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Abstract: Chronic wounds, are a worldwide health problem affecting populations and economies
as a whole. With the increase in age-related diseases, obesity, and diabetes, the costs of chronic
wound healing will further increase. Wound assessment should be fast and accurate in order to
reduce possible complications and thus shorten the wound healing process. This paper describes an
automatic wound segmentation based on a wound recording system built upon a 7-DoF robot arm
with an attached RGB-D camera and high-precision 3D scanner. The developed system represents
a novel combination of 2D and 3D segmentation, where the 2D segmentation is based on the
MobileNetV2 classifier and the 3D component is based on the active contour model, which works on
the 3D mesh to further refine the wound contour. The end output is the 3D model of only the wound
surface without the surrounding healthy skin and geometric parameters in the form of perimeter,
area, and volume.

Keywords: chronic wound; segmentation; measurement; 2D; 3D; active contour model; convolutional
neural network; robot

1. Introduction

Chronic wounds are slow to heal, and if ineffective treatment is used, the healing
process may be further delayed. Clinicians need an objective method of wound assessment
to determine whether current treatment is appropriate or needs to be adjusted. Measuring
wounds accurately is an important task in the management of chronic wounds since
changes in the physical parameters of the wound are signs of healing progress.

The analysis of chronic wounds mainly involves contact and non-contact methods.
Contact methods, including alginate molds, transparency tracing, manual planimetry with
rulers and injection of color dyes, are considered traditional and were the most commonly
used in the past [1,2]. These methods are usually impractical for medical personnel and
very painful for patients. Since wounds can be of any shape, these methods are also often
inaccurate and imprecise. Increasing computational capabilities of modern hardware has
boosted the application of non-contact wound analysis. Additionally, progress in data
analysis has led to the accelerated increase in the application of digital imaging in wound
assessment. Marijanovic et al. [3] provide a recent overview of chronic wound analysis
using non-contact methods.

Since the wound might theoretically be located on any part of the body and could be
of any size or shape, the wound recording process is frequently challenging. The majority
of chronic wounds that are discussed in this paper are typically seen on the back or on the
legs. Back wounds, e.g., pressure ulcers, typically occur on flatter surfaces, but are often
much greater in size than leg wounds (Figure 1a). On the other hand, leg wounds, such as
venous and diabetic ulcers, are typically shallow and located on areas of the body that are
highly curved (Figure 1b).
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Figure 1. Wound located on: (a) lower back region; (b) leg region. 

Chronic wounds can have a dynamic surface geometry because they experience ex-
pansion and reduction phases during the course of treatment. As a result, some areas of 
the wound may occlude other areas when viewed from specific angles. The recording 
technique can be rather challenging when reconstructing 3D models of such wounds, in-
volving numerous phases and recording poses. This can be quite tiring if done manually 
with a hand-held 3D camera or sensor, and since human operators lack precision, such 
reconstructed 3D models may, at best, miss some details or, at worst, have anomalies [4]. 

Recently, an automated system has been developed that has a much higher precision 
than human operators and is able to record wounds from different viewpoints. It tracks 
the state of the recording process and enforces a specified density of surface samples on 
all parts of the recorded wound surface [5]. The research presented in this paper is based 
on this developed system and extends the idea of a full automated system that outputs 
precise geometric measurements of wounds. Physicians can monitor patients’ progress 
and promptly administer the right therapy with the help of such measurements and the 
tracking of their development over time. 

The research presented in this paper is comparable to that in [4], which also focuses 
on the 3D reconstruction, segmentation, and measurement of chronic wounds, but uses 
very different technologies. The authors in [4] used handheld RGB-D cameras, which are 
significantly cheaper, but have significant drawbacks in terms of depth accuracy and the 
influence of surface features and lighting conditions. Because they were handheld cam-
eras, the accuracy of the reconstruction was also affected by the experience of the operator. 
In the current research, a sophisticated 7-DoF robotic arm is used with an industrial high-
precision 3D scanner attached to the end effector to enable a fully automated and accurate 
3D reconstruction process. 

In order to facilitate the measurement of physical parameters, a precise segmentation 
of the wound surface from the reconstructed 3D model needs to be performed, which is 
the main topic of this paper. A segmented wound would enable the measurement of the 
perimeter of its border, and in the case of surface wounds, its area. For wounds with 
greater depth, a virtual skin top must be generated, which then enables the calculation of 
the area of the virtual skin surface and its enclosed volume. 

The main scientific contribution of this paper is a novel segmentation algorithm using 
a combination of 2D and 3D procedures to correctly segment a 3D wound model. The 
segmentation of multiple 2D photographs per wound is driven by a deep neural network 
in the form of the MobileNetV2 classifier, which is then optimally combined with a single 
3D model and initialization of the initial wound contour. This initial wound contour on a 
reconstructed 3D model is then optimized and adjusted by an active contour model, which 
then tightly envelops the actual wound surface using surface curvature to achieve its ob-
jective. 

Figure 1. Wound located on: (a) lower back region; (b) leg region.

Chronic wounds can have a dynamic surface geometry because they experience
expansion and reduction phases during the course of treatment. As a result, some areas
of the wound may occlude other areas when viewed from specific angles. The recording
technique can be rather challenging when reconstructing 3D models of such wounds,
involving numerous phases and recording poses. This can be quite tiring if done manually
with a hand-held 3D camera or sensor, and since human operators lack precision, such
reconstructed 3D models may, at best, miss some details or, at worst, have anomalies [4].

Recently, an automated system has been developed that has a much higher precision
than human operators and is able to record wounds from different viewpoints. It tracks
the state of the recording process and enforces a specified density of surface samples on
all parts of the recorded wound surface [5]. The research presented in this paper is based
on this developed system and extends the idea of a full automated system that outputs
precise geometric measurements of wounds. Physicians can monitor patients’ progress
and promptly administer the right therapy with the help of such measurements and the
tracking of their development over time.

