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Abstract: Plant proteins can be an important alternative to animal proteins subject to minor modifi-
cation to address sustainability issues. The impact of ultrasound application on the yield, techno-
functional properties, and molecular characteristics of protein extracted from Moringa oleifera seeds
was studied. For this purpose, a central composite design (CCD) was applied to optimize ultrasound-
assisted extraction (UAE) parameters such as amplitude (25–75%), solute-to-solvent ratio (1:10–1:30),
and pH (9–13) for obtaining the maximum protein yield. At the optimized conditions of 75% am-
plitude, 1:20 solute-to-solvent ratio, and 11 pH, a protein yield of 39.12% was obtained in the UAE
process. Moreover, the best sonication time at optimized conditions was 20 min, which resulted
in about 150% more extraction yield in comparison to conventional extraction (CE). The techno-
functional properties, for instance, solubility, water (WHC)- and oil-holding capacity (OHC), and
emulsifying and foaming properties of the protein obtained from UAE and CE were also compared.
The functional properties revealed high solubility, good WHC and OHC, and improved emulsify-
ing properties for protein obtained from UAE. Although protein from UAE provided higher foam
formation, foaming stability was significantly lower.

Keywords: Moringa oleifera; seed; protein; ultrasound; functional properties

1. Introduction

Proteins impart some important techno-functional properties such as emulsification,
foaming, and/or gelling, owing to which they are considered to be one of the main com-
ponents of food products [1]. Proteins with specific functionalities are either synthesized
chemically or extracted from animal and plant sources. Due to the intensive competition
among industries and more specified demands from the consumers and to address sus-
tainability issues, food industries always look for solutions to meet market challenges.
Currently, plant-derived proteins, particularly from agro-industrial waste, receive substan-
tial attention as a sustainable alternative to animal-based proteins due to the rising cost of
animal proteins and food security and sustainability issues [2].

Moringa oleifera (Lam.), which is a widely cultivated species in native parts of Asia
and Africa, belongs to the family Moringaceae [3]. M. oleifera, also known as Drumstick
tree, is considered to be a nutritionally dense plant and is also referred to as a ‘miracle
Tree’ because of its multi-purpose uses. Ease of cultivation makes it a cheap source of
high-quality nutrients and ingredients in traditional herbal medicines [4]. The extract of
its leaves is rich in important phytochemicals and has potential as an antioxidant [5], anti-
microbial [6], anti-inflammatory [7], and anticancer agent [8]. Although seeds of M. oleifera
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are rich in protein (35–36%) and oil (38–39%) [9], they are still used mainly as feedstock [10]
and currently have no value-added ingredients or products. The present study revolves
around the extraction of M. oleifera seed protein (MOSP) to develop a high value-added
ingredient for food products.

The main challenge while extracting the proteins is to choose the appropriate extraction
technique. Traditionally, methods such as alkaline, organic solvent, salt, and enzymatic
extraction, which are used for protein extraction, are less efficient, require long extraction
time, give less protein yield, involve a high amount of solvents, and ultimately lead
to an environmental burden [11]. The application of novel and more accurate protein
extraction techniques can enhance the functional properties of foods. Ultrasonic-assisted
extraction is considered to be an efficient and environmentally friendly extraction technique
compared to conventional and other novel techniques because of its lower extraction time,
high extraction yield, low solvent consumption, and enhanced functional properties of
protein [12]. Sonication technique is associated with the phenomenon of acoustic cavitation,
during which the collapse of bubbles releases energy for enhanced mass transfer from and
to the interface; thus, this technique is classified as a sustainable and green technique [13].
The extraction efficiency of ultrasound is influenced by different parameters, such as
ultrasonic intensity, solute-to-solvent ratio, treatment time, temperature, etc., which need
to be optimized using appropriate combinations or statistical designs [14].

Conclusively, the study is mainly focused on the effect of techno-functional properties
such as protein solubility, water- and oil-holding capacity, and emulsifying and foaming
properties of M. oleifera seed protein extracted via the sonication technique. Moreover,
fluorescence and Fourier-transform infrared spectra will be taken to identify changes in
functional groups.

2. Results and Discussion
2.1. Optimization of Ultrasonic-Assisted Extraction (UAE) of Protein
2.1.1. Fitting the Proposed Model

Response surface methodology (RSM) is a useful statistical technique for evaluating
the influence of different factors and for designing experiments such as the one in this
study [15]. An empirical model can be designed to evaluate the optimized conditions using
the required response. In the present study, the effect of ultrasonication on the extraction
efficiency of M. oleifera seed protein (MOSP) was evaluated to observe the maximum
recovery of the protein using RSM. For this, a central composite design (CCD) was applied
using three independent variables: amplitude (%) (A), solute-to-solvent ratio (g/mL) (B),
and pH (C) (Table 1) with 17 runs with 3 central points. Usually, if one ultimately misses
any runs, the accuracy of the remaining runs in the Box–Behnken Design (BBD) becomes
critical to the dependability of the model, so a CCD is preferred.

