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Abstract: Nanotechnology is used in a variety of scientific, medical, and research domains. It is
significant to mention that there are negative and severe repercussions of nanotechnology on both
individuals and the environment. The toxic effect of nanoparticles exerted on living beings is termed
as nanotoxicity. Nanoparticles are synthesized by various methods such as chemical, biological,
physical, etc. These nanoparticles’ nanotoxicity has been observed to vary depending on the synthesis
process, precursors, size of the particles, etc. Nanoparticles can enter the cell in different ways and
can cause cytotoxic effects. In this review, the toxicity caused in the reproductive system and the role
of the antioxidants against the nanotoxicity are briefly explained.
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1. Introduction

Nanotechnology is an emerging field that focuses on the design, characterization,
manufacturing of devices, and systems by manipulating shape and size at the nanoscale [1].
Recent developments in nanotechnology and nanoscience find its application in various
fields such as food technology, medicine, transportation, drug delivery, cosmetics, etc. [1–6].
Nanomaterials can interact with cells and the milieu in a way that their chemically identical,
larger biological counterparts cannot, and this is because of their exceedingly small size [7].
When nanoparticles are discharged into the environment, they may readily enter the cells
by receptor-mediated endocytosis or by passive diffusion, where they interact with the
cellular proteins, lipids, and genomic DNA [8,9]. This results in oxidative stress caused by
Reactive Oxidative Species which is considered to be the most significant contributor to
nanotoxicity [10,11]. Despite the antioxidant property of a few nanoparticles like gold, silver,
copper, iron nanoparticles, etc., most of them are involved in the formation of intracellular
ROS depending on the cellular absorption of nanoparticles, intracellular response, and
intracellular metal ion release [12–14] and are produced during several cellular signalling
processes as well as they are a part of the immune system’s defense mechanism. ROS
damages biological macromolecules such as proteins, lipids, and DNA, causing negative
effects on cells and causing mitochondrial dysfunction [15]. A high level of ROS can also
produce a range of physiopathological effects, such as apoptosis, necrosis, hypertrophy,
genotoxicity, inflammation, fibrosis, and even cancer. It also increases the production of pro-
inflammatory cytokines and activates inflammatory cells like macrophages, which further
increases the production of ROS [16]. These nanoparticles could also affect the reproductive
system by breaching the guard tissues of the reproductive system like the epithelial, blood-
testis, placenta and placental barriers and reproductive cells like germ cells, Leydig cells,
and Sertoli cells [17]. Particularly, in the male reproductive system, nanoparticles could
cause toxic effects by creating ROS which acts as molecular mediators in signal transduction
pathways of spermatogenesis, steroidogenesis, and hypothalamic-pituitary-gonadal axis
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regulation affecting sperm maturation, such as DNA compaction and flagellar modification;
whereas, in female reproduction, nanoparticles affect the physiological processes, including
maturation of the oocyte, fertilization, development of the embryo, and pregnancy [18,19].
The prevalence of interspecies extrapolation factors between humans and test species
helps in computing the toxicology in the reproductive system after exposure to drugs or
chemicals [18]. Thus, this review briefs readers on the impacts of nanoparticles on the
reproductive system, its mechanism, quantitative test, and potential nanotoxicity, using
animal models.

2. Nanoparticles and Reactive Oxygen Species (ROS)

The unique characteristics of nanoparticles make them suitable for a variety of applica-
tions, such as biomedical applications, chemical and biological sensors, drug delivery, and
various other fields [20]. The physical features of nanoparticles have a significant impact on
cellular interactions. Nanoparticles can enter cells via endocytosis, diffusion, or via interac-
tions with phospholipids. They can disrupt cell membranes by physicochemical interactions
with the surface of the membrane, thereby impairing transport processes. Additionally,
they can also trigger oxidative stress by releasing ions. Also, the function of cell organelles,
particularly the mitochondria and peroxisomes, can be impacted by nanoparticles, which
can disrupt intracellular transport and cause oxidative stress [21] (Figure 1).
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available on Smart Servier Medical Art).

