by the
proposed algorithm after its optimization, showed a relatively high estimation accuracy,
with a correlation efficient of R2 = 0.48 and a standard deviation STD = 0.10, with a total
system average delay of 192 ms. Compared with the previous study, this newly proposed
system presented a higher accuracy and was more suitable for real-time leg muscle activity
estimation during walking.

Chisaki Miura et al. [6] aimed to develop a virtual caregiver system that retrieved
expressions of mental and physical health states through a human–computer interaction
in the form of dialogue. The purpose of this paper was to implement and evaluate a
virtual caregiver system using a mobile chatbot. Unlike the conventional health monitoring
approach, their key idea was to integrate a rule-based virtual caregiver system (called a
“Mind Monitoring” service) containing physical, mental, and social questionnaires into
the mobile chat application. According to the main results, its effects were significantly
improved by the proposed method, including an 80% response rate, an accurate reflection
of real lives in the responses, and a high usefulness of the feedback messages with regard
to the software quality requirements and evaluation.

Robert Karpiński et al. [7] proposed a method for processing acoustic signals and
selecting optimal signal measures that used the neighborhood component analysis (NCA)
algorithm. Their obtained results confirmed the thesis that an inexpensive, noninvasive,
and, most importantly, effective diagnosis of damage to the articular cartilage that covers
the articular surfaces of the patellofemoral joint, based on generated vibroacoustic signals,
was possible. This confirmed the validity of the assumptions that were made and the
usefulness of the proposed method that was created based on statistical parameters and
machine learning.

Aarón Cuevas-López et al. [8] presented a digital compression algorithm that was
capable of reducing electrophysiological data to less than 65.5% of its original size, without
distorting the signals. This algorithm could compress neural data to nearly half its original
size in a lossless manner, without adding any distortion. The power required by the
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algorithm itself was less than 3 mW, which was negligible compared to the power that was
saved by reducing the transmission bandwidth requirements. These developments could be
used to create a variety of wired and wireless neural electrophysiology acquisition systems
with low power and space requirements, without the need for complex or expensive
specialized hardware.

Sheng-Wei Pan et al. [9] proposed a characterization method that used attenuated
total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) spectra to evaluate
urine samples, and assessed the correlation between the ATR-FTIR patterns, urinary tract
infection (UTI) diagnoses, and causative pathogens. Their results indicated that the relative
ratios between the different area zones of vibration, as well as the multivariate analysis,
could be used as a clue to discriminate between UTIs and non-UTIs, as well as the different
causative pathogens of UTIs. Their findings suggested that this calculation method using
ATR-FTIR may provide clues to detect UTIs and other diseases in the future.

Lalita Chopra et al. [10] prepared multifunctional binary graft copolymeric matrices
of chitosan with monomer acrylic acid (AA) and various comonomers acrylamides (AAm)
and acrylonitriles (AN), by performing free radical graft copolymerization in the presence
of an initiator potassium persulfate (KPS). These binary grafts showed significantly better-
controlled drug diffusion than the unmodified backbone, and produced superior results
compared to the chitosan. The graft copolymer Ch-graft-poly (AA-cop-AAm) provided
superior results with regard to sustainable drug release, as well as for the metal ion uptake.
The study explored the potential of chitosan-based materials in the industry, as well in the
biomedical field.

Wenfeng Zheng et al. [11] proposed a low-dose computed tomography (CT) image
post-processing method based on learning sparse transform. Their image post-processing
method did not need to obtain the real projection data, and the method reduced the
research threshold, could realize offline processing, and was easy to use. In this paper, two
different learned sparse transformations were used. The first covered more organizational
information about the scanned object, and the other could cover more noise artifacts. Both
methods could improve the ability to learn sparse transformations, in order to express
various image information. These experimental results showed that the algorithm was
effective.

Robert Karpiński et al. [12] aimed to establish diagnostic accuracy and to identify
the most accurate signal processing method for the detection of osteoarthritis (OA) in
knee joints. An analysis of their results showed that vibroarthrography can be an effec-
tive, low-cost, and accurate diagnostic modality for the evaluation of cartilage damage
in tibiofemoral joints, and that it can be implemented in daily orthopedic practice. A
neighborhood component analysis (NCA) algorithm was used for the detection of signals
and the optimization of the quantity of the input data, aiding in the maximization of the
classification accuracy in a shorter calculation time.

Dan Wang et al. [13] explored approaches to the application of mechanical stimuli
to different cell types using kidney-on-a-chip models, and examined how these systems
are used to study kidney physiology, to model disease, and to screen for drug toxicity.
They further discussed sensor integration into kidney-on-a-chip models for the monitoring
of cellular responses to mechanical or other pathological stimuli. They discussed the
advantages, limitations, and challenges associated with incorporating these mechanical
stimuli into kidney-on-a-chip models for a variety of applications. Overall, this review
aimed to highlight the importance of mechanical stimuli and sensor integration in the
design and implementation of kidney-on-a-chip devices.

Pablo Campo-Prieto et al. [14] explored whether a commercial wearable head-
mounted display (HMD) and a selected virtual reality (VR) exergame could be suitable for
people with mild–moderate Parkinson’s Disease (PD). In all, 32 patients (78.1% men;
71.50 ± 11.80 years) were a part of the study. Its outcomes supported the feasibility of
a boxing exergame combined with a wearable commercial HMD as a suitable physical
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activity for PD, and reinforced its applicability in different environments due to its safety,
usability, low cost, and small size.

We would like to express our profound appreciation to the authors and reviewers
who made this Special Issue possible. In the time it took to complete this Special Issue, our
reviewers and authors contributed tremendous efforts to improve the paper’s quality and
thus guarantee the high standard of this Special Issue.

Conflicts of Interest: The authors declare no conflict of interest.
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