The research presented in this paper is comparable to that in [4], which also focuses
on the 3D reconstruction, segmentation, and measurement of chronic wounds, but uses
very different technologies. The authors in [4] used handheld RGB-D cameras, which are
significantly cheaper, but have significant drawbacks in terms of depth accuracy and the
influence of surface features and lighting conditions. Because they were handheld cameras,
the accuracy of the reconstruction was also affected by the experience of the operator. In
the current research, a sophisticated 7-DoF robotic arm is used with an industrial high-
precision 3D scanner attached to the end effector to enable a fully automated and accurate
3D reconstruction process.

In order to facilitate the measurement of physical parameters, a precise segmentation
of the wound surface from the reconstructed 3D model needs to be performed, which is
the main topic of this paper. A segmented wound would enable the measurement of the
perimeter of its border, and in the case of surface wounds, its area. For wounds with greater
depth, a virtual skin top must be generated, which then enables the calculation of the area
of the virtual skin surface and its enclosed volume.

The main scientific contribution of this paper is a novel segmentation algorithm using
a combination of 2D and 3D procedures to correctly segment a 3D wound model. The
segmentation of multiple 2D photographs per wound is driven by a deep neural network
in the form of the MobileNetV2 classifier, which is then optimally combined with a single
3D model and initialization of the initial wound contour. This initial wound contour on
a reconstructed 3D model is then optimized and adjusted by an active contour model,
which then tightly envelops the actual wound surface using surface curvature to achieve
its objective.
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The remainder of the paper is organized as follows. A brief overview of relevant
research is provided in Section 2. A hardware and software setup of the created system is
described in Section 3. Section 4 describes the implementation of individual components
of the segmentation algorithm. Section 5 discusses the performance of the developed
algorithm, while Section 6 concludes the paper.

2. Related Research

The technique of assigning each pixel of an image into one of two categories, wound
and non-wound, or separating the wound area from the rest of the image (surrounding
healthy tissue or image background), is known as wound segmentation. The accuracy of
segmentation is essential for various wound analysis activities such as tissue categorization,
3D reconstruction, wound measuring, and wound healing evaluation. Extracting the visual
features of each location is essential for identifying the wound because the wound area
typically has different visual features than the healthy skin.

Researchers have employed a variety of approaches to perform 2D wound segmen-
tation, including using K-means clustering [6,7], deep neural networks [8–15], support
vector machines [16,17], k-nearest neighbors [4], and simple feedforward networks [18].
Other approaches include using superpixel region-growing algorithms, color histograms,
or combined geometric and visual information of the wound surface to segment wounds.

A systematic review of 115 papers dealing with image-based AI in wound assessment
was performed by Anisuzzaman et al. [12]. Their final conclusion was that each of the
mentioned approaches had some limitations and, hence, no method could be said to be
preferable to the others. The most popular methods by far implement deep neural networks.

A deep convolutional neural network architecture called MobileNetV2 was proposed
by Wang et al. [11] for wound segmentation. The network was pre-trained using the Pascal
VOC dataset prior to training. The output of the trained neural network model was a
segmented grayscale image of the wound, with each pixel indicating the probability of
representing a wound pixel. This image then underwent several post-processed steps:
thresholding to initial create a binary image, hole filling, and the removal of small regions,
thereby resulting in a final binary image or segmentation mask. In the same paper, the
authors proved the superiority of their model by comparing with four other deep neural
network models (VGG16, SegNet, U-Net, and Mask-RCNN) using the Medetec dataset [19].

A segmentation technique made up of the U-Net and LinkNet deep neural networks
was proposed by Mahbod et al. in [13]. These deep neural networks are basically encoder–
decoder convolutional networks. These networks were pre-trained using images from the
Medetec database [19], and then trained on the MICCAI 2021 Foot Ulcer Segmentation
(FUSeg) Challenge dataset [20], thereby resulting in two separate models. Both models
evaluate the test image, and the combined output of their evaluations yields the final result.

Scebba et al. [14] implemented an automated approach to wound detection and
segmentation using specialized deep neural networks consisting of three steps: a wound
detection neural network that detects the wound(s) on the raw wound image; a processing
module that performs cropping, zero padding and image resizing to exclude uninformative
background pixels; and the final segmentation model that also includes a deep neural
network model. The results showed that the fusion of automatic wound detection and
segmentation improved segmentation performance and enabled the segmentation model
to generalize well to images of wounds that are not in the distribution.

Marijanović et al. [18] proposed a method for wound detection with pixel-level in-
stance segmentation, which consists of an ensemble of three simple feedforward networks,
each comprising only five fully connected layers. For each of the feedforward neural
network classifiers, input data were created using a conventional fixed-size overlapping
sliding window method, with the sliding window sizes varying for each classifier. Post-
processing involving thresholding, morphological closure, and morphological opening
was performed on each of the predicted outcomes or probability maps of the respective
neural network classifiers. The logical operation AND was then used to merge these binary



Sensors 2023, 23, 3298 4 of 23

post-processed images obtained as the output predictions of the three neural networks. The
ensemble classifier suggested by the authors outperformed Wang et al.’s technique [11]
in terms of detection and processing time and proved to be relatively robust to image
rotations. Training and testing were conducted using data from the MICCAI 2021 FUSeg
Challenge [20].

The segmentation of wounds from 3D surfaces such as meshes is far less popular in
the literature since it often requires specialized hardware for acquisition. However, even
when regular cameras are used, extension into the third dimension is often cumbersome
and requires specific knowledge to analyze and use such data.