Silver, platinum, cerium, and zinc nanoparticles are some of the metal-based nanoparti-
cles that can cause membrane lipid peroxidation and oxidative stress leading to mitochon-
drial dysfunction, DNA damage, and a number of other adverse effects [22]. Hydrogen
peroxide, hydroxyl radicals, singlet oxygen, and superoxide anion radicals are some ex-
amples of biologically relevant ROS produced by normal cellular metabolism or by any
antigenic/mitogenic responses or as a by-product in mitochondrial respiration [23]. Also,
ROS are generated when immune cells like neutrophils and macrophages react against envi-
ronmental toxins/microorganisms/any other antigens/any internal stimuli [24]. Oxidative
stress occurs when ROS are abundant in the body and cause potentially harmful biologi-
cal reactions. This is because ROS produces an imbalance between the amount produced
and the biological system’s ability to quickly detoxify reactive intermediates or to repair
the damage by activating antioxidant enzymes and non-enzymatic antioxidants [24,25].
When the ROS level exceeds the level because of nanoparticle entry, immune cell activa-
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tion and activated cell signalling pathways lead to additional pathological effects such as
inflammation, genotoxicity, and fibrosis [24]. Most nanoparticles could interfere with the
cell signalling pathway through three primary routes resulting in the apoptotic process
(Figure 2). The direct nanoparticle occupancy of the FADD receptor is the first mechanism.
The death receptor including TNFR1 (TNF receptor superfamily member 1A), FAS/CD95
(FAS cell surface death receptor) etc. could initiate death signalling, where the ligands bind
to these receptors and activate FADD (FAS associated via death domain) and then activate
proCASP8 to CASP8 and end with activating apoptosis [26]. The second pathway involves
the location of nanoparticles pacing in the endoplasmic reticulum; while the endoplasmic
reticulum is facing high stress, there is the activation of Protein kinase R-like ER kinase
(PERK), inositol-requiring enzyme 1α (IRE1α), and activating transcription factor 6 (ATF6),
which are important transmembrane proteins that cascade various cellular signalling path-
ways, ending with activation of caspase and leading to apoptosis [27–29]. The third pathway
involves modulating the mitochondrial function in the presence of nanoparticles. All these
mechanisms eventually lead to caspase activation, which causes the mitochondria to pro-
duce more ROS, to make more BH3 Interacting Domain Death Agonist (BID protein), and to
activate Bax or Bak1 proteins, all of which can cause cell death, DNA cleavage, and organelle
damage [30]. The mechanism by which each nanoparticle produces ROS is unique; to date,
there is no exact evidence that shows how the ROS are produced. Through Fenton-type
reactions, metal-containing nanoparticles cause toxicity by producing free radicals, whereas
carbon nanotube-mediated ROS production is significantly influenced by mitochondrial in-
jury [31]. Also, nanoparticles alter electron transfer, elevating the ratio of NADP+/NADPH,
and interfering with mitochondrial function, resulting in intracellular ROS formation. Addi-
tionally, nanoparticles are known to affect genes associated with oxidative stress, such as
oxyR, ahpC, soxR, and soxS antioxidant genes such as gpx, sod1, and NADPH synthesis genes
such as met9. Nanoparticles are associated with an increase in intracellular ROS because of
their instability in oxidative and antioxidant defence genes [16]. Based on the mechanism,
nanotoxicity is classified into two types: (i) primary oxidative stress, and (ii) secondary
oxidative stress. Primary oxidative stress is defined as the photocatalytic activity of metal
nanoparticles, for example titanium oxide could directly induce oxidative stress by ROS
production, whereas secondary oxidative stress causes mitochondrial malfunction by the
exposure to nanoparticles that results in the formation of ROS [12].
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3. Entry of Nanoparticles into the Reproductive System

Since the 20th century, experiments in consumer items, industry, and medicine have
significantly increased, which also increases the number of nanosized particles in the air.
This increase in the air holds the chance of nanoparticle-induced toxicity in humans [32–34].
Generally, the entry of nanoparticles into the human body is comprised of four types:
(i) ingestion; (ii) inhalation; (iii) dermal penetration, and (iv) blood circulation. Since
nanoparticles are smaller, it is easier for them to quickly penetrate deeper into the respi-
ratory system after being inhaled. The process of absorption also allows nanoparticles to
enter the dermal system through wound or abrasion skin where particles smaller than
5 nm diffuse into the skin easily. Thus, entered nanoparticles travel throughout the blood-
stream, interact with the systems/organs and accumulate, which could cause severe impact
on organs including the lung, liver, reproductive system, and kidneys [21]. Numerous
nanoparticles have been shown to have the potential to overcome biological boundaries
and injure important organs like the kidney, brain, and liver [33,34]. These nanoparticles
could even reach the reproductive system where there are more investigations done on
in vitro and in vivo models for studying the medical and molecular effects of nanotoxicity on
genital organs [33]. As discussed in the previous section, these nanoparticles tend to cause
cytotoxicity in the genetic and molecular levels by promoting inflammation, apoptosis, and
oxidative stress through ROS [34,35]. Nanoparticles reach and accumulate in reproductive
organs by breaching the guard reproductive tissues including epithelial, placental, and
blood-testis barriers and by destroying Leydig cells, germ cells, and Sertoli cells. This
accumulation does harm the male including epididymis and testes and impairs the quality,
quantity, motility, and shape of sperm. Female reproductive organs like the ovary and
uterus showed a reduction in the number of mature oocytes and interfered with the growth
of primary and secondary follicles on the entry of nanoparticles [17,34].

