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Abstract: The damaging effects of corona faults have made them a major concern in metal-clad
switchgear, requiring extreme caution during operation. Corona faults are also the primary cause
of flashovers in medium-voltage metal-clad electrical equipment. The root cause of this issue is an
electrical breakdown of the air due to electrical stress and poor air quality within the switchgear.
Without proper preventative measures, a flashover can occur, resulting in serious harm to workers
and equipment. As a result, detecting corona faults in switchgear and preventing electrical stress
buildup in switches is critical. Recent years have seen the successful use of Deep Learning (DL)
applications for corona and non-corona detection, owing to their autonomous feature learning
capability. This paper systematically analyzes three deep learning techniques, namely 1D-CNN,
LSTM, and 1D-CNN-LSTM hybrid models, to identify the most effective model for detecting corona
faults. The hybrid 1D-CNN-LSTM model is deemed the best due to its high accuracy in both the time
and frequency domains. This model analyzes the sound waves generated in switchgear to detect
faults. The study examines model performance in both the time and frequency domains. In the
time domain analysis (TDA), 1D-CNN achieved success rates of 98%, 98.4%, and 93.9%, while LSTM
obtained success rates of 97.3%, 98.4%, and 92.4%. The most suitable model, the 1D-CNN-LSTM,
achieved success rates of 99.3%, 98.4%, and 98.4% in differentiating corona and non-corona cases
during training, validation, and testing. In the frequency domain analysis (FDA), 1D-CNN achieved
success rates of 100%, 95.8%, and 95.8%, while LSTM obtained success rates of 100%, 100%, and 100%.
The 1D-CNN-LSTM model achieved a 100%, 100%, and 100% success rate during training, validation,
and testing. Hence, the developed algorithms achieved high performance in identifying corona faults
in switchgear, particularly the 1D-CNN-LSTM model due to its accuracy in detecting corona faults in
both the time and frequency domains.

Keywords: corona discharge; energy; switchgear; 1D-CNN-LSTM; faults

1. Introduction

Switchgear plays a crucial role in power distribution networks [1]. The term “switch-
ing gear” refers to a variety of switching devices that perform functions such as controlling,
protecting, and isolating power systems. This definition also encompasses devices used to
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regulate and meter power systems, as well as circuit breakers and other similar technolo-
gies [2]. Switchgear plays a critical role in ensuring the safety of downstream maintenance,
including fault clearing, upkeep, equipment substitutions, and a range of other related con-
cerns, especially in power-generating systems. It functions by isolating and de-energizing
specific electrical components and networks to prevent potential hazards.

Furthermore, switchgear is typically classified into low, medium, and high voltage
groups and is primarily constructed using insulating mediums such as air or oil [3]. It is
crucial to closely monitor the performance and condition of switchgear during operation.
Early detection of malfunctioning switchgear and prioritization of corrective maintenance
are essential [4]. Failure to do so could result in negative outcomes for the distribution
network, operational employees, and end users, leading to disruptive and unsettling
fluctuations in customer data and regulatory perceptions [5].

Breakdowns in switchgear can be classified into several types, including arcing, track-
ing, surface discharge, and mechanical failure [6]. Corona discharge is a common issue
that occurs in switchgear [7]. It is considered one of the primary causes of equipment
breakdown, aging, and power loss in steady power systems [8]. In the event of an incident
involving high-voltage systems, corona discharge faults can damage Medium-Voltage (MV)
switchgear, which may result in equipment failure. MV switchgear is a crucial component
of the power distribution network [9].

To maintain switchgear safety and ensure a stable power supply, it is crucial to detect
and closely monitor corona discharge activities [10]. A corona discharge in switchgear
results in the release of three types of energy: electromagnetic radiation, ultrasonic waves,
and gases such as ozone and Nitrogen Oxides (NOx) [11]. Electromagnetic and ultrasonic
techniques have been utilized to detect and monitor corona discharge activity in medium-
voltage switchgear with reduced interference and improved efficiency [11]. In particular,
electricity-based methods are commonly employed to measure discharge activities.

Offline detection procedures can be costly, and it can be challenging to identify the
substances that promote corona discharge. To address this, research has investigated
measuring ozone emissions post-discharge for fault identification and monitoring [12,13].
As a result, deep learning has gained significant traction and advancements in recent years
and is now widely used across a wide range of industries, particularly in image and natural
language analysis [14–16].

Convolutional neural networks (CNNs) are a popular type of deep learning model
that can extract many features using various convolutional layers, including max pooling,
normalization, and fully connected layers. [17]. However, CNNs are not suitable for
remembering past time-series patterns. Recurrent neural networks (RNNs) are a specific
type of neural network that can remember information from the past by using previous
outputs as inputs [18,19].