The MOSP yield obtained ranged between 30 and 39%, depending on the combination
of the trial. Experimental run 16 showed the lowest yield with an amplitude of 25%, a
solute-to-solvent ratio of 1:10, and a pH of 9, while experimental run 10 showed the highest
yield with an amplitude of 75%, a solute-to-solvent ratio of 1:20, and a pH of 11. The
difference between the measured values and the predicted values is minimal, which shows
the rationality of the measured values. Following quadratic polynomial regression, an
equation of amplitude (A), solute-to-solvent ratio (B), and pH (C) was developed to obtain
the response model of extraction yield:

Y1 = 36.59 + 3.08 A + 0.4920 B + 0.1120 C + 0.0050 AB + 0.0050 AC − 0.0250
BC − 0.3726 A2 + 0.1124 B2 − 1.71 C2

The results obtained were further processed for analysis of variance (ANOVA) with
a 95% confidence level in order to check the significance and suitability of the response
model (Table 2).
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Table 1. Central composite design representing the experimental trials along with M. oleifera seed
protein (MOSP) yield.

Run

Independent Variables
(Coded Values)

Independent Variables
(Actual Values)

Response
(MOSP Yield (%))

A:
Amplitude

(%)

B: Solute-to-
Solvent Ratio

(g/mL)
C: pH

A:
Amplitude

(%)

B: Solute-to-
Solvent Ratio

(g/mL)
C: pH Measured Predicted

1 0 0 −1 50 1:20 9 34.76 34.77
2 1 −1 1 75 1:10 13 37.34 37.32
3 −1 0 0 25 1:20 11 33.15 33.13
4 −1 1 1 25 1:30 13 32.10 32.11

5 (c.p.) 0 0 0 50 1:20 11 36.62 36.59
6 (c.p.) 0 0 0 50 1:20 11 36.52 36.59

7 1 −1 −1 75 1:10 9 37.06 37.07
8 −1 −1 1 25 1:10 13 31.17 31.18
9 0 −1 0 50 1:10 11 36.22 36.20
10 1 0 0 75 1:20 11 39.30 39.29
11 1 1 1 75 1:30 13 38.28 38.29

12 (c.p.) 0 0 0 50 1:20 11 36.57 36.59
13 0 0 1 50 1:20 13 35.02 34.99
14 −1 1 −1 25 1:30 9 31.94 31.93
15 0 1 0 50 1:30 11 37.20 37.19
16 −1 −1 −1 25 1:10 9 30.92 30.91
17 1 1 −1 75 1:30 9 38.11 38.10

c.p. = central point.

Table 2. Analysis of variance (ANOVA) for quadratic model.

Source Sum of Squares df Mean Square F-Value p-Value

Model 111.81 9 12.42 11,418.21 <0.0001 **
A: Amplitude 94.93 1 94.93 87,243.93 <0.0001 **

B:
Solute-to-solvent

ratio
2.42 1 2.42 2224.75 <0.0001 **

C: pH 0.1254 1 0.1254 115.29 <0.0001 **
AB 0.0002 1 0.0002 0.1838 0.6810 ns

AC 0.0002 1 0.0002 0.1838 0.6810 ns

BC 0.0050 1 0.0050 4.60 0.0693 ns

A2 0.3720 1 0.3720 341.87 <0.0001 **
B2 0.0338 1 0.0338 31.11 0.0008 **
C2 7.81 1 7.81 7180.25 <0.0001 **

Residual 0.0076 7 0.0011
Lack of Fit 0.0026 5 0.0005 0.2093 0.9308 ns

Pure Error 0.0050 2 0.0025
Cor Total 111.82 16

R2 0.9999
R2 adjusted 0.9998

** Significant at 0.01 level; ns = non-significant; df = degree of freedom.

The results indicate that the p-value of the overall model is less than 0.0001, which
is highly significant, and it indicates the sustainability of the fitted model. Additionally,
the F-value documented the significance of the response model. Moreover, the value for
determination coefficient (R2) was 0.9999, and the adjusted value (R2 adjusted) for the
extracted yield was 0.9998, which shows that the model was correctly interpreted using
the measured data. Generally, R2 values higher than 0.75 are considered to be superlative
for a good fitted model [16]. Furthermore, the values of the coefficient estimate report
the expected change in the response factor value when all remaining factors are held at
a medium level (Table 3). Coefficients with positive values represent a linear increase in
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the response factor, and those with negative values document the linear decrease in the
dependent factor. The accuracy of the model was checked via the correlation coefficient.