In the male reproductive system, nanomaterials trigger cell death after penetrating
through the blood testis barrier (BTB). It results in the lowering of mobility of the sperm due
to mitochondrial dysfunction. Its transmission depends upon the polarity, shape, and size
of the nanoparticle [33–36]. According to recent studies, nanoparticles can be endocytosed
by granulosa and thecal cells, which stops oocyte development in vivo and causes aberrant
hormone release [37]. The most common nanoparticles involved in studies assessing their
toxicity to female reproductive systems are carbon nanoparticles, metal, metal oxides,
and quantum dots. Studies conducted in both in vivo and in vitro conditions revealed that
specific sizes of nanoparticles could enter and accumulate in different female germ cells,
triggering a variety of cellular reactions including oxidative stress, signal transduction
inhibition, apoptosis, DNA damage, and inflammation [38].

4. Impact on the Male Reproductive System

Both oxidative stress and inflammation are believed to be sensitive to the male repro-
ductive system; where nanoparticles’ exposure readily increases oxidative stress and causes
cell death and poor spermatogenesis, oxidative stress is reported to be the primary cause
of 30–80% of infertility problems in male [39,40]. Studies suggest that nanoparticles react to
distinct germ cells and damage cells differently. The changes of the cytoskeleton on the entry
of nanoparticles can affect the production of sperm flagella and their ability to migrate, as well
as the formation of Sertoli cell tight junctions and the tight junctions between them; all these
changes can affect spermatogenesis [41]. Liu et al. [42] have proposed that ZnO nanoparticles
caused down-regulation of tight junction proteins in Sertoli cells resulting in BTB dysfunction
and no changes in cytoskeleton dynamics were identified [42]. The various nanoparticles
involved in the toxicity of the male reproductive system are tabulated in Table 1.

The buildup of nanoparticles destroys germ cells, Leydig cells, and Sertoli cells,
impairing the motility, shape, quality, and quantity of the sperm and limiting the number
of mature oocytes or preventing the growth of primary and secondary follicles. Further,
nanoparticles can alter the number of hormones released, altering sexual behavior [34]. In
a study, Mathias et al. [43] found there were no differences in any of the sexual activities in
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silver nanoparticles on the following sexual behaviors like number of mounts, intromissions,
ejaculatory intervals, attempted mounts, and ejaculations, but the exposure to nanoparticles
was reducing sperm quality. Nanoparticles such as silica nanoparticles were found to
increase the levels of micronucleus frequencies, malondialdehyde levels, and lower activity
of catalase and glutathione content in testicular tissues at a higher concentration treated
group, pointing to mechanisms of DNA damage and oxidative stress. Significant testicular
histological changes were also seen in this group along with inflammation, testicular
apoptosis, and oxidative stress by enhancing the gene expression corresponding to the
pro-inflammatory activity, apoptotic activity, and oxidative stress caspase 3 and iNOS [44].

Metal nanoparticles like zinc oxide nanoparticles (ZnO) are observed to be breaking the
cell membrane and outer membrane of mitochondria in Sertoli cells and down-regulating
the production of gap junction proteins, thus damaging the BTB, further compromising its
integrity. Additionally, ROS and cytokine release play substantial roles in BTB disruption,
markedly raising the oxidative stress status by causing elevated ROS and malondialdehyde
levels and lowered glutathione levels and raising the TNF-α levels in Sertoli cells [42].
Similarly, Bara and Kaul [45] have observed that ZnO nanoparticles considerably lowered
the expression of the antioxidant enzyme gene (SOD) and significantly enhanced the
expression of genes associated with steroidogenesis by the up-regulation of steroidogenic
acute regulatory protein and cytochrome P450 side-chain cleavage enzyme in the mouse
model. In contrast, exposure to ZnO nanoparticles markedly boosted testosterone synthesis
at a concentration level of 2 mg/mL [45].

Likewise, the subcutaneous injection of titanium oxide nanoparticles in pregnant
mouse found to have reduced sperm production, disordered seminiferous tubules and
olfactory bulb apoptosis was observed [46]. Some of the studies have been done on the
estimation of the levels of endocrine and reproductive hormones such as follicle-stimulating
hormone, testosterone, luteinizing hormone, estradiol, and gonadotropin-releasing hor-
mone that can be related to the rise in ROS and the concurrent decline in antioxidant
enzymes. The sex hormone profile might also be disturbed by titanium oxide nanoparticles’
administration, as seen by lower blood testosterone levels and higher serum levels of
estradiol, luteinizing hormone, and follicle-stimulating hormone [47,48]. According to
prior research using mouse, rat, and porcine Leydig cells, the inhibitory effect of TNF-α on
testosterone production may be caused by a decrease in the 17 α-hydroxylase/C17-20 lyase
gene and protein expression and cholesterol side-chain cleavage enzyme, two essential
enzymes in testosterone biosynthesis [49]. Contradictory reports are also there, which are
as follows: Lauvås et al. [50] and Ogunsuyi et al. [51] found titanium oxide nanoparticles
do not cause changes in testosterone levels but according to Miura et al. [52], titanium oxide
nanoparticles did not impact sex hormones related to spermatogenesis but they do report
that titanium nanoparticles tend to reduce testosterone levels and sperm mobility.