Lately, several research studies have employed RNNs in the fields of speech recog-
nition and natural language processing, among others. Specifically, the long short-term
memory (LSTM) RNN architecture has been acknowledged and applied in time series
processing. Its distinctive design explicitly resolves the problem of gradient vanishing in
traditional RNNs and enables the learning of long-term dependencies, leading to more
effective acquisition of the chronological aspects of sequential data [16–21].

The combination of CNN and RNN in a convolutional LSTM neural network is
essential to model chronological sequences and improve deep neural network modeling
capabilities. This network has been used in various large vocabulary tasks and has been
shown to provide a relative improvement of 4–6% over an LSTM [22,23]. Additionally,
there are many other studies focused on extracting temporal and spatial characteristics by
combining CNN and LSTM models [24]. Table 1 presents the advantages and disadvantages
of three methods that are commonly used in deep learning: 1D-CNN, LSTM, and 1D-
CNN-LSTM. Each method has its own strengths and weaknesses, and researchers often
choose one over the others depending on the specific task at hand. By comparing and
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contrasting these methods, researchers can determine which one is the best fit for their
particular problem.

Table 1. Summary of the advantages and disadvantages of the proposed methods.

Ref Methods Advantages Disadvantages

[25]
[26]
[27]
[28]

1D-CNN

1. Can learn complex patterns in data
through feature extraction;

2. Effective for processing
sequential data;

3. Can handle high-dimensional inputs;
4. Can be computationally efficient.

1. Not ideal for handling
variable-length inputs;

2. May not perform as well as LSTM for
tasks that require long-term memory.

[29]
[30]
[31]
[32]

LSTM

1. Effective for processing sequential
data and modeling long-term
dependencies;

2. Can handle variable-length inputs;
3. Can retain and selectively forget

information over long time intervals;
4. Can be combined with other models,

such as CNNs, for improved
performance.

1. Can be computationally expensive;
2. May be overfit on small datasets.

[33]
[21]
[34]
[35]

1DCNN-LSTM

1. Can combine the strengths of both
1D-CNN and LSTM models for
improved performance;

2. Effective for processing sequential
data and modeling long-term
dependencies;

3. Can handle high-dimensional and
variable-length inputs.

1. Can be computationally expensive;
2. May be overfit on small datasets;
3. Overall, the choice of model will

depend on the specific characteristics
of the problem being solved and the
available data.

The following points summarize the study’s motivations and contributions:

1. This study uses deep learning techniques to detect corona faults in switchgear. The
techniques employed include 1D-CNN, LSTM, and a hybrid model of 1D-CNN
and LSTM;

2. The purpose of the research is to determine the most effective method for detecting
corona faults. The hybrid method (1D-CNN-LSTM) was found to be the most effective
compared to other methods;

3. The study is unique in that it was conducted in both the time and frequency domains,
which had not previously been explored in this field;

4. The proposed models are able to quickly identify and differentiate corona faults from
other types of faults. Overall, the hybrid model is considered the best model for
detecting corona faults in both the time and frequency domains.

The categorization of the article can be seen; thus, Section 2 comprises the theoretical
study and methods. Section 3 comprises performance metrics, Section 4 comprises results
and discussion, and Section 5 concludes the paper.

2. Theoretical Study and Methods
2.1. The Theory of Corona Discharge

A corona discharge refers to the phenomenon where a fluid, such as the air surround-
ing an electrically charged conductor, ionizes, and creates an electrical discharge. Without
measures to reduce the electric field strength, high-voltage equipment may experience
spontaneous corona discharges. A corona is formed when the electric field strength around
a conductor is strong enough to create a conductive zone but not strong enough to cause
electrical breakdown or arcing. Nevertheless, corona discharge can have detrimental ef-
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fects on high-voltage equipment and cause a loss of power [2]. Figure 1a–c illustrates
the corona discharge phenomenon and how the conductance and avalanche processes in
Medium-Voltage (MV) switchgear are influenced by the electrode material.
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Figure 1. (a–c) A corona discharge is a phenomenon that occurs in the air [2]. Figure 1. (a–c) A corona discharge is a phenomenon that occurs in the air [2].

Figure 1 shows that when a neutral atom or molecule is exposed to a high electric
potential gradient, it becomes ionized and initiates the corona discharge process. High-
conductivity materials can lead to severe corona discharge flaws due to the strong electric
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field they produce, which attracts a lot of free electrons. Copper (Cu) and Stainless Steel
(SS) are two popular metals used in MV switchgear due to their durability and conductivity.
Copper has a higher conductivity than SS, with a value of 5.96107 Siemens per meter
(S/m) compared to 1.45 × 106 (S/m) for SS. However, copper can produce higher corona
discharges in MV switchgear than SS due to its higher conductivity.