Table 3. Coefficient estimation in terms of coded factors.

Factor Coefficient Estimate df Standard Error 95% CI Low 95% CI High VIF

Intercept 36.59 1 0.0141 36.55 36.62
A: Amplitude 3.08 1 0.0104 3.06 3.11 1.0000

B: Solute to
solvent ratio 0.4920 1 0.0104 0.4673 0.5167 1.0000

C: pH 0.1120 1 0.0104 0.0873 0.1367 1.0000
AB 0.0050 1 0.0117 −0.0226 0.0326 1.0000
AC 0.0050 1 0.0117 −0.0226 0.0326 1.0000
BC −0.0250 1 0.0117 −0.0526 0.0026 1.0000
A2 −0.3726 1 0.0202 −0.4203 −0.3250 1.54
B2 0.1124 1 0.0202 0.0647 0.1600 1.54
C2 −1.71 1 0.0202 −1.76 −1.66 1.54

df = degree of freedom; CI = confidence interval; VIF = variance inflation factor.

2.1.2. Single-Factor Analysis for Protein Yield

According to the results obtained, it was observed that the amplitude (A), solute-to-
solvent ratio (B), and pH (C) independent factors had a significant effect on the yield of
MOSP. The variation in the response factor (yield, %) due to independent variables in the
form of coded levels is also presented in Figure 1. The effect of the individual variable
was noted while keeping the other two at their medium values. The single-factor response
graph shows that the amplitude variable has a direct effect on the increase in yield. On
the other hand, the pH imparts an increasing trend for the response yield until the central
point, while a decrease in pH leads to a low yield of response factor after the central
point. Moreover, the independent solute-to-solvent ratio factor has shown a non-significant
impact on the response factor before and after the central point.
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Figure 1. Linear effect of studied parameters on the MOSP yield.

2.1.3. Effect of Mutual Interactions on Protein Yield

The interactions that occurred between amplitude and solute-to-solvent ratio (AB),
amplitude and pH (AC), and solute-to-solvent ratio and pH (BC) had a non-significant
effect on protein yield (p > 0.05). The interaction between independent variables is also
shown in the form of 3D response surface plots (Figure 2). Through the study of the
obtained results, the maximum yield obtained by the mutual interaction of amplitude
and solute-to-solvent ratio (Figure 2a) was observed. It was observed from the results
that when interaction between amplitude and pH occurred with the average value of the
solute-to-solvent ratio, the yield percentage slightly decreased at the maximum amplitude
(Figure 2b). On the other hand, there was a decrease in the yield percentage as the solute-
to-solvent ratio and pH were considered to be interacting variables by taking the average
fixed amplitude (Figure 2c). These plots showed that the selected factor levels were logical
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enough and had a positive influence on extraction yield. According to the figures, the
interactions between the variables significantly affected the extraction yield, which was
also interpreted through ANOVA (Table 2).
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Figure 2. Response surface plots representing the effect of mutual interactions of studied parameters
on the protein yield. Interaction between amplitude & ratio (a), amplitude & pH (b) and ratio &
pH (c) while keeping third parameter at central value.

2.1.4. Optimization and Validation

The predicted extraction yield at optimized conditions was noted from the experimen-
tal design. According to CCD and contour plots, the best extraction yield (39.90%) was
predicted at the optimized conditions of an amplitude higher than 75%, a solute-to-solvent
ratio of 1:22, and a pH of 11.37, which were rounded off to 75%, 1:20, and 11, respectively,
for the ease of experimentation. Validation of the statistical model and the regression equa-
tion was confirmed by repeating the experimental run at defined optimized conditions. The
measured value of the extraction yield (39.12%) at optimized conditions (amplitude 75%,
solute-to-solvent ratio of 1:20, and pH 11) confirmed the validity of the model. The obtained
values were quite close to the predicted ones. Overall, the results showed that the model
for the extraction of MOSP through ultrasonication was fit and acceptable. Furthermore,
a comparison of protein yield was made between UAE and conventional extraction (CE).
While keeping the other parameters at optimized levels, the sonication treatment resulted
in a 150% increase in the protein yield in comparison to CE (Figure 3).
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For a commercial point of view, the yield of protein is highly important, particularly
for the efficient utilization of agro-waste and to achieve the goal of sustainable development.
Conventional extraction techniques for protein other than ultrasonication are either time-
consuming or less productive. Therefore, UAE was applied for the extraction of protein
from M. oleifera seeds. As it was noticed during this study, various studies have also shown
an increase in the protein yield with the increase in the power/amplitude of the sound
waves, for instance, wampee seed protein [11], lupin seed protein [17], Eurycoma longifolia
root protein [18], and Dolichos lablab L. bean protein [19]. It is known that ultrasonication
works on the principal of cavitation, and as a result of the cavitational effect, a mechanical
force is generated which helps in the transport of protein across the cell barrier, either by
increasing the flow of solvent on both sides or, sometimes, by rupturing the cell barrier [20].
Although ultrasonic amplitude remained promising for a high MOSP yield, the solute-to-
solvent ratio presented a minor effect on the protein yield. The lower solute-to-solvent
ratio led to the lower difference in protein concentration inside and outside the cell matrix,
thus reducing the protein yield [11]. On the other hand, the higher solute-to-solvent ratio
resulted in less ultrasonic energy density per unit volume and ultimately, lower protein
yield was observed. Although there was a minimal effect of the solute-to-solvent ratio on
the MOSP yield, the optimum value of 1:20 g/mL was found to be best for the maximum
MOSP yield. The solute-to-solvent ratio often varies depending on the protein source, the
structure of the protein, the extraction medium, and others [21]. The pH value significantly
affected the protein yield, as the protein yield increased with the increase in pH value up
to 11. This might be attributed to the breakage of H-bonds in the cell matrix and, thus, an
increase in the protein yield [22]. Any further increase in pH resulted in the degradation
of protein, causing reduced solubility, and consequently, the yield of MOSP decreased.
Similar results were obtained during the extraction of proteins from wampee seed [11] and
Dolichos lablab L. [19].