Cerium oxide nanoparticles were found to influence prepubertal spermatogenesis and
harm Sertoli cells. Also, lowered expression of the steroidogenic enzyme’s genes Cyp17-1
and HSD3b1 is associated with decreased expression of Insl3, a gene that specifically marks
Leydig cells [53]. There are studies where the Superparamagnetic Iron Oxide Nanoparticles
(SPIONs), gold and silver nanoparticles reduce the earthworm in number, but the direct
interaction with the reproductive system is not clear [54–58].

Spermatogenesis and Toxicity

According to some of the research, nanoparticles are found to have the ability to
quickly pass the BTB, after building up in the testis and having a negative impact on sper-
matogenesis. ROS generation in the seminiferous tubule, the place where spermatogenesis
takes place, can cause DNA damage to spermatogenic cells [59]. While the testicular tissues
are exposed to nanoparticles, seminiferous tubules undergo histological changes, which
damage the testicles and diminish sperm production [40] (Figure 3).
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Table 1. Various nanoparticles are involved in the toxicity of the male reproductive system.

S. No Nanoparticles Animal Model Toxicity Effect References

1. Silica nanoparticles Male Albino Rats

Higher levels of micronucleus frequencies
and malondialdehyde levels, and lesser

catalase and glutathione activity in
testicular tissues.

[44]

2. ZnO nanoparticles

TM-4 Sertoli cell line and
GC2-spd spermatocyte cell

line of mouse

Breakdown of the cell membrane and outer
membrane of mitochondria in Sertoli cells;

down-regulating the production of gap
junction proteins; disruption of

BTB disruption.

[42]

Mouse testis Leydig cells
Decreased antioxidant enzyme gene

expression (SOD) and increased
steroidogenesis-related gene expression.

[45]

3.
Titanium oxide
nanoparticles

Pregnant mouse model

Apoptosis of the olfactory bulb occurs
with decreased sperm production and

motility; disordered and disrupted
seminiferous tubules.

[46]

Mouse, rat, and porcine
Leydig cells

17–α hydroxylase/C17-20 lyase and
cholesterol side-chain cleavage enzyme gene
and protein expression are affected by TNF- α

to decrease testosterone synthesis.

[49]

4. Cerium oxide
nanoparticles Pregnant mouse model

Involvement in the prepubertal
spermatogenesis and germ cell; reduction of

germ cells, deformation of Sertoli cells;
impairment steroidogenesis.

[53]
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Nanoparticles are proven to enter the male rat reproductive organs or tissues in vari-
ous ways; the testes and the epididymis are considered to be the most vulnerable to damage.
In a study, it has been proposed that nanoparticles may affect the testes in a variety of
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ways, resulting in differences in the production of sperm quantity and quality production.
Male mouse testes exposed to water-soluble carbon nanotubes showed oxidative stress,
which reduced spermatogenic epithelium thickness [8]. Subcutaneous exposure of silver
nanoparticles in male rats displayed abnormalities in the testes as well as changes in sperm
quantity and motility, as well as levels of testosterone, luteinizing hormone, and follicle-
stimulating hormone. While some studies claim that nanoparticles cannot permeate the
skin, others have found evidence of metallic nanoparticles, especially iron nanoparticles,
penetrating the skin through hair follicles [60]. Mice exposed to iron oxide nanoparticles
caused histopathological changes in seminiferous tubules of the testes including sloughing,
detachment, and vacuolization [61]. Exposure to silver nanoparticles resulted in various
sperm cell irregularities, such as multiple heads, lengthy tails, and hook attachment er-
rors [62]. Additionally, ultrastructural changes in spermatogonia, spermatogenic cells, and
Sertoli cells, as well as atrophy in seminiferous tubules, necrosis, and cell disintegration
with abnormal development of spermatids were observed [63].