Furthermore, when subjected to high-voltage stress, air, which contains electrically
neutral molecules, acts as an insulator. When powerful energy travels as electrons from an
electrode and strikes molecules, the molecules change [36].

The energy absorbed by the electrons surrounding atomic nuclei can lead to high-
energy transformations, causing them to dissociate from the atoms or molecules they were
attached to. This results in the formation of a positively charged ion and a dissociated free
electron. Through the avalanche process, new electrons are produced as a result of electrons
being struck by other electrons, leading to a mixture of electrons and ions [37], whereas
the appearance of light signals from locally applied electric fields that permit sustained
discharge into the atmosphere is another cause of corona discharge [38].

2.2. Proposed Methods

The proposed method for detecting corona faults involves collecting and preprocessing
data in both the time and frequency domains. Figure 2 is used to illustrate the mechanism
of data collection and preprocessing. The data is cleaned and collected, and then converted
from sound to image using a mel-spectrogram. The data includes both corona and non-
corona faults that occur in the switchgear, and it is classified into three phases: the training
phase, the validation phase, and the testing phase. Features are then extracted using
1D-CNN, and classification is applied using the LSTM algorithm to achieve the highest
possible accuracy. These methods are aimed at detecting corona faults in switchgear in
both the time and frequency domains.

2.2.1. Data Collection

The test findings received using airborne ultrasonic testing (AUT) equipment were
converted into raw data. The waveform audio file format, also known as wav, or the Moving
Picture Experts Group (MPEG), was used to record the ultrasonic data. A technique for
data preprocessing that consolidates or transforms the data into a format appropriate for
a particular machine learning algorithm will be introduced as a result of this. The data,
which were in the wav and mp3 file formats, were transformed into a matrix format to
meet the requirements of the MATLAB software.

2.2.2. Preprocessing

The preprocessing step involves several stages, such as converting the raw audio data
in wav or mp3 format to a matrix format suitable for the MATLAB programming language.
The next step is to concatenate the corona with non-corona data, which includes other
fault types like arcing, tracking mechanical, and normal, to differentiate between corona
and other faults. Once the data is prepared, it is classified into three phases: training,
validation, and testing, with 70%, 15%, and 15% of the data, respectively. Additionally, the
“Mel-Spectrogram” technique is used to convert the voice data into an image format.
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2.2.3. D CNN

A one-dimensional convolutional neural network (1D-CNN) is a neural network that
operates on one-dimensional data, such as time series or sequence data. In this study, 1D
CNNs are used to extract representative properties from corona and non-corona faults in
both the time and frequency domains. This is achieved through 1D convolution operations
using filters. Figure 3 shows the CNN structure, which includes convolutional layers, filters,
a MaxPooling1D layer, a FC layer, and a classification layer with a Rectified Linear Unit
(RELU) as the activation function. Dropout and batch size are used to avoid overfitting. In
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Equations (1–3), these equations are stated. (RELU), which can cause nonlinearity, is used
as a CNN activation function. While deep CNNs were initially used for image classification
tasks, they have since been used for video analysis and recognition. However, the use of
1D sequence data for classification and prediction is relatively new [2–39]. The corona and
non-corona categories can be seen as a sequential modeling effort, making 1D CNNs a
suitable choice. Compressed 1D-CNNs are preferred for real-time applications due to their
low processing requirements [40].

xl
o,fl = f

(
∑im xl−1

i ∗ kl
io,fl + bl

)
(1)

xl
o = f

[
max

(
∑im xl−1

i

)
+ bl

]
(2)

xl
0 = f

(
xl−1

i ∗ dl
io + bl

)
(3)

where x is a one-dimensional input matrix (n × 1), f (.) is an activation function, kl
io,fl is a

kernel filter (k × 1), lth is the number of filters F, the output of the lth convolutional layer
is xl

o,fl. b, denoted as bias vectors, and d are learnable parameters.
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2.2.4. RNN(LSTM) Structure

LSTMs (Long Short-Term Memory) are a type of RNN (Recurrent Neural Network)
that overcome the vanishing gradient problem in traditional RNNs and are capable of
capturing long-term dependencies in sequential data. In LSTMs, the hidden layers of
RNNs are replaced with memory cells that are capable of selectively retaining or discarding
information using gates. There are three types of gates in an LSTM: the input gate, the
output gate, and the forget gate, which regulate the flow of information into and out
of the memory cell [41]. For consecutive modeling applications like text categorization
and time series modeling, LSTM is very useful [29] LSTM’s structural layout is drawn in
Figure 4. The mathematical expression for an LSTM block presented by Equations (4)–(9) is
as follows:

it = σ
(

xtUi + ht−1Wi + bi

)
(4)

ft = σ
(

xtU f + ht−1W f + b f

)
(5)