In medical and other research, lasers are frequently employed for 3D reconstruction,
where a laser line projection sensor calibrated with an RGB camera can produce precise
and colored 3D reconstructions. One of the earliest studies to implement such a method
was Derma [21], where the Minolta VI910 scanner was employed by the authors. Laser
and RGB camera technology was also utilized in related studies [22,23]. These systems
have been shown to be extremely accurate, but they are also difficult to operate. Fur-
thermore, these investigations had the limitation that the full wound must be seen in
one frame.

In order to improve image-based techniques and provide more accurate measurement,
some wound assessment systems use 3D reconstruction. As a result, multiple view geome-
try algorithms using conventional cameras are frequently employed. In [24], the authors
create a 3D mesh model using two wound images collected at various angles. The final 3D
mesh has a low resolution as a result of the technology and techniques used.

Some research tries to combine 2D and 3D information to enhance the operation and
increase the measurement precision.

To find the center of the wound, Filko et al. [4] include a 2D detection phase
in the 3D reconstruction procedure inspired by Kinectfusion. The kNN method and
color histograms are used to implement this. Additionally, they segment the wound
from the reconstructed 3D model by first dividing the reconstructed 3D surface into
surfels. Then, utilizing geometry and color information to create relationships between
neighboring surfels, a region-growing process groups these surfels into larger smooth
surfaces. Finally, using spline interpolation, the wound boundary is determined and
the wound is then isolated as a distinct 3D model and its perimeter, area, and volume
are calculated.

Niri et al. [25] employed U-Net to roughly segment the wound on 2D images and
used structure from motion algorithm to reconstruct the 3D wound surface from a
sequence of images. They then used reprojections of the 3D model to enhance the wound
segmentation on the 2D input images as well as the 3D model. They managed to measure
the wound area, but since the ground truth employed is based on the models acquired by
the same technique, the accuracy of the actual area measurements is not fully validated.

In a later study, Filko et al. [5] developed a robot-driven system for the acquisition
and 3D reconstruction of chronic wounds, which also utilized 2D segmentation based on
neural networks as its wound detection subsystem. The research presented in this paper is
the continuation of that research.

The majority of research is focused on segmentation on 2D images, especially employ-
ing deep learning that has excellent properties proven over the myriad other applications.
In this research, deep learning is also employed in order to generate an initial, rough wound
segmentation, which, because of the errors in camera calibration and imprecision of the
2D segmentation, requires further adjustment when projected onto the 3D model. The
3D side of the segmentation is based on the application of a 3D active contour model that
further refines the original contour by utilizing surface curvature to find more optimal
wound borders on the 3D mesh model of the wound and its local surroundings. This novel
combination of deep learning 2D segmentation and 3D refinement using an active contour
model is the main contribution of this paper.
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3. Hardware and Software Configuration

The hardware configuration (Figure 2) of the acquisition system consists mainly of
a Kinova Gen3 7-DoF robot arm and a Photoneo PhoXi M 3D scanner. The Kinova Gen3
robot arm has an RGB-D camera based on Intel RealSense technology embedded in its tool
link in the form of the Kinova vision module. The Photoneo PhoXi 3D scanner is connected
to the Kinova Gen3 tool link via a custom 3D printed frame. The Kinova RGB camera
was manually calibrated to the PhoXi 3D scanner, while the PhoXi 3D scanner was also
manually calibrated to the Kinova Gen3 tool link, which enabled transformations between
PhoXi and robot base reference frames.
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Figure 2. Configuration of the acquisition system: (a) robotic recording system in a hospital setting;
(b) cameras used in the recording system.

All experiments in this paper were performed on two Vata Inc. medical models
(Figure 3):

• Seymour II wound care model, which includes stage 1, stage 2, stage 3, and deep stage
4 pressure injuries, as well as a dehisced wound.

• Vinnie venous insufficiency leg model, which includes various injuries as well as
venous ulcers and foot ulcers.
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4. Wound Segmentation

Wound segmentation is an important step in obtaining physical measurements of the
wound such as area, perimeter, and volume. The estimation of these parameters requires the
reconstruction of a 3D model of the actual wound. As mentioned earlier, the segmentation
algorithm is built upon a robot-driven wound detection and 3D reconstruction system [5].
Therefore, for the sake of completeness, the description of those prior phases will be
included in the next subsection.

4.1. Wound Detection and 3D Reconstruction

The wound 3D reconstruction system is divided into six main stages (Figure 4):

1. Wound detection;
2. Moving the robot to chosen pose and recording;
3. Point cloud alignment;
4. Point cloud analysis;
5. Hypothesis creation and evaluation;
6. Recording pose estimation.
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Figure 4. High-level overview of the wound detection and 3D reconstruction system.

The first step in the system operation is to detect the wound, which must be located
in front of the robot. The purpose of detection is to focus the reconstruction process to
a relatively small volume instead of reconstructing the entire scene in front of the robot.
During the wound detection process, the system acquires an RGB-D pair of images using
the Kinova vision module. The RGB image is used for 2D wound detection by a neural
network classifier, while the depth image is used for establishing the position of the wound
in 3D space.

The second stage is to control the robot to the desired recording pose. During this
stage, the PhoXi scanner acquires depth images and point clouds, while the RGB image
acquired by the Kinova vision module is registered to the PhoXi depth image. In the case
that the considered point cloud is the first in a series for the wound reconstruction process,
an additional wound detection is executed in order to create a volume-of-interest bounding
box, which is then used as the region to concentrate the efforts of the reconstruction process
and the segmentation process in the later stages.

The alignment of the acquired point clouds with the ones from previous recording
cycles is the objective of the third stage. In the case of the initial recording, the alignment
is skipped; if it is the second recording, a pairwise alignment between the previous and
current point cloud is performed. In the case of the third and every subsequent recording,
a full pose graph optimization is performed using all recorded point clouds up until that
point in time.