Also, non-metal nanoparticles such as carbon nanotubes were reported to disrupt the
Leydig and Sertoli cell function in the testes, which may lead to a variety of problems in
steroidogenesis and germ cell differentiation. Carbon nanotubes might also prevent BTB and
hemato-testicular barrier (HTB) from functioning properly [64]. These barriers are permeable
to carbon nanotubes, which therefore have a direct impact on the neuroendocrine pathways,
spermatogenesis, and reproductive organs [65]. They may have an impact on the level of
sex hormones in the blood and the serum or tissue level of endocrine hormones in carbon
nanotubes [64]. In a study, ROS levels and biomarkers indicative of oxidative stress in the
testes are measured to better understand the mechanism underlying the oligospermia and
teratozoospermia brought on by silica nanoparticles. The results have revealed that silica
nanoparticles significantly increased the ROS level and malondialdehyde as well as the activity
of superoxide dismutases. As a result, it has been hypothesized that alterations in the redox
system and sex hormones might be the reason for the lower sperm quality and quantity [66].

Administration of quantum dots to mice was found to decrease the follicle-stimulating
hormone and testosterone and a dose-dependent increase in the toxicity of quantum dots
on spermatogenesis occurred, and it lasted for about 60 days. Additionally, approximately
60% of pachytene spermatocytes showed unrepaired double-strand break at days 14 and
30 after injection and were found to be vanished at day 60 indicating that double-strand
break repair was impaired after exposure to quantum dots. The quantum dots-treated
groups were still observed to have a lot of H2AX foci in the pachytene stage, and during
meiosis I, the fraction of spermatocytes in the pachytene stage was much higher than
expected on exposure [67]. Hong et al. [68] have demonstrated that mice exposed to ti-
tanium nanoparticles had lesions of the testes and epididymis, experienced reductions
in the concentration and motility of sperm, and produced a greater number of defective
sperm. Additionally, in mice’s testes, exposure to titanium nanoparticles increased the
activities of testicular-marked enzymes such as alkaline phosphatase, acid phosphatase,
and total nitric oxide synthase while decreasing the activities of succinate dehydrogenase,
sorbitol dehydrogenase, lactate dehydrogenase, and glucose-6-phosphate dehydrogenase.
Additionally, exposure to titanium nanoparticles increased the generation of ROS, malondi-
aldehyde, a product of lipid peroxidation, carbonyl, a product of protein oxidation, and
8-hydroxydeoxyguanosine, a product of DNA oxidation in the testes. Also, a reduction in
sperm count and lesions induced by titanium nanoparticles was observed [68].

5. Impact on the Female Reproductive System

Nanoparticles alter sex hormone levels by triggering secretory cells such as thecal
cells, follicle cells, granule cells, and corpus luteum via the hypothalamic pituitary gonadal
axis, or by directly stimulating secretory cells such as granule cells, thecal cells, follicle
cells, and the corpus luteum [38]. Some nanoparticles can reach the foetus by passive
diffusion or endocytosis, causing fetal inflammation, apoptosis, genotoxicity, reproductive
deficit, lower weight, cytotoxicity, immunodeficiency, and neurological damage, among
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other effects [38] (Figure 4). The primary female sex hormones in females are estrogen and
progesterone, which are mostly produced in the ovaries or placenta during pregnancy in
humans. Some data suggest that certain nanoparticles can change the gene expression
that encodes proteins involved in steroidogenesis, such as ovarian genes essential for the
synthesis of estrogen and/or progesterone [32]. The various nanoparticles involved in the
toxicity of the female reproductive system are given in Table 2.
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In a study, it has been proposed that ZnO nanoparticles have triggered autophagy and
apoptosis in a caspase-dependent manner and induced oxidative stress by raising the level
of the mutant ovarian p53 protein in maturing oocytes. Necroptosis, having the character-
istics of both necrosis and apoptosis, have also been discovered where ZnO nanoparticles
produced a necrotic environment that was conducive to retardation of follicular develop-
ment, changed ovulation of oocyte, and decreased female zebrafish fertility [69] (Figure 5).
In a pregnant mouse model, metal ions such as cadmium oxide nanoparticles are found to
delay weight gain, decrease the weight of the placenta, and increase the weight of the uterus.
Additionally, noticeable changes in the number of estrogen receptors α and β expression
in uterine tissues finally led to a decrease in implantations. The release of cadmium ions
from cadmium oxide nanoparticles has the potential to disrupt and unbalance the blastocyst
before implantation as well as cause endocrine disturbance to prevent it [70,71].