Ot = σ( xtUo + ht−1Wo + bo) (6)

Ct = σ
(

ft � Ct−1 + it � Č tUi + bc

)
(7)
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Č = tanh( xtUg + ht−1Wg) (8)

ht = tanh( Ct)� Ot (9)

where xt is the network input matrix, ht is the output of the hidden layer, and σ indicates
the SoftMax function. C is a memory cell that facilitates recalling a significant case, which
is counted using Equation (7). The elderly cell case Ct−1 is updated to the modern cell
case Ct. New nominee values Č and the output of the present LSTM block ht makes use
of the hyperbolic tangent function as shown in Equations (8) and (9). The parameters
for observation are weights (Wi, W f , Wo, and Wg) and (Ui, U f , Uo, and Ug) that create
the neural network’s internal parameters and bias vectors (bi, b f , bo, and bc). The model
improves weights and biases by reducing the goal function. The operator � denotes the
multiplication of elements.
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2.2.5. D-CNN-LSTM

After the feature extraction stage by 1D-CNN, the output is fed into an LSTM layer,
which can capture the long-term dependencies of the input sequence. The LSTM layer
helps in learning the temporal relationship between the features extracted by the 1D-CNN
model. The output of the LSTM layer is then passed through a fully connected layer for
classification into corona or non-corona faults in both domains. The proposed hybrid model
benefits from the strengths of both 1D-CNN and LSTM and is expected to achieve better
performance in identifying corona faults compared to using either model alone as shown
in Figure 5.

In the time domain analysis, the recording sampling comprises a multi-input, series-
dimensional matrix. The second stage involves training and classifying corona and non-
corona cases using the LSTM neural network. The Adam optimizer was used before the
optimization process, which is a popular method for weight optimization. The model’s
accuracy and losses have been studied by varying the number of convolutional layers,
kernel size, MaxPooling1D, and Fully Connected (FC) layer as well as the model parameters,
which have been optimized to improve efficiency. The samples of datasets for corona and
non-corona in the time domain are in Table 2, which has a size of 17.5 megabytes (MB) in
the time domain.
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Table 2. The datasets sample corona and non-corona in the time domain.

No Name of Samples No of Samples

1 Arcing faults 54 ∗ 20,001
2 Corona faults 41 ∗ 20,001
3 Tracking faults 313 ∗ 20,001
4 Mechanical faults 17 ∗ 20,001
5 Normal faults 13 ∗ 20,001

As a result, the 1D CNN-LSTM structure consists of three 1D convolutional layers and
three global MaxPooling1D layers, with a 0.5% dropout for RELU to accelerate processing.
MaxPooling1D is set to 2, and the kernel size is 3. Following these are two LSTM layers
with 128 and 32 units, respectively, and a 0.5% dropout. The FC layer, with a SoftMax
activation function, is shown below, and the learning rate is 0.0001 with a batch size of 16
and an epoch number of 100. Figure 6 depicts the CNN-LSTM architecture as designed.

On the one hand, the 1D CNN architecture previously described consists of two one-
dimensional convolutional layers, each with 16 and 32 filters, respectively. A drop-out rate
of 0.4 is applied after each layer, followed by two max pooling layers with a size and kernel
established at 3 and 2. The fully connected layers use the SoftMax activation function with
a learning rate of 0.0001 and batch size of 16, and the number of epochs is 60. The LSTM
architecture for corona and non-corona fault detection consisted of two connected LSTM
units with 32 and 32 LSTM units, resulting in a significant increase in training time. As
a result, a fully connected layer of 32 neurons with a SoftMax activation function and a
learning rate of 0.0001 was constructed, with a batch size of 16 and a number of epochs of
50. The detailed structural design of the deep learning algorithms can be found in Table 3.
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Table 3. The structural design for deep learning algorithms in the time domain.