The fourth stage focuses on analyzing the reconstructed surface by determining the
surface deficiencies such as surface density and surface discontinuities by the classification
of points included in the volume-of-interest bounding box in four classes: core, outlier,
frontier, and edge.

In the fifth stage, a list of hypotheses is generated that are used as the next best view
for the surface reconstruction process. A hypothesis list is, in part, populated by hypotheses
generated using the surface point density data consisting of clustered poses generated from
each frontier point. The other part of the hypothesis list is generated using discontinuity
data consisting of structures called DPlanes, which are created by clustered edge points.
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The sixth and final stage checks whether the evaluated hypotheses in the list are
accessible by the robot. If a hypothesis is accessible, it is then chosen as the next best view
for acquisition. If it is not accessible, the system tries a number of adjusted views in the
vicinity of the considered hypothesis and tests whether they are accessible instead.

The wound reconstruction stops if no further hypothesis is created or if none of the
hypotheses or their adjacent views are accessible. The final reconstructed point cloud
is created by voxel filtering of the complete point cloud created by the alignment of the
acquired point clouds. From this final point cloud, the points enveloped by the bounding
box volume-of-interest are cropped and sent to the next stage of the wound analysis process,
which is the segmentation stage. A complete description of the wound reconstruction
system can be found in [5].

4.2. Wound Segmentation Algorithm

The input for the wound segmentation algorithm consists of a final 3D reconstructed
wound model in the form of a 3D point cloud, RGB-D pairs of images, and final (optimized)
poses of the recordings used to create the 3D model.

The wound segmentation algorithm includes five stages:

1. Two-dimensional per-pixel wound segmentation of RGB images made by Kinova
robot vision system using MobileNetV2 classifier.

2. Registering binary masks created by the previous stage to the depth image created by
PhoXi 3D scanner.

3. Optimized labeling of wound 3D model points using registered binary masks.
4. Mesh subdivision to improve mesh density.
5. Active contour model to refine wound segmentation on a 3D model.

4.2.1. Per-Pixel 2D Wound Segmentation

The 2D wound segmentation procedure used in this paper is based almost entirely on
the method proposed by Wang et al. [11], with two exceptions. First, our own database of
images was used in model training and, secondly, an additional postprocessing procedure,
utilizing GrabCut image segmentation [26], was included in the final stages in order to
improve the obtained results. The output of the classifier is a binary mask marking the
wound area(s).

For the purposes of our research, a database of 145 images of two wound models
(the Seymour II Wound Care Model and the Vinnie Venous Insufficiency Leg Model by
VATA Inc.) was created. Thus, the classifier model obtained in this work is only suitable
for images of synthetic wounds. The original images, of dimension 1280 × 780, were
taken under uncontrolled illumination conditions, with various backgrounds. Sample
images of the dataset are shown in Figure 3. The images were manually annotated per
pixel into wound and non-wound. This dataset was further augmented (image flipping
and rotation by 180◦) and then divided into a training set with 504 images and a test set
with 76 images.

In order to implement the method proposed by Wang et al. [11], the images were
resized, i.e., downscaled to the dimensions of 244 × 244. After segmenting using the
MobileNetV2 classifier, the segmented image was resized to its original size (upscaled).
Since the MobileNetV2 classifier is a per-pixel classifier, the wound segment on the resized
or upscaled segmented image is blocky. In order to refine the results, the GrabCut image
segmentation method [26] was used to further improve the segmented image whereby
the ROIs obtained as outputs of the MobileNetV2 classifier serve as the initial input to the
GrabCut segmentation procedure.

This is shown with the aid of the images shown in Figures 5 and 6. Figure 5 displays
one of the test images (Figure 5a) with a section enlarged (Figure 5b). This enlarged section
is further displayed in Figure 6 for different stages of the segmentation procedure.
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different wounds; (d) wound pixels marked on the original image after additional post-processing
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Figure 6a shows the binary image obtained as the output of the trained MobileNetV2
classifier after resizing from the dimension 244 × 244 to the original image dimension
(1280 × 780). By superimposing these pixels onto the original image, the wound pixels on
the original image are marked (Figure 6b). It can be noticed that the edges of the wound
area are blocky or pixelated. By using the original image as well as the corresponding ROIs
marked with bounding boxes in Figure 6c as inputs to the GrabCut image segmentation
procedure, the obtained wound areas marked in Figure 3d are visibly improved compared
to Figure 6b. Comparing the wound areas in Figure 6b,d, it can be noticed that after the
additional postprocessing stage, i.e., GrabCut segmentation, the wound areas and the
boundaries of the wounds are better defined.

4.2.2. Registering Binary Masks

Binary images or masks created in the previous stage of 2D segmentation need to be
registered with the PhoXi depth images in order to be able to apply them to the recon-
structed 3D wound model. Prior to registering the masks, they are first dilated by a 30-pixel
dilation filter in order to ensure that the mask covers the whole wound in each of the record-
ings used. This is carried out due to the imperfect camera calibration procedure which
has sub-pixel to sometimes even pixel reprojection error at certain distances, as well as the
imperfect segmentation procedure in the 2D segmentation stage. This over-segmentation is
optimized by the active contour model in the later stage in order to ensure a tighter fit of
the detected wound edge on the actual 3D wound model.