The toxicity of the titanium oxide nanoparticles was found to be associated with
Cyp17a1, a gene that regulates the secretion of the hormone, which was up-regulated,
indicating enhanced estradiol production. Genes, including bmf, were up-regulated while
some of the genes that control apoptosis were down-regulated. Changes in the ovary’s
immunological and inflammatory responses, oxidoreductase activity, oxidative stress,
transcription, cell proliferation, and ion transport were also noted [72]. The Zona Pellucida
(ZP) of oocytes was found to be accumulated by cerium oxide nanoparticles in follicular
cells through endocytosis. Follicular cell endocytosis and zona pellucida trapping could
not able to shield mature oocytes from oxidative stress and DNA damage when exposed
to high concentrations [73]. Mouse oocytes cultivated in media containing cerium oxide
nanoparticles at a lower concentration (0.01 mg/L) during in vitro fertilization (IVF) had
a considerably decreased fertilization rate compared to the control group. Low fertility
rates could be caused by gamete genotoxicity and oxidative stress brought on by cerium
oxide [38,74]. Silver nanoparticles have decreased the primary oocytes which resulted in the
influence and inhibition of ovulation by entering the ovaries after entering the circulation
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and penetrating cells to cause oxidative stress, which activates oxidative stress factors in
ovarian cells and causes apoptosis. Hence, it can be concluded that silver nanoparticles, at
various concentrations, could cause oxidative stress by increasing degeneration in primary
oocytes associated with lower antioxidant status [75].
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Table 2. Various nanoparticles are involved in the toxicity of the female reproductive system.

S. No. Nanoparticles Animal Model Toxicity Effect References

1. ZnO nanoparticles Female zebrafish

Autophagy and apoptosis occurring in a
caspase-dependent manner; increased oxidative
stress by inducing mutant ovarian p53 protein;

necroptosis; follicular developmental
retardation; deformation of oocyte ovulation,

and decreased female zebrafish fertility.

[69]

2. Cadmium oxide
nanoparticles Pregnant mouse model

Weight gain, increased uterus weight, and
decreased weight of placenta; decreased

quantity of estrogen receptors.
[70]

3. Titanium oxide
nanoparticles Female mice

Up-regulation of Cyp17a1 resulted in enhanced
estradiol production; up-regulation of bmf

genes; apoptotic genes were down-regulated.
[72]

4. Cerium oxide
nanoparticles Mouse oocytes

Accumulation in the zona pellucida (ZP) of
oocytes; DNA damage due to follicular cell
endocytosis and zona pellucida trapping.

[73]

5. Silver nanoparticles Ovaries of female
albino rats

Inhibition of the ovulation; activation of
oxidative stress factors in ovarian cells resulting

in apoptosis.
[75]
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Nanotoxicity on the Steroidogenic Pathway

The potential harmful effects of nanoparticles such as induction of cellular states
of oxidative stress, modulation of enzyme activity, inflammation, and cell death include
disruption of gonadal steroidogenesis-related biochemical and physiologic processes [16].
Larson et al. [76] reported that gold nanoparticles could be a new class of ovarian endocrine-
inhibiting compounds if exposed for extended periods or at high concentrations as they
disrupt the production of sex-steroid hormones, resulting in reproductive problems in
humans and animals [76]. By contrast, Gallus domesticus treated with silver nanoparticles
showed no significant differences in progesterone levels between the granulosa and theca
layers, but a progressive reduction in estradiol and testosterone levels was observed
in theca cells. [77]. In preovulatory rat granulosa cells, multi-walled carbon nanotubes
(MWCNTs) prevented the synthesis of progesterone. Particularly, at concentrations of 10
and 50 g/mL/48 h, the production was drastically reduced. Expression of Steroidogenic
Acute Regulatory protein (StAR), a steroidogenic protein that helps in the movement of
cholesterol from the outer to the inner mitochondrial membrane, where it is processed
by P450scc to pregnenolone, was also altered by MWCNTs [78,79]. Other non-metal
nanoparticles such as calcium phosphate nanoparticles have induced apoptosis and have
no effect on S phase cell cycle arrest, progesterone level, estradiol levels, and the mRNA
levels of P450scc, and StAR was observed in human ovarian granulosa cells cultured in-
vitro [80]. Similarly, nano-silica particles caused fetotoxicity and placental dysfunction in
foetus placenta of pregnant mice [81]. The decreased activity of the steroidogenic enzymes
3β and 17β-hydroxysteroid dehydrogenase affected gonadal steroidogenesis in fullerene-
treated female Anabas testudineus. Serum cortisol levels significantly increased whereas
estradiol levels in female fish significantly decreased. There was a significant difference in
alkali-labile phosphate levels, plasma calcium, and total protein among female and male
fish, possibly due to C60 fullerene antiestrogenic properties. In the ovaries and brain of
female fish, aromatase enzyme activity considerably decreased [80].

6. Nanotoxicity Quantification Tests

The presence of nanotoxicity in the reproductive system can be identified by the
collection of test samples and subjecting them to the following tests. These include tests for
genotoxicity, proliferation, and mutated gene expression in cell culture as well as tests for
cytotoxicity-altered metabolism, reduced growth, or lytic or apoptotic cell death [82].