1D-CNN LSTM 1D-CNN-LSTM

1DConv (16) (RELU) LSTM (32) 1DConv (16) (RELU)
Drop-out Drop-out MaxPooling1D

MaxPooling1D LSTM (32) Drop-out
1DConv (32) (RELU) Drop-out 1DConv (32) (RELU)

Drop-out Flatten MaxPooling1D
MaxPooling1D Dense (32) (RELU) Drop-out

Flatten Dense (2) (SoftMax) 1DConv (256) (RELU)
Dense (32) (RELU) MaxPooling1D

Dense (2) (SoftMax) Drop-out
LSTM (128)

Drop-out
LSTM (32)

Dense (2) (SoftMax)
The number of total parameters

6738 16,226 245,170

In the case of frequency domain analysis, the suggested method involves recording
samples as dimensional matrices in the frequency domain. The samples are then used
to teach an LSTM neural network how to tell the difference between cases of corona and
non-corona, and the same steps are taken in the time domain where the Adam optimizer is
used to optimize the weights of the neural network during training. The number of convo-
lutional layers, kernel size, MaxPooling1D, and FC layer are all model parameters that are
investigated to achieve the best possible accuracy and loss. By tweaking these parameters,
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the model’s performance can be improved. The samples of datasets for corona and non-
corona in the frequency domain are shown in Table 4, which has a size of 11.3 megabytes
(MB) in the frequency domain.

Table 4. The samples of datasets for corona and non-corona in the frequency domain.

No Name of Samples No of Samples

1 Arcing faults 53 ∗ 10,001
2 Corona faults 39 ∗ 10,001
3 Tracking faults 40 ∗ 10,001
4 Mechanical faults 16 ∗ 10,001
5 Normal faults 12 ∗ 10,001

The 1D-CNN-LSTM model structure consists of two global max pooling layers and
two 1D convolution layers. To save processing time, a dropout of 0.3 is employed after each
layer from the global max pooling layers, with RELU activation used for the CNN layers.
The MaxPooling1D is set to 2, and the kernel size is equal to 3. After the two CNN layers,
there are two LSTM layers with 128 and 32 units, respectively, followed by a dropout of 0.3.
The subsequent fully connected (FC) layer has a learning rate of 0.0001, a batch size of 16,
and 100 epochs with a SoftMax activation function. The structure of the 1D-CNN-LSTM is
depicted in Figure 7.
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The 1D-CNN model architecture consists of three one-dimensional convolutional
layers with 64, 128, and 256 filters for each layer. Three max pooling layers are also
employed, with a dropout of 0.3 between each of them to prevent overfitting. The sizes of
the kernel and MaxPooling1D are set to 3 and 2, respectively. Finally, a SoftMax activation
function and learning rate of 0.0001 are used for the last layer of the network, as well as a
batch size of 16 and a number of epochs of 60. Overall, this architecture appears to be a deep
learning approach for classifying corona and non-corona cases based on time series data.
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On the other side, the LSTM model consists of two connected LSTM units with 64
and 32 units, respectively, and a fully connected layer of 32 neurons. A fully connected
layer with a SoftMax activation function, a learning rate of 0.0001, a batch size of 16, and
a number of epochs of 50. The training time for this model was found to be significantly
higher than the hybrid 1D-CNN-LSTM model. Table 5 provides detailed information on
the designs of the deep learning algorithms used in this study. Overall, both the hybrid
1D-CNN model and the LSTM model and the hybrid 1D-CNN-LSTM model are deep
learning approaches that are designed to classify corona and non-corona cases based on
time series data. However, the specifics of the architectures differ, and their effectiveness
and generalizability would depend on the specifics of the dataset and training process.

Table 5. The structural design for deep learning algorithms in the frequency domain.

1D CNN LSTM 1D CNN-LSTM

1DConv (32) (RELU) LSTM (64) 1DConv (64) (RELU)
Drop-out Drop-out MaxPooling1D

MaxPooling1D LSTM (32) Drop-out
1DConv (64) (RELU) Drop-out 1DConv (128) (RELU)

Drop-out Flatten MaxPooling1D
MaxPooling1D Dense (32) (RELU) Drop-out

1DConv (1024) (RELU) Dense (2) (SoftMax) LSTM (128)
Drop-out Drop-out

MaxPooling1D LSTM (32)
Flatten Dense (2) (SoftMax)

Dense (32) (RELU)
Dense (2) (SoftMax)

The number of total parameters
143,650 35,298 197,250

3. Performance Metrics

Because of this, it is difficult to assess the effectiveness of the suggested models in
Table 6 using the paper confusion matrix. The situations of corona and non-corona are rep-
resented, respectively, by 1 and 0. Equations (8)–(11) provide a number of indices, including
classification accuracy, dependability, sensitivity, and F1-Measure (11). The confusion ma-
trix makes use of them to evaluate the model’s performance. The recall is the portion of
a pertinent example that is remembered out of all the pertinent samples. Precision is the
portion of the recovered samples that are pertinent samples. As a separate performance
indicator, the cross-entropy loss is used to assess how accurately the model predicts the
target data as provided in Equation (12). The reduction of the difference between the corona
and non-corona condition probability distributions is a crucial performance parameter.
Most issues involving binary classification employ it. For a decent model, the loss value
is 0.