At optimized conditions, different ultrasonic times (0–30 min) were observed for the
maximum MOSP yield, and a higher yield was found at 20 min (Figure 3). With further
increases in time, a slight decrease was observed. The 30 min treatment was counterpro-
ductive by dropping the protein yield. This might be due to the structural degradation
of protein, which generally develops aggregates by folding to resist the extreme condi-
tions, and ultimately, proteins do not solubilize and possibly finish with the centrifugation
residue [23]. In the case of conventional extraction, the yield of MOSP remained less than
that of UAE at each time period, which further confirms the effectiveness of the sonication
treatment. In most of the studies based on the sonication treatment for the extraction
of protein from different plant sources, the best extraction time ranged between 15 and
20 min [21,23,24]. The time may increase depending on the ultrasound intensity and equip-
ment; for instance, this ultrasound-assisted extraction time may reach more than 60 min if
an ultrasonic cleaner was used rather than an ultrasonic probe [25].
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2.2. Functional Properties of MOSP
2.2.1. Solubility

Solubility is one of the most important functional properties of protein. It is the ther-
modynamic property which can be elaborated as the ‘protein concentration in a saturated
solution’, and it must be at equilibrium with the solid phase at optimal conditions. Solubil-
ity of proteins can be altered by any extrinsic and intrinsic factors [26]. At neutral pH, the
solubility of MOSP extracted via the conventional method was 5.56 ± 0.13%. A significant
increase was observed in the solubility of MOSP extracted with the ultrasonic method,
which was 29.82 ± 0.21% (Table 4). Ultrasonication of MOSP resulted in the enhancement
of protein solubility. This may have happened because of the reduction in particle size of
the MOSP alteration in the molecular structure and changes in the conformation [27], thus
exposing more hydrophilic groups in the medium for increased solubility. Similar results
were observed on the solubility of whey protein [28] and pea protein [29].

Table 4. Functional properties of M. oleifera seed protein (MOSP) from conventional extraction (CE)
and ultrasonic-assisted extraction (UAE).

Functional Properties MOSP (CE) MOSP (UAE)

Solubility (%) 5.56 ± 0.13 29.82 ± 0.21
WHC (g/g) 0.86 ± 0.009 1.02 ± 0.006
OHC (g/g) 0.91 ± 0.015 1.91 ± 0.013

Emulsion capacity (mg/mL) 58.39 ± 1.68 75.93 ± 1.19
Foaming capacity (%) 13.21 ± 0.27 24.23 ± 0.64

WHC = water-holding capacity; OHC = oil-holding capacity.

The high amplitude level of ultrasound escalates the protein solubility by altering the
conformation and structure of protein; this results in the inside aperture of hydrophilic
ends of amino acids toward water [30]. A larger area of protein was covered up with water,
as the molecular weight of the treated protein was reduced due to the high ultrasonic
amplitude [31]. The temperature rise due to ultrasonication also had a significant effect on
the improvement of protein solubility, as protein solubility rose with the rise of temperature,
as reported in the studies for soy protein [32]. Enhancement in protein solubility could
also be due to the alteration in the three-dimensional structure of globular protein, which
resulted in a higher number of charged groups established with high electrical conductivity,
unlike the CE sample. Under those conditions, as more water interacted with proteins, and
electrostatic forces increased, the inter-linkage between water and protein improved, thus
increasing the protein solubility.