In Figure 7, an example of the registration process can be seen, where Figure 7a shows
the input RGB image made by the Kinova vision module. Figure 7b shows the output
binary mask, while Figure 7c shows the dilated mask. The registered RGB and mask images
are showed in Figure 7d and 7e, respectively.
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4.2.3. Optimized Labeling of 3D Points

The final wound point cloud output by the acquisition system [5] is processed
by voxel filtering, which averages the point positions, colors, and normals for points
contained in a given voxel. The resulting point position on the 3D model is not directly
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referenced in any of the input point cloud recordings, so each point in the point cloud
used as input to the segmentation procedure must be reprojected onto each of the
input registered binary masks, and then the reprojection that is best suited for the
individual point is selected. Furthermore, the optimized labeling and later stages of
the segmentation algorithm are performed only on the local wound area point cloud
designated by the bounding box volume-of-interest generated during the detection phase
of the reconstruction process [5], thereby removing the remainder of the reconstructed
scene that is not needed for the analysis of a particular wound.

The algorithm for optimized labeling includes the following steps:

1. Un-project each point in the point cloud on each of the input registered masks, retrieve
its mask value and the measured depth value (dm) from the associated depth image.
Also keep the observed depth value the reprojected point would have on the input
registered mask (do).

2. Calculate the score for each combination of 3D points and input registered masks in
the following way:

score =
1

||P− Cp ||
· 1
deg(acos(−N·CRZT))

(1)

where P is the point coordinates, N is the normal vector at point P, Cp is the camera
position where the image was taken, and CRZ is the Z column of the camera pose
rotational matrix.

3. Choose the optimal source of the binary mask label that has the highest score and
minimal difference between the measured depth values (dm) of the original recorded
depth image and the calculated, observed depth (do) value for each of the point
cloud’s points.

The difference in the depth values (ddiff), as seen in Figure 8, is used to detect occlusion
when a 3D point would choose a particular registered mask due to a better conditioned
relation between the surface normal and camera recording orientation; however, the mea-
sured depth (dm) at that reprojected pixel shows a different point closer to the camera than
the observed depth (do), which is calculated by the reprojection of the 3D point. Figure 8
distinguishes two camera positions designated as 1 and 2, where position 1 has a better
conditioned angle between the recording orientation and surface normal, but has a disad-
vantaged difference between the observable and measured depth. Position 2 is the opposite
of position 1 regarding favorability, but since it does not have penalties regarding depth
difference, it will be chosen as the optimal position even though its recording is not in a
very good position to record that particular point on the surface.
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Figure 9 shows an example of optimized labeling where four recordings were used
to reconstruct a wound. The figure shows a reconstructed 3D model, registered RGB, and
mask images, as well as local point cloud wound area textured with color and an optimized
mask projection.
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Figure 9. Example of optimized 3D point cloud mask labeling, where arrows point to the correspond-
ing locations of the recordings on the left side of the figure.

After the point cloud has been labeled by optimal reprojection, an initial mesh is
created using the greedy point triangulation algorithm (GPT) [27] and the initial wound
contour is designated by finding mesh vertices that have at least one neighbor labeled as
non-wound. That contour is further subsampled by using only half of the points to create
an initial contour for the active contour model used in the next phase. Figure 10 shows an
example of the initial wound contour on a meshed local wound area.
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4.2.4. Mesh Subdivision

Mesh subdivision, in general, is an algorithm that takes a course mesh as input
and produces a more dense mesh by subdividing mesh cells into additional cells. This
subdivision typically produces an approximated version of the original surface geometry.
There are several popular algorithms such as Loop [28], Butterfly [29], or Midpoint [30]
for subdividing triangle meshes. Loop and Butterfly both produce approximate surfaces
by interpolating curves, while Midpoint preserves the original mesh geometry. To avoid
having to make additional assumptions about the scanned wound surface, the Midpoint
algorithm is used in this research. The Midpoint algorithm, in each iteration, basically cuts
every mesh edge in half and generates four new triangles out of each original triangle.
Figure 11 shows an original mesh and the mesh subdivided by the Midpoint algorithm.
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vided mesh.

Refining the reconstructed wound mesh by increasing the density of triangles and
vertices greatly improves the performance of the active contour model (ACM) algorithm,
explained in the next subsection, by giving each contour node more freedom to choose a
more suitable point that minimizes the energy term (2). The original wound mesh made by
the GPT algorithm can be too restrictive for the ACM algorithm even though the original
surface is sampled at the millimeter scale, especially in the case of wounds of small size.
Figure 12 shows the change in ACM performance with the same configuration when using
original wound mesh or subdivided mesh. In this research, two iterations of the Midpoint
algorithm were applied for the input wound meshes.
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4.2.5. 3D Active Contour Model

The active contour model (ACM) [31] is an algorithm that enables users to find the
contours of arbitrary objects in primarily 2D images. ACM is basically a deformable spline
influenced by some predefined forces. These forces typically include the attraction force
between the nodes of the contour, which causes the contour to contract (or repulse in the
case of an expanding contour), and a smoothing force, which counteracts the deformation
of the contour. Besides these forces, in order for the ACM to work, the nodes of the contour
must be attracted toward a boundary that the user is trying to find—in 2D images, this is
typically some kind of gradient, for example, finding the edges in an image with the Sobel
filter and then blurring it with the Gaussian filter to have a wider attraction range.