Classification Accuracy (%) = 100 × TP + TN
TP + FP + FN + TN

, (10)

Recall (Sensitivity)(%) = 100 × TP
TP + FN

, (11)

Precision (Dependability)(%) = 100 × TP
TP + FP

, (12)

F1 measure (%) = 100 × 2 × (Precision × Recall)
(Precision + Recall)

, (13)

Loss (L) = − 1
N

∗ ∑M
I=1 TIlog (xi). (14)
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Table 6. Confusion matrix for corona and non-corona cases.

Predictive Corona
Findings (1)

Predictive Non-Corona
Findings (0)

Actual corona findings (1) TP FP
Actual non-corona findings (0) FN TN

The right forecast is shown as True Positive (TP) and True Negative (TN), while the wrong forecast is expressed as
False Positive (FP) and False Negative (FN).

In an instance in which Xi is the predicting response, Ti will be the target value, M will
be the total number of responses predicting in X (all findings and classes combined), and N
will be the cumulative number of observations in X. The binary cross entropy missed is
totaled, inclusive of divisions and surveillance, and normalized by the number of states.

4. Results and Discussion

On the basis of the sound waves collected when the switchgear is in operation, exper-
iments are carried out to illustrate how well the created algorithms function in locating
corona faults in the switchgear. The tests are conducted in the time domain and the fre-
quency domain, which are two distinct domains. For 1DCNN, LSTM, and 1D-CNN-LSTM,
in order to distinguish between corona and non-corona faults in the time domain, a total of
438 data samples were created and split into training, validation, and testing datasets. The
test dataset contained only positive or negative cases of corona. Seventy percent of the data
was used for training, while fifteen percent was used for both validation and testing.

Each phase of the study consisted of 306 cases for testing, 66 cases for validation,
and 66 cases for training. The confusion matrix presented in the tables below shows the
true and false detection percentages based on the best results from repeated trials. Table 7
presents the results of the 1D-CNN-LSTM training phase in the time domain, using a
total of 306 datasets. Among these, 26 cases of corona and 278 cases of non-corona were
correctly identified. Only two corona cases were misclassified as non-corona, resulting in
an accuracy of 99.3% and an error rate of 0.7%. On the other hand, the CNN accurately
identified 274 non-corona cases and 26 corona cases, while misclassifying five corona cases
as non-corona, resulting in an accuracy of 98.3% and an error rate of 1.7%. Similarly,
the LSTM identified 26 corona cases and 272 non-corona cases, with eight corona cases
misclassified as non-corona, resulting in an accuracy of 97.3% and an error rate of 2.7%.

Table 7. Time domain corona fault classification output matrix for the training phase.

1D-CNN LSTM 1D-CNN-LSTM

Corona Non-Corona Corona Non-Corona Corona Non-Corona

Actual corona 26 5 26 8 26 2
Actual

non-corona 0 275 0 272 0 278

During the validation stage of the time domain analysis for 1D-CNN-LSTM, 66 sets
of data were used, including seven cases of corona and fifty-eight cases of non-corona.
Unfortunately, one corona case was misclassified as a non-corona case, resulting in an
overall accuracy of 98.4% with a 1.6% error rate. Both the CNN and LSTM models were
employed during this analysis, and the results were similar. Seven corona cases and fifty-
eight non-corona cases were successfully identified by both models, with one corona case
being incorrectly classified as non-corona. The overall accuracy rate for both models was
determined to be 98.4%, with a 1.6% error rate. Table 8 shows the detailed matrix results
for this analysis.
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Table 8. Time domain corona fault classification output matrix for the validation phase.

1D-CNN LSTM 1D-CNN-LSTM

Corona Non-Corona Corona Non-Corona Corona Non-Corona

Actual corona 7 1 7 1 7 1
Actual

non-corona 0 58 0 58 0 58

The results of the testing are shown in Table 9. According to the information provided,
the algorithm has used a dataset of 66 sets of data for testing and has achieved an accuracy
of 98.4% with a 1.6% error rate in identifying non-corona faults and corona faults using
1D-CNN-LSTM. Specifically, out of the 66 sets of data, the algorithm has correctly identified
fifty-seven non-corona faults and eight corona cases but has mistakenly recognized one
corona case as non-corona. Furthermore, the algorithm has also been tested using only
CNN and LSTM, separately. When using CNN alone, the algorithm has achieved an
accuracy of 93.9% with a 6.1% error rate, and when using LSTM alone, the algorithm has
achieved an identical accuracy and error rate. In both cases, the algorithm has identified
fifty-three non-corona faults and eight cases of corona, but has misidentified five cases of
corona as non-corona, while for CNN, the algorithm has identified fifty-four non-corona
faults and eight cases of corona, but has misidentified four cases of corona as non-corona.