6.1. Assay for the Determination of ROS Production Due to Oxidative Stress

Nanoparticles entering the cell may cause oxidative stress to the cell leading to the
production of reactive oxidative species such as superoxide, α-oxygen, hydroxyl radical,
peroxides, singlet oxygen, etc. The defense mechanisms of ROS production are of two
types: enzymatic and non-enzymatic scavengers. Enzymatic scavengers include catalase,
glutathione peroxidase, and superoxide dismutase, whereas non-enzymatic scavengers are
glutathione, melatonin and vitamin A, C, and E [83]. These biomarkers act as indicators for
biological, pathogenic processes, therapeutic, or pharmacological responses [84].

6.1.1. Superoxide Dismutase (SOD) Assay

Superoxide dismutases (SODs) are a crucial antioxidant defense system in the body
that protects against oxidative damage. Reactive oxygen species-related disorders can be
treated effectively with the enzyme. [85]. It is involved in the conversion of hydrogen
peroxide and molecular oxygen from superoxide radicals [86]. SOD is the first line of
defense mechanism against ROS in live cells by accelerating this conversion by redox
disproportionation [87]. The assay measures the activity of superoxide dismutase in the
mitochondria of the cell helping in the quantification of stress formed in the cell. In order
to identify the presence of SOD by reaction with INT (2-(4-iodophenyl)-3-(4-nitrophenol)-5-
phenyltetrazolium chloride) and formation of red formazan. SOD present in the sample
prevents the conversion of superoxide radicals into oxygen. Further, the absorbance was



Life 2023, 13, 767 11 of 17

observed at 505 nm. The SOD activity of the sample was estimated using the standard
curve drawn using SOD enzyme as the standard solution [88].

6.1.2. Catalase Assay

Hydrogen peroxide (H2O2), a non-radical ROS, is the primary substrate for catalase,
an essential enzyme. It is responsible for breaking down hydrogen peroxide and neutral-
izing it, as well as maintaining the required level of the molecules in the cell for cellular
signalling [89]. The catalase activity can be determined by the conversion of cobalt (II)
to cobalt (III) using H2O2 in the presence of bicarbonate solution. The formation of the
complex carbonato-cobaltate (III) complex ([Co(CO3)3]Co) is used for the determination
of catalase enzyme activity in the sample, where sample is added with 10 mM hydrogen
peroxide and incubated at the temperature of 37 ◦C for 2 min. Then the mixture solution
containing cobalt (II), sodium bicarbonate, Graham salt solution is added. This was then
vortexed for 5 sec and then kept at room temperature for 10 min [90] the absorbance of
the standard solution (mostly 10mM hydrogen peroxide and not added with sample) and
sample are taken at 440 nm and compared [90].

6.1.3. Glutathione Peroxidase Assay

Glutathione peroxidase (GPx) is a cytosolic enzyme that is responsible for reducing
hydrogen peroxide to water and oxygen as well as reducing peroxide radicals to alcohols
and oxygen [91]. It is a qualitative reaction of tert-butyl and cumene hydroperoxides and
glutathione transferase which helps in the evaluation of peroxidase activity. It is estimated
by measuring the reduction of H2O2 by glutathione peroxidase to alcohol through NADPH
loss. The gel containing glutathione is run with the sample, further incubated in 0.008% of
cumene hydroperoxide for 10 min and then stained using 1% ferric chloride (FeCl3) and
1% potassium ferricyanide (C6N6FeK3). The formation of achromatic bands indicates the
presence of glutathione peroxidase [86].

6.2. Other Methods

Various biological specimens (serum, urine, plasma, follicular/peritoneal/seminal
fluid) can be used to assess oxidative stress, enabling accurate evaluation of redox status
and the planning of therapeutic antioxidant supplements, if necessary [92]. Oxidative
stress can be measured by the identification of the modification of protein, lipid, and DNA.
The lipid modification can be identified by the byproduct of malondialdehyde, 4-hydroxy
2-nonenal, 4-oxonon-2-enal, and acrolein; for protein, dityrosine is used as biomarker, and
for DNA, 8-hydroxy-2′-deoxyguanosine (8-oxodG) is used as biomarker, which is measured
using ELISA [93]. Numerous techniques are used to quantify ROS in semen, including
(i) chemiluminescence, (ii) cytochrome c reduction test, (iii) nitro blue tetrazolium test, and
(iv) electron spin resonance. Various other methods include (i) fluorescent anisotropy which
assesses membrane fluidity sperm motility defects, (ii) oxidation-reduction potential (ORP)
measurement, which detects oxidative stress in seminal fluid, and (iii) Oxygen Radical
Absorbance Capacity (ORAC) Assay, (iv) ALDETECT Assay [92]. Oxidative stress in the
female reproductive system can be evaluated using common biomarkers like SOD, GPx,
oxidative DNA adducts, conjugated dienes, thiobarbituric acid reactive substances, lipid
peroxides, reverse transcription-polymerase chain reaction, enhanced chemiluminescence
assay, immunocytochemical staining, etc [94].