2.2.2. Water (WHC)- and Oil-Holding Capacity (OHC)

WHC and OHC are important functional properties of protein used for the moderation
of the texture and viscosity of the food product and also for the reduction in the processes
of dehydration during food storage [33]. The ability of proteins to retain or hold water in
their three-dimensional structure is known as the WHC of protein. Proteins with a high
WHC during application in a food product can dehydrate the other ingredients present in
food, and thus, the product becomes less sensitive to storage humidity [34].

The WHC of MOSP extracted with CE was 0.86 ± 0.009 g/g, and that of the UAE
sample was 1.02 ± 0.006 g/g (Table 4). The increase in water-holding capacity after
ultrasonication was probably due to the spongy structure generated by peptide chains and
due to the ionized polarity groups formed after ultrasound treatment [35]. Because of these
groups, loose structures were formed and produced more space for water storage; thus,
this condition resulted in a higher WHC. Similar results were obtained after the application
of ultrasonication on the beef Longissmus lumborum [36].

Oil-holding capacity (OHC) is the ability of proteins to trap oil or fat within their
non-polar chains. The oil-holding capacity of the MOSP sample extracted with CE was
0.91 ± 0.015 g/g (Table 4). According to the results obtained, the OHC of the MOSP ex-
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tracted with UAE was higher than that of the CE one. The ultrasonically treated MOSP
sample had a significantly higher OHC (1.91 ± 0.013 g/g). Ultrasonication increased the
surface exposure of hydrophobic groups, due to which a strong linkage formed with triglyc-
eride molecules, resulting in the improved OHC (Boukhari, Doumandji et al. 2018). The
same trends were observed in related studies on whey protein isolates [16] and tamarind
seeds protein isolates [37].

The improved WHC and OHC are considered helpful for enhancing the shelf life
of processed foods given the fats and water reduced from the surface [38]. Their higher
values also improve the mouth feel of the product. Overall, it was observed that ultrasonic
treatment had a significant impact on water- and oil-holding capacities.

2.2.3. Emulsion Capacity and Emulsion Stability

The emulsifying property of protein is its ability to form an emulsion and to maintain
the stability of the newly formed emulsion [39]. It is an important parameter in the pro-
duction of various fabricated foods. The emulsion capacity of MOSP extracted with CE
was 58.39 ± 1.68 mg/mL (Table 4). Next, the ultrasonic treatment emulsion capacity of
MOSP significantly increased to 75.93 ± 1.19 mg/mL. Prepared emulsions were kept at
room temperature to calculate the emulsion stability. A slight improvement was observed
in the emulsion stability of the MOSP extracted with UAE (W = 4%) as compared to that of
the CE one (W = 6%); this improvement might be associated with the higher hydrophobic
levels and increased droplet size of oil in the water emulsion, which was established via ul-
trasonication [40]. In addition, it has been reported that the increased solubility of proteins
resulted in a maximal emulsifying capacity. Furthermore, the increased emulsifying capac-
ity of MOSP might be related to the alternation in aggregation, solubility, and secondary
structure [41]. A recent study which was conducted to study the effects of ultrasonication
on animal and vegetable proteins showed similar development in the emulsion properties
of protein [42,43].

2.2.4. Foaming Capacity and Foaming Stability

The total inter-facial area formed by the whipping of protein is called the foaming
capacity (FC) of the protein [44]. The stability of foam is calculated as the total time
required to lose the volume of the foam. It is an important functional property of protein
that helps in the production of formulated foods. The foaming capacity of MOSP extracted
with CE was 13.21 ± 0.27% (Table 4). The foaming capacity of MOSP was improved to
24.23 ± 0.64% after ultrasonic treatment. The observed enhancement in foaming capacity
might be associated with the effect of ultrasonic homogenization, which improved the
foaming power [45]. This homogenization evenly distributed the particles of protein, which
increased the foaming ability of the MOSP sample extracted with UAE. Corresponding
results were obtained in another study on whey protein [46]. The increased exposure of
hydrophobic groups aided in the dispersion of protein molecules toward air-water interface
and their surface assimilation on it. A similar trend in the foaming capacity of protein was
also shown in an earlier study conducted to study the effects of high-intensity ultrasonic
treatment on food proteins [47]. However, the trend was opposite in the case of foaming
stability (FS). There was no significant improvement observed in MOSP extracted with UAE
when compared to the CE one. The reason for this might be the ultrasonic cavitation which
increased MOSP solubility, and the foaming stability dropped because of the decrease in
surface activity [27]. Furthermore, the breakdown of larger peptide units into smaller ones
also causes the reduction in foaming stability. It was reported earlier in a few studies that
ultrasonication may have had no significant effect on foaming stability, as observed in
de-hulled yellow mustard protein [48] and pea protein [49] isolates.
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2.3. Structural Study of MOSP
2.3.1. FT-IR Analysis