Table 9. Time domain corona fault classification output matrix for the testing phase.

1D-CNN LSTM 1D-CNN-LSTM

Corona Non-Corona Corona Non-Corona Corona Non-Corona

Actual corona 8 4 8 5 8 1
Actual

non-corona 0 54 0 53 0 57

According to the information given in the frequency domain analysis, the dataset used
in this analysis consisted of 160 samples, with 70% being used for training and 15% for both
validation and testing. The training dataset comprised 112 samples, while the validation
and testing datasets consisted of 24 and 24 samples, respectively.

The results of the validation phase are presented in confusion matrices for each method,
showing the best and worst results from repeated experiments as well as the percentage of
correct and false detections.

Table 10 shows the output matrix for the training phase of a deep learning algorithm
using 1D-CNN-LSTM for corona and non-corona fault detection in the frequency domain.
According to the information provided, the training dataset consisted of 112 sets of data,
and the algorithm has identified 87 non-corona cases and 25 corona cases with 100%
accuracy and a 0% error rate. The algorithm has also been tested using only CNN and
LSTM, separately. When using CNN alone, the algorithm has identified 83 non-corona
cases and 29 corona cases with 100% accuracy and a 0% error rate. When using LSTM alone,
the algorithm has identified 83 non-corona cases and 29 corona cases with 100% accuracy
and a 0% error rate.

Table 10. Frequency domain corona fault classification output matrix for the training phase.

1D-CNN LSTM 1D-CNN-LSTM

Corona Non-Corona Corona Non-Corona Corona Non-Corona

Actual corona 29 0 29 0 25 0
Actual

non-corona 0 83 0 83 0 87
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The validation dataset in the frequency domain analysis consisted of 24 sets of data,
and the 1D-CNN-LSTM algorithm has identified seventeen non-corona cases and seven
corona cases with 100% accuracy and a 0% error rate. When using only CNN, the algorithm
has identified nineteen non-corona cases and four corona cases with 95.8% accuracy and
a 1.2% error rate, where one corona case was mistakenly classified as a non-corona case.
When using only LSTM, the algorithm has identified sixteen non-corona cases and five
corona cases with 100% accuracy and a 0% error rate. The resulting matrix is displayed in
Table 11.

Table 11. Frequency domain corona fault classification output matrix for the validation phase.

Actual Class
1D-CNN LSTM 1D-CNN-LSTM

Corona Non-Corona Corona Non-Corona Corona Non-Corona

Actual corona 4 1 5 0 7 0
Actual

non-corona 0 19 0 19 0 17

Based on the information provided, the 1D-CNN-LSTM algorithm achieved 100%
accuracy and a 0% error rate in the testing phase of the frequency domain analysis with
24 sets of data, identifying seventeen non-corona cases and seven corona cases. When using
only CNN, the algorithm identified nineteen non-corona cases and four corona cases with
95.8% accuracy and a 4.2% error rate, where one corona case was wrongly classified as a
non-corona case. When using only LSTM, the algorithm identified nineteen non-corona
cases and five corona cases with 100% accuracy and a 0% error rate, as shown in Table 12.

Table 12. Frequency domain corona fault classification output matrix for testing the phase.

1D-CNN LSTM 1D-CNN-LSTM

Corona Non-Corona Corona Non-Corona Corona Non-Corona

Actual corona 4 1 5 0 7 0
Actual

non-corona 0 19 0 19 0 17

A thorough analysis using performance metrics, including sensitivity, dependability,
loss, accuracy, and F1-Measure in Tables 13 and 14, has been done to further study the
truthfulness of CNN-LSTM.

Table 13. The assessment of various metrics in accordance with the DL structure’s testing-phase
performance results for the time domain.

Case Corona Outcome (1)

Approaches Accuracy Sensitivity Dependability F1-Measure

1D-CNN 92.4 100 62 76
LSTM 92.4 100 62 76

1D-CNN-LSTM 98.4 98 89 94
Case Non-Corona Outcome (0)

Approaches Accuracy Sensitivity Dependability F1-Measure
1D-CNN 92.4 91 100 95

LSTM 92.4 91 100 95
1D-CNN-LSTM 98.4 98 100 99
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Table 14. The assessment of different metrics in light of the best performance outcomes of DL
structures during testing for the frequency domain.