The basic energy functions for the 3D adaptation of the ACM are similar to the
generally known 2D case [31]:

Etotal = Emesh + Econtour (2)

Emesh = −∑n−i
i=0 M(i), M(p) = max

(
eig

(
Cp

))
(3)

Econtour = αEelastic + βEsmooth (4)

Eelastic = ∑n−i
i=0 ∑k−1

j=0

∣∣∣(xki+1 − xk)
2 + (yki+1 − yk)

2 + (zki+1 − zk)
2
∣∣∣ (5)

Esmooth = ∑n−1
i=0

∣∣∣(xi+1 − 2xi + xi−1)
2 + (yi+1 − 2yi + yi−1)

2 + (zi+1 − 2zi + zi−1)
2
∣∣∣ (6)

where Etotal is the cumulative contour energy calculated over all contour nodes that needs
to be minimized. It comprises mesh energy Emesh and contour energy Econtour. Mesh energy,
in this case, is the curvature calculated using principle component analysis (PCA) over a list
of normals for points in the vicinity of a particular mesh vertex. Basically, it is the largest
eigenvalue of the covariance matrix Cp calculated for the list of normals for a particular
point p. Choosing the correct neighborhood size radius for calculating the PCA is crucial
for the attraction force and reach of the ACM, as can be seen in Figure 13b,c, where two
different neighborhood radii were used for the calculation. In this research, a neighborhood
radius of 5 mm was used for calculating the PCA. The contour energy is further composed
of the elastic energy Eelastic, which regulates contraction (or expansion), and smoothing
energy Esmooth that regulates the deformability of the contour. The symbols α and β control
the influence of elastic and smoothing energies in the overall energy term. In this research,
α and β were used with the value of 1. The elastic energy is determined by calculating the
Euclidean distance between the neighboring nodes of the contour. Since we have a mesh in
the 3D case, the distance is composed of the Euclidean distances of all neighboring vertices
along the shortest path between contour nodes. Therefore, the elastic energy is basically the
geodesic distance along the surface of the triangle mesh between two nodes of the contour.
The smoothing energy is calculated as the 3D gradient between the nodes of the contour.

As established earlier, the 3D data of the local wound region that enters this stage of
the algorithm is a 3D mesh. In order to better adapt the ACM model to the 3D data, the
mesh is used to create a weighted graph. The graph comprises nodes as mesh vertices, the
graph edges are triangle edges, and the weights are Euclidean distances between vertices.
The 3D ACM algorithm works iteratively in five steps:

1. Determine the current neighborhood for each contour node on the graph.
2. Calculate the new position for each node in a greedy manner.
3. Estimate a spline based on the new node positions.
4. Uniformly sample the spline with the same number of nodes as the initial contour.
5. For each spline sample, find the nearest node on the graph (mesh).

After the initial contour generation in the previous stage of the segmentation algorithm,
each list of contour nodes contains the same number of nodes in the following iterations. At
the start of each iteration, each contour node generates a list of neighbors that are located a
maximum number of graph nodes from the contour node being considered. For this research
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a two-node neighborhood was found to be the optimal solution. Figure 13d shows a contour,
nodes, and neighbors for each of the displayed contour nodes in a two-node-wide range.
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Figure 13. Synthetic example of ACM application: (a) input mesh of a hole created in a program;
(b) curvature texture when using smaller neighborhood radius for calculating PCA; (c) curvature
texture when using larger neighborhood radius for calculating PCA; (d) initial contour with nodes
and their two-node neighborhoods; (e) initial and final contour (after ACM) with nodes colored in
blue and green, respectively.
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The new position for each node in each iteration is considered in a greedy manner, i.e.,
independently of the new positions for neighboring contour nodes. The new position for
each node is selected from a list of neighbors that minimizes the energy term (2).

Following the designation of the new graph position for every node, a spline is
estimated through these positions, which is then sampled in the same number of points
as the original list of contour nodes. Since these samples may or may not be located on
the wound mesh, a nearest mesh vertex is located by using kd-tree. Figure 13e shows the
initial contour as well as a 10-iteration ACM optimized one for the synthetic example of
the hole (Figure 13a), where the ACM successfully found the requested hole boundary. In
this research, 10 iterations of the ACM were utilized to optimize the initial contour in each
of the experimental wounds.

A more realistic example of the ACM application can be seen in Figure 14.
Figure 14a–c shows a very successful application of the ACM where the first image shows
the masked mesh and initial contour and the second and third images show the initial
and final contour with a curvature texture and RGB texture, respectively. A successful
run with some inconsistencies can be seen in Figure 14d–f, where the ACM managed, for
the most part, to find the wound border with some small areas in the left and top still
being over-segmented. The reason for the error on top of the wound was actually the close
proximity of the second wound, not object of this analysis, on the same medical model that
has more pronounced edges which then “stole” the contour from the observed wound.
An unsuccessful run is shown in Figure 14g–i, where it can be seen that the ACM under-
segmented the wound, with the final contour slipping to the bottom border of the wound
surface instead of remaining on the top border. The error was caused by a relatively shallow
wound with strong top and bottom borders. The ACM could not numerically distinguish
between the top and bottom border since the bottom was very close due to the shallowness;
it therefore “slipped” to the bottom, causing the wound to be under-segmented.
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Figure 14. Real example of the ACM application where blue color represent initial contours while
green color represent final contours: (a) masked mesh and initial contour on the successful run;
(b) mesh with curvature texture and both initial contour and final contour on the successful run;
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5. Results

Generating the final wound boundary using the ACM algorithm is the starting point
of calculating the physical properties of the wound, as the boundary directly enables the
calculation of the wound perimeter and the area in the case of a shallow wound. For deep
wounds, the area is considered to be the skin missing on the top of the wound, therefore
a virtual skin top needs to be generated. Similar to our previous research [4], the top
of the wound, as well as other holes in the 3D model, are closed using constrained 2D
Delaunay triangulation implemented in the VTK library [32]. Even though this Delaunay
implementation is for 2D point sets, 3D data can be used by projecting all of the points
on a plane chosen as a most likelihood plane by calculating the PCA and choosing the
eigenvector corresponding to the largest eigenvalue. Creating a virtual skin top facilitates
wound area measurement while creating covers for all holes; it enables the creation of the
watertight 3D model and calculating the volume. Figure 15 shows an example of the final
wound surface cut from the input mesh by the contour generated from the ACM, along
with the generated surfaces used for hole filling.