The FT-IR spectrum of MOSP can be described in three importance wavelength bands
(Figure 4). Generally, the FT-IR spectrum is based on the different amide zones [50]. The
amide-I zone representing C=O bonds is stretched over the wavelength range from 1700 to
1600 cm−1; the amide-II zone is associated with N–H bonds which are spread over the 1575
to 1480 cm−1 wavelength range; and the amide-III zone representing the N–H bending
and C–N is stretched over range of 1400–1200 cm−1. Among these bands, the amide-I is
the most responded area to any chemical change in the secondary structure of protein.
The FT-IR spectra of MOSP isolated via conventional extraction and ultrasonic-assisted
extraction are shown in Figure 4. It can be observed that sonication significantly affects
the amide-I region based on C=O stretching, while only a change in the intensity of peaks
was observed for other regions. A similar trend was observed on quinoa seed protein
isolates [51] and Moringa oleifera seed protein isolates [52] treated with sonication.
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Figure 4. FT-IR spectra of M. oleifera seed protein (MOSP) isolate from conventional extraction (a)
and ultrasonic-assisted extraction (b).
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2.3.2. Intrinsic Fluorescence Patterns

The fluorescence spectrum is basically a representation of amino acid residues such
as tryptophan, tyrosine, and phenylalanine present in a protein, which are, in principal,
detrimental to the tertiary structure of protein. Most of the studies related to tertiary
structure using intrinsic fluorescence are based on the changes in tryptophan intensity [52].
Usually, λmax of tryptophan < 330 nm shows the occurrence of the amino acid in the non-
polar environment, while λmax > 330 nm shows its presence in the polar environment due to
conformational changes in the tertiary structure of protein [51]. The presence of tryptophan,
tyrosine, and phenylalanine residues in MOSP is evident from previous studies [53,54]. The
fluorescence spectra of tryptophan, tyrosine, and phenylalanine residues for the protein
obtained from conventional extraction and ultrasound-assisted extraction are shown in
Figure 5. It can be observed that λmax for tryptophan, phenylalanine, and tyrosine in the
case of MOSP from CE was observed at 380 nm, 380 nm, and 390 nm. After MOSP was
obtained by using UAE, no shift in λmax was found except for phenylalanine, which shifted
to 360 nm. Moreover, an increase in the fluorescence intensity was found in all of the
studied amino residues. The spectra of tyrosine give some noise, but they could be helpful
for observing the considerable changes in the chemical structure of MOSP.
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The increase in the intensity of amino residues is related to the oxidation of protein
by hydroxyl radicals produced during the sonication treatment [20]. A similar trend was
observed in the case of lupin protein [21] and pea protein [17]; however, the observation
was in conflict with the results of quinoa seed protein isolates [51] and walnut protein iso-
lates [55], which experienced a decrease in the intensity from the application of ultrasound.
These discrepancies are related mainly to the production of different amounts of hydroxyl
radicals due to the variation in the intensity of ultrasound treatment, the duration of the
treatment, and the concentration and types of substrates of treated proteins. Unfortunately,
no study was found to provide correlating results for phenylalanine and tyrosine. Never-
theless, this increase in the intensity could be attributed to the response of different amino
acid residues to the variety of stresses to the protein due to the structure of the amino acid
residues [56].

3. Material and Methods
3.1. Raw Materials and Chemicals

M. oleifera seeds (Figure 6) were procured from Ayub Agriculture Research Institute,
Faisalabad, Pakistan. Dried M. oleifera seeds were milled in a commercial grinder and then
passed through a 100-mesh sieve to obtain fine seed powder. Peanut and corn oils were
purchased from a local market. Coomassie brilliant blue G-250 and bovine serum albumin
(BSA) of analytical grade were acquired from Sigma-Aldrich. The rest of the chemicals, such
as sodium hydroxide, hydrogen chloride, acetone, methanol, and others, were obtained
from Duksan, Korea.
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3.2. Ultrasonic-Assisted Extraction (UAE) of Seed Protein

The UAE method of [18] was adopted with slight modification. Briefly, for each
extraction, samples with varying solute-to-solvent ratios (1:10, 1:20, and 1:30) at different
pH levels (9, 11, and 13) were sonicated using a 13 mm probe [57] for 15 min at a frequency
of 20 kHz and a net output power of 750 W but with variable amplitudes (25, 50, and
75%) using sonication apparatus VCX750 (Sonics & Materials, Inc. Newtown, CT, USA). In
total, 17 runs were performed, as per response surface statistical design (see Table 1). After
optimization of amplitude, solute-to-solvent ratio, and pH, the best extraction time was
determined by performing trials for 0, 5, 10, 15, 20, 25, and 30 min at optimized conditions.
The conventional extraction (CE) of protein at optimized conditions but without amplitude
was also performed for the comparison and validation of the sonication application.
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3.3. Protein Quantification by Bradford Method