Case Corona Outcome (1)

Approaches Accuracy Sensitivity Dependability F1-Measure

1D-CNN 95.8 100 95 97
LSTM 100 100 100 100

1D-CNN-LSTM 100 100 100 100
Case Non-Corona Outcome (0)

Approaches Accuracy Sensitivity Dependability F1-Measure
1D-CNN 95.8 100 80 89

LSTM 100 100 100 100
1D-CNN-LSTM 100 100 100 100

Based on the results presented in Tables 7–12, it can be concluded that both LSTM and
1D-CNN-LSTM models are effective in detecting corona and non-corona faults in both the
time and frequency domains. In the testing phase, the 1D-CNN-LSTM model achieved
higher accuracy (98.4%) compared to the LSTM model (92.4%) in the time domain analysis,
while both models achieved 100% accuracy in the frequency domain analysis.

However, it is worth noting that in the time domain analysis, the 1D-CNN-LSTM
model wrongly identified one corona case as a non-corona case, which led to a slightly
lower accuracy compared to the frequency domain analysis. This suggests that further im-
provements can be made to the 1D-CNN-LSTM model to increase its accuracy in identifying
corona cases.

Overall, the results indicate that the 1D-CNN-LSTM model is a promising approach for
fault detection in power systems and has the potential to outperform traditional methods.
The training process for the 1D-CNN-LSTM model in both the time and frequency domains
is more time-consuming than the other techniques due to the large number of model
parameters, as shown in Tables 2 and 3. The 1D-CNN model is considered the most efficient
and quickest for training time, with a total of 6738 parameters in the time domain. On the
other hand, the LSTM model is considered the most efficient and quickest for training time
in the frequency domain, with a total of 35,298 parameters.

It should be noted that the total time required for each model differs between the
time domain and frequency domain analyses, as shown in Table 15 below. It is important
to mention that the models were implemented on Google Colab, and the LSTM model
required the least amount of time for implementation in the time domain analysis, while
the 1D-CNN model required the least amount of time for implementation in the frequency
domain analysis.

Table 15. The calculation times of the methods in the time and frequency domains.

Methods Time Domain Frequency Domain

1D-CNN 0:00:42 s 0:00:18 s

LSTM 0:00:26 s 0:00:21 s
1D-CNN-LSTM 0:00:39 s 0:00:28 s

Upon analyzing the outcomes of the three phases of training, validation, and testing,
we can conclude that the three models (1D-CNN, LSTM, and 1D-CNN-LSTM) exhibit
superior performance compared to the results obtained by the study of [42]. Based on
the results obtained from the three phases of training, validation, and testing, we can
observe that the three models (1D-CNN, LSTM, and 1D-CNN-LSTM) outperform the
results obtained by the researcher, who utilized the extreme learning machine approach
to detect corona in the same data in both the time and frequency domains. In the time
domain analysis, the results obtained were 90.63%, 87.5%, and 87.5%, while in the frequency
domain analysis, the results were 89.84%, 83.33%, and 87.5%. Therefore, we can conclude
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that the hybrid model, which is the 1D-CNN-LSTM model, has proven its effectiveness
in terms of accuracy and error rate in comparison to the previous techniques, and it is a
suitable model for detecting corona in switchgear.

5. Conclusions

In conclusion, switchgear plays a critical role in ensuring safety and protection, espe-
cially during downstream repairs. Inadequate monitoring, inspection, and evaluation can
cause switchgear malfunctions, making it necessary to have a reliable flaw identification
system to prevent manual inspection and aid in proper operation. This research proposes
various essential deep learning methodologies for corona detection. CNN and LSTM
algorithms have previously been used to classify datasets automatically, and 1D CNN,
LSTM, and CNN-LSTM architectures were presented to determine defect detection systems
based on sound waves in this study. Time and frequency domain analyses were conducted,
and the success rates in differentiating corona and non-corona instances in the training,
validation, and testing phases were evaluated. The 1D-CNN achieved success rates of
98.3%, 98.4%, and 93.9% in the time domain analysis, while the LSTM achieved 97.3%,
98.4%, and 92.4%. The best-performing method was 1D-CNN-LSTM, with success rates of
99.3%, 98.4%, and 98.4%. In the frequency domain analysis, the 1D-CNN achieved success
rates of 100%, 95.8%, and 95.8%, while the LSTM achieved 100%, 100%, and 100%. The
accuracy for 1D-CNN-LSTM and the success rates in the training, validation, and testing
phases were 100%, 100%, and 100%, respectively. The proposed algorithm performed
well and could be enhanced and implemented in real-time simulations, particularly in
industrial sectors.
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