5.1. Case Study

The case studies considered here are wounds from two realistic and lifelike medical
models by Vata Inc. as described in Section 3. The Seymour II wound care model also has
ground truth (GT) measurements available as mentioned in [4], and the GT measurements
can be seen in Table 1.

Table 1. Ground truth for the measurements of Seymour II wound care model.

Wound Type Perimeter (mm) Area (mm2) Volume (mm3)

Stage 4 pressure ulcer 334.9 7117.6 100,821.2
Stage 3 pressure ulcer 175.7 2369.8 21,542.8

51/2 inch long dehisced surgical wound 277.7 2400.0 28,090.9
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In this section, we will consider various wound geometries, namely, Stage 3 and 4
pressure ulcers as well as dehisced surgical wound from the Seymour II wound care model.
From the Vinnie venous insufficiency leg model, we will consider two venous ulcers as
well as a neuropathic ulcer.

5.1.1. Stage 3 Pressure Ulcer

This is a stage 3 pressure ulcer with moderate depth and tunneling on two separate
sides. While the used robot-driven 3D wound reconstruction system [5] could be very
precise, it was struggling to find a reachable pose to scan the tunneling parts of the wound,
therefore those parts of the wound remained largely unscanned in both pressure ulcers
considered here. The wound reconstruction can be seen in Figure 16a along with the
segmentation performance of Figure 16b–d. The wound was reconstructed from four
recordings made from separated viewpoints. As can be seen in Figure 16b, the optimized
labeling of the reconstructed mesh was quite successful, with very little unwanted labeling
in the surrounding mesh around the wound, which resulted in a tight initial contour prior
to ACM. The ACM further optimized the contour, as can be seen from Figure 16c as a
green contour. This figure also shows the curvature intensities on the surface of the model.
The segmented and cut wound mesh can be seen in Figure 16d. All of the covers for this
particular wound can be seen in Figure 15, while the covers for other wounds that have
them are not shown because they are quite similar.
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Figure 16. Case study for stage 3 pressure ulcer: (a) input wound mesh; (b) masked wound mesh
with initial contour; (c) wound mesh with curvature texture and initial and final contours shown in
blue and green colors, respectively; (d) final cut wound mesh model.
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The wound perimeter was measured to be 171.09 mm, the area was 2302.0 mm2,
and the volume was 22,532.09 mm3. When comparing the results to GT, they produce a
percentage error of 2.62% for perimeter, 2.86% for area, and 4.59% for volume.

5.1.2. 51/2 Inch Long Dehisced Surgical Wound

This wound is a 51/2 inch long dehisced surgical wound with considerable depth
and high-angled sides. Due to its high-angled sides (compared to the camera projection
plane), it makes reconstruction of this wound a challenge since the projected laser pattern
by the 3D scanner does not reflect enough toward the scanner in order to be visible from
many view angles reachable by the robot recording system. Therefore, even though the
wound is rather simple and could be reconstructed if placed in an unrealistic position
for the patient, since it simulates a patient wound on a model of a part of the human
body, it could only be partially reconstructed with one side fully scanned, taking into
consideration all of the imposed limitations. The reconstructed 3D model can be seen in
Figure 17a: the reconstruction was made from four recordings. Figure 17b shows the
optimized mask of the detected wound and initial contour, while Figure 17c shows the
initial and ACM contour on the surface textured with curvature. Figure 17d shows the
segmented and cut wound.
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Figure 17. Case study for 51/2 inch long dehisced surgical wound: (a) input wound mesh; (b) masked
wound mesh with initial contour; (c) wound mesh with curvature texture and initial and final
contours shown in blue and green colors, respectively; (d) final cut wound mesh model.

The wound perimeter was measured to be 275.22 mm, the area 2549.63 mm2, and the
volume 29,764.54 mm3. The results, when compared to GT, give a percentage error of 0.89%
for the perimeter, 6.23% for the area, and 5.95% for the volume.

5.1.3. Stage 4 Pressure Ulcer

This wound is the second pressure ulcer and the largest and most complex wound on
the Seymour II wound care model since it has a very large area, great depth, and tunneling
in two different directions. Similarly, as in the previously described pressure ulcer, the
tunneling parts of this wound were not able to be reconstructed. Figure 18a shows the
reconstructed surface, while Figure 18b shows the optimized mask labeling made from
seven recordings from which the wound was originally reconstructed. Figure 18c shows
the initial and ACM contour on a model textured with curvature values, while Figure 18d
shows the segmented and cut wound. As can be seen in the figures, the ACM failed in
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10 iterations to tightly envelop the wound from the bottom and left parts, resulting in a
higher area error percentage. Increasing the number of iterations to more than 10 might
have helped a little, but reducing the value of β would probably have helped more as it
would have made the contour more deformable.
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Figure 18. Case study for stage 4 pressure ulcer: (a) input wound mesh; (b) masked wound mesh
with initial contour; (c) wound mesh with curvature texture and initial and final contours shown in
blue and green colors, respectively; (d) final cut wound mesh model.

The wound perimeter was measured to be 351.53 mm, the area 7689.11 mm2, and the
volume 109,839.24 mm3. The results, when compared to GT, give a percentage error of
4.96% for the perimeter, 8.02% for the area, and 8.94% for the volume.

5.1.4. Neuropathic Ulcer

This wound is a neuropathic ulcer of comparatively smaller size compared with the
previously considered wounds, but because of its depth, four recordings were needed
to reconstruct it properly. Figure 19a shows the 3D reconstruction model of the local
wound, while Figure 19b shows the optimized mask projection. It can be seen that the
mask encompasses a large area around the actual wound. Figure 19c shows that despite
this larger masked area, the ACM manages to precisely envelop the actual wound. The
final segmented and cut wound is shown in Figure 19d.