The amount of protein was determined by using the Bradford method [58]. Concisely,
after sonication/conventional extraction, each sample was centrifuged (Thermo Scientific
Heraeus Megafuge 8R-Germany) at 4 ◦C at 7508× g for 20 min, and the supernatant was
collected and diluted. Then, 1 mL from each diluted solution was mixed with 5 mL of
Coomassie brilliant blue G-250 solution, and the mixture was kept for 2 min at room
temperature. The absorbance of each mixture was taken at 525 nm by a UV-Vis Double-
Beam spectrophotometer (Specord-200 Plus, Analytik Jena, Germany). Bovine serum
albumin (0–100 ppm) was used to prepare a standard curve for quantifying the protein
contents of the extracts. Based on the protein content of the extract, the protein extraction
yield (g/100 g sample) was calculated using following formula:

Extraction yield (%) = (Protein weight/powder weight) × 100 (1)

3.4. Isolation of Seed Protein

Protein from the supernatant obtained during UAE/CE under optimized conditions
was isolated by following acid–base methodology [59]. Briefly, the pH of the supernatant
was adjusted to 3, which is the isoelectric point for seed protein, and the solution was
stored at 4 ◦C for 6 h. Precipitates were then collected on filter paper from each sample
by washing them twice with distilled water. These precipitates were then dispersed in
deionized water, followed by pH adjustment to 7. Finally, solutions were freeze-dried for
48 h to obtain M. oleifera seed protein (MOSP).

3.5. Functional Properties of M. oleifera Seed Protein (MOSP)
3.5.1. Solubility

The solubility of the protein samples was estimated by using the method described
by [33]. For this, 10 mg of MOSP was dispersed in 8 mL of deionized water, and the pH was
adjusted to 2–10 (if necessary) with either 1.0 M NaOH or HCl. The protein solution was
then stirred at room temperature for 30 min. The volume of the solution was then adjusted
to 10 mL by adding the respective pH solutions. These solutions were then centrifuged for
20 min at 7508× g. After the determination of the protein content in the supernatant via the
Bradford method, protein solubility was calculated via the following formula:

Solubility (%) = (Protein content in supernatant/Total protein in sample) × 100 (2)

3.5.2. Water- and Oil-holding Capacity

The method presented by Yılmaz and Hüriyet [60] and Saha and Deka [61] was
adopted to determine the water (WHC)- and oil-holding capacity (OHC) of samples. The
determination of the WHC/OHC of the samples was performed by mixing 0.3 g from each
sample with 5 mL of deionized water or peanut oil in centrifuge tubes. The mixtures were
vigorously vortexed and left for 30 min at room temperature. The mixture solutions were
centrifuged at 3003× g for 15 min. The calculation of WHC and OHC for each sample was
performed according to the following formula:

WHC or OHC (g/g) = (W2 − W1)/W0 (3)

where W0 = weight of dry sample in grams, W1 = weight of dry sample and tube,
W2 = weight of sediments and tube.

3.5.3. Emulsion Capacity and Emulsion Stability

The emulsion capacity (EC) and emulsion stability (ES) of samples were determined
according to the method of Jiang, et al. [62]. The EC of the samples was determined by
dissolving 1 g from each sample with 50 mL of 0.1 NaOH in a 250 mL beaker. Then, 50 mL of
corn oil was added, and the mixture was homogenized (FSH-2A Homogenizer, Changzhou,
China) at 10,000 rpm for 2 min to form an emulsion. The emulsion was then transferred
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into a 100 mL measuring cylinder. The EC was determined by calculating the difference
between the initial volume (Vi) of oil and the released volume (Vr) of oil against the weight
of the sample (W), which were taken as shown in the following formula:

EC = (Vi − Vr)/W (4)

The emulsion stability (ES) was observed after 48 h at room temperature by determin-
ing the amount of separated water from oil.

W (%) = Vol. of separated water (mL)/Original amount of water (mL) × 100 (5)

W is the percentage of water separated.

3.5.4. Foaming Capacity and Stability

The method adopted by Phongthai, et al. [63] for the determination of foaming capacity
(FC) and foaming stability (FS) was used for the purpose. To measure FC and FS, 50 mL
of 0.1% (w/v) from each protein solution was taken in a 150 mL beaker and homogenized
(FSH-2A Homogenizer, China) for 1 min at 24,000 rpm. The total volume was measured at
0 and 10 min. FC and FS were calculated according to the following formulae:

FC (%) = (V1 − V0)/V0 × 100 (6)

FS (%) = (V2 − V0)/V1 − V0 × 100 (7)

where V0 is the volume of the protein solution before homogenization; V1 is the volume of
the protein solution after homogenization at 0 min; V2 is the volume of the protein solution
after homogenization at 10 min.