The wound perimeter was measured as 44.07 mm, the area as 150.97 mm2, and the
volume as 414.08 mm3.



Sensors 2023, 23, 3298 20 of 23

Sensors 2023, 23, x FOR PEER REVIEW 21 of 25 
 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 18. Case study for stage 4 pressure ulcer: (a) input wound mesh; (b) masked wound mesh 
with initial contour; (c) wound mesh with curvature texture and initial and final contours shown in 
blue and green colors, respectively; (d) final cut wound mesh model. 

The wound perimeter was measured to be 351.53 mm, the area 7689.11 mm2, and the 
volume 109,839.24 mm3. The results, when compared to GT, give a percentage error of 
4.96% for the perimeter, 8.02% for the area, and 8.94% for the volume. 

5.1.4. Neuropathic Ulcer 
This wound is a neuropathic ulcer of comparatively smaller size compared with the 

previously considered wounds, but because of its depth, four recordings were needed to 
reconstruct it properly. Figure 19a shows the 3D reconstruction model of the local wound, 
while Figure 19b shows the optimized mask projection. It can be seen that the mask en-
compasses a large area around the actual wound. Figure 19c shows that despite this larger 
masked area, the ACM manages to precisely envelop the actual wound. The final seg-
mented and cut wound is shown in Figure 19d. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 19. Case study for a neuropathic ulcer: (a) input wound mesh; (b) masked wound mesh with
initial contour; (c) wound mesh with curvature texture and initial and final contours shown in blue
and green colors, respectively; (d) final cut wound mesh model.

5.1.5. Larger Venous Ulcer

This wound is a venous ulcer of substantial size. The wound is rather flat, therefore no
volume is measured. Due to some protrusions on the surface, two recordings were needed
to reconstruct the surface shown on Figure 20a. Figure 20b shows the optimized mask
projection that envelops a much larger area than the actual wound, but the ACM manages
to converge on the actual wound outline despite the dynamic nature of that part of the
surface, as can be seen in Figure 20c. Figure 20d shows the segmented and cut wound.
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Figure 20. Case study for a larger venous ulcer: (a) input wound mesh; (b) masked wound mesh
with initial contour; (c) wound mesh with curvature texture and initial and final contours shown in
blue and green colors, respectively; (d) final cut wound mesh model.

The wound perimeter was measured as 130.18 mm, while the area was 1324.47 mm2.

5.1.6. Smaller Venous Ulcer

This is also a venous ulcer of relatively small proportions and, similar to the previously
discussed venous ulcer, this one is also very flat and therefore no volume is measured.
Only one recording was needed to generate the reconstruction shown in Figure 21a. The
initial contouring made by the mask projection is shown in Figure 21b, and as can be seen,
the masked area does not correctly overlap the wound area due to inaccuracy in the 2D
wound segmentation and errors in camera calibration. Figure 21c shows that the ACM has
somewhat correctly contoured the wound, with the only big error being that the top of
the contour converged on another wound (a lipodermatosclerosis wound) that is in close
proximity to this venous ulcer model. The other wound has a much bigger ridge, which
results in a much larger curvature that is therefore “stealing” the contour. If this wound
was not located that closely, the ACM would converge on the wound under consideration.
The problem might also be fixed by using a larger α value of the ACM energy term, but in
this research, we the used same configuration for all experiments. The final segmented and
cut wound is shown in Figure 21d.
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Figure 21. Case study for a smaller venous ulcer: (a) input wound mesh; (b) masked wound mesh 
with initial contour; (c) wound mesh with curvature texture and initial and final contours shown in 
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Figure 21. Case study for a smaller venous ulcer: (a) input wound mesh; (b) masked wound mesh
with initial contour; (c) wound mesh with curvature texture and initial and final contours shown in
blue and green colors, respectively; (d) final cut wound mesh model.

The wound perimeter was measured as 102.44 mm, while the area was 698.56 mm2.

6. Conclusions

Automated and precise wound measurements will improve the quality of the tools
available to physicians to track the healing of individual patients and wounds. This would
also facilitate better suited prescription and application of therapies, which would increase
the living standards of patients as well as increase the healing rate of wounds, resulting in
a reduction of costs in the medical system.

The segmentation system presented in this research is built upon on an automated,
robot-driven acquisition system that outputs precise 3D reconstructions of chronic wounds.
The acquisition system is fully automated and does not require any user input other than
turning the robot in the general direction of the patient. The research presented here
continues this philosophy of automation such that it does not require any user input in
order for it to output accurate wound segmentation and geometric measurements. The
data requested by the segmentation algorithm is the reconstructed 3D point cloud model of
the wound as well as recordings and camera poses used to create the reconstruction. The
recordings are used to create binary masks using the MobileNetV2 classifier and GrabCut,
which label a general area of the wound on 2D images. These binary masks are then
projected onto the 3D point cloud wound model, and then each point in the point cloud
selects which projection to use based on the computed score, as well as the occlusion
detection. Such a masked point cloud is used to generate an initial contour of the wound,
which is then further refined by ACM on the meshed 3D surface of the reconstructed
wound. The wound is then segmented, cut out, and the geometric measures of perimeter,
area, and volume are calculated.

Comparing the obtained measurement results with the authors’ previous work in [4],
the average error rate was 2.82% for circumference, 5.72% for area, and 6.49% for volume
measurement, compared to 4.39% for circumference, 6.86% for area, and 23.82% for volume.

The results presented clearly show that the segmentation and measurements are
accurate, but further improvements must be made, especially regarding the reduction of
errors caused by the calibration of cameras as well as 2D segmentation. Moreover, 3D ACM
implementation could also be further improved by increasing the robustness to curvature
noise as well as increased flexibility to better outline the arbitrary shapes that wounds
can have.
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