3.6. Fourier-Transform Infrared (FT-IR) Spectroscopy

FT-IR is considered to be one of the best techniques for the determination of the
secondary structure of proteins [51]. In this study, spectra to assess the composition
of a protein’s secondary structure was acquired by an infrared spectrometer (Alpha II
FT-IR, Bruker, Billerica, MA, USA) equipped with an attenuated total reflection (ATR)
accessory without a temperature controller. A small amount of the samples was evenly
placed on the ZnSe ATR crystal to obtain the spectrum in the transmission mode ranging
from 4000 cm−1 to 400 cm−1. The spectra obtained were processed using the latest OPUS
software version 7.0.

3.7. Fluorescence Spectroscopy

Fluorescence spectroscopy has undergone rapid development due to its enormous
technical advances, accuracy, and enhanced methods for analysis based on fluorophore
compounds. The fluorescence spectra of protein extracted by using ultrasound and conven-
tional alkaline extraction were taken using a FluoroMax4 Spectrofluorometer (HORIBA,
Piscataway, NJ, USA) equipped with a xenon lamp. The method described by Mir et al. in
2019 was followed with little modification to acquire spectra. Spectra were taken at the
fixed excitation wavelength of 220 nm for tyrosine, 260 nm for phenylalanine, and 280 nm
for tryptophan, while the emission range was between 300 and 550 nm with a slit width of
1 nm. Three spectra were taken for each amino acid, and the average spectrum is presented
in the results.

3.8. Experimental Design and Statistical Analysis

Based on the principle of central composite design (CCD), amplitude % (A), solute-
to-solvent ratio (B), and pH (C) as the studied parameters for the maximum extraction
of protein were optimized (Table 1) via response surface methodology (RSM) by using
MATLAB (2007a). An analysis of variance (ANOVA) with a 95% confidence level was then
carried out for each response variable in order to test the model significance and suitability.
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3.7. Fluorescence Spectroscopy 
Fluorescence spectroscopy has undergone rapid development due to its enormous 

technical advances, accuracy, and enhanced methods for analysis based on fluorophore 
compounds. The fluorescence spectra of protein extracted by using ultrasound and con-
ventional alkaline extraction were taken using a FluoroMax4 Spectrofluorometer 
(HORIBA, Piscataway, NJ, USA) equipped with a xenon lamp. The method described by 
Mir et al. in 2019 was followed with little modification to acquire spectra. Spectra were 
taken at the fixed excitation wavelength of 220 nm for tyrosine, 260 nm for phenylalanine, 
and 280 nm for tryptophan, while the emission range was between 300 and 550 nm with a 
slit width of 1 nm. Three spectra were taken for each amino acid, and the average spec-
trum is presented in the results. 

3.8. Experimental Design and Statistical Analysis 
Based on the principle of central composite design (CCD), amplitude % (A), so-

lute-to-solvent ratio (B), and pH (C) as the studied parameters for the maximum extrac-
tion of protein were optimized (Table 1) via response surface methodology (RSM) by 
using MATLAB (2007a). An analysis of variance (ANOVA) with a 95% confidence level 
was then carried out for each response variable in order to test the model significance and 
suitability. 

 
where Y denotes the predicted value of the response variable; β0 denotes the intercepts; 
and βi, βii, and βij are the linear, second order, and interaction regression coefficients pre-
dictable by the model, respectively. Xi and Xj are the values of studied or independent 
variables. 

where Y denotes the predicted value of the response variable; β0 denotes the intercepts; and
βi, βii, and βij are the linear, second order, and interaction regression coefficients predictable
by the model, respectively. Xi and Xj are the values of studied or independent variables.

4. Conclusions

This research revealed that ultrasonic-assisted extraction is significantly better and had
beneficial effects in obtaining higher protein yields. During extraction, ultrasound power
and pH were among the parameters which significantly affected the protein yield. This
treatment altered the secondary and tertiary structure of MOSP, which were evident from FT-
IR and fluorescence spectroscopy, respectively. Ultrasonication did not yield any degrading
effects on MOSP in terms of functional properties. The functional properties of MOSP such
as solubility, water- and oil-holding capacity, emulsion stability, and foaming capacity and
stability improved in the beginning and then reduced as the amplitude of sonication further
increased. These results would give an understanding of the mechanism and interrelation
of structural changes with functional properties observed after the ultrasonic-assisted
extraction of MOSP and its further application in the development of advanced sustainable
food products.
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