7. Role of Antioxidants in Nanoparticle-Induced Stress

Any agent or compound that could prevent the oxidation of a suitable substrate even
at low concentrations is referred to as an antioxidant. These are stable compounds that can
give an undesired free radical species an electron, neutralize it, and reduce its destructive
potential. Generally, the scavenging abilities of these antioxidants either prevent or delay
cellular damage. These antioxidants’ low molecular weights make it simple for them to
engage with ROS (i.e., free radicals) and stop their chain reaction before they damage
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important molecules involved in the normal functioning of the cells [95]. Some of the
naturally occurring antioxidants mostly obtained from plants [96–99] have the ability to
strengthen antioxidant defense mechanisms and prevent and reduce organism damage
brought on by oxidative stress produced by nanoparticles. In particular, they play a key role
in the prevention, treatment, and control of nanoparticle-induced toxicity and oxidative
stress [100]. Vitamin C, sometimes referred to as ascorbic acid, is an antioxidant that can
scavenge free radicals. The formation of ROS by the silver nanoparticles is completely
reduced by the addition of ascorbic acid. It concurrently reduces DNA damage, apoptosis,
and mitochondrial damage brought on by silver nanoparticles, lessening their harmful
effects [15]. One naturally occurring flavonoid found in numerous plants and foods,
quercetin, is an antioxidant with the capacity to scavenge free radicals. By promoting
bad phosphorylation and translocation of Nrf2 through PI3-K/Akt-dependent pathways,
quercetin has been demonstrated to lessen oxidative damage and inflammation brought on
by Fe2O3 nanoparticles [101].

Lycopene has been shown to control the activity of redox-sensitive molecular targets,
including the mitogen-activated protein kinases and Nrf2 activation [102]. In a study, rats
receiving lycopene supplements had higher levels of expression of Nrf2, HO-1, glutathione,
and antioxidant enzymes such as catalase, superoxide dismutase, and glutathione peroxi-
dase, thus increasing antioxidant activity against oxidative stress [103]. Also, diterpenes
from the leaves of Stevia rebaudiana reduce the proinflammatory cytokines production (TNF-
α, IL-1β, and IL-6) by altering the I- κB/NF- κB pathway [104]. The ROS- mediated lethal
toxicity of the ZnO nanoparticles and titanium oxide nanoparticles was found to be scav-
enged by curcumin and vitamin C in Caenorhabditis elegans (C. elegans) [105]. Some of the
other findings have reported that the antioxidants such as vitamin E and anti-amyloid com-
pounds glycyrrhizic acid significantly reduce the effects of nano-aluminum oxide-induced
oxidative stress, graphene oxide nanoparticles-induced toxicity, and nano-silica-induced
inhibition of serotonin neurotransmission in C. elegans [106–108].

Recently, antioxidants in nanoparticle form have been suggested as an original way
to enhance their properties [23]. Several nanoparticles made of biologically derived com-
pounds with antioxidant properties have been discovered where loading or tagging of
bioactive compounds is possible [23,96,97]. An innovative and potent replacement could
be phyto-antioxidant functionalized nanoparticles. In addition to serving their original
purpose, they can offer oxidative damage protection [109]. Copper nanoparticles synthe-
sized using Hibiscus rosa-sinensis showed great scavenging of H2O2 and Ferric-Reducing
Antioxidant Power (FRAP), demonstrating a strong antioxidant activity [110]. Similarly,
copper nanoparticles made from Dioscorea bulbifera tubers (DBTE) revealed scavenging
activity against nitric oxide, superoxide radicals, and 1,1-diphenyl-2-picrylhydrazyl (DPPH).
This demonstrated the importance of copper nanoparticles in the reduction of oxidative
stress [111]. Silver nanoparticles made from Costus leaves had antioxidant activity compa-
rable to that of ascorbic acid with an IC50 value of less than 50 mg/L, making them more
potent DPPH scavengers than leaf extract of Costus [112]. Similarly, silver nanoparticles
made from Cestrum nocturnum leaves tested for antioxidant activity were discovered to have
effective DPPH scavengers with a percentage of 29.55% at the concentration of 100 µg/mL
rather than ascorbic acid with a percentage of 24.28% at the same dosage [113]. Also, the
recent development of ROS-responsive drug delivery systems such as sulfur-containing
polymers, thioether-containing polymers, poly(thioketal), selenium-containing polymers,
etc., act by breaking the chemical bonds and/or transitions from hydrophobic to hydrophilic
phases, favoring the release of carrier medicines helping in the treatment of ROS [114].

8. Conclusions

The reproductive system is now being exposed to more nanoparticles due to the
increased advancement in nanotechnology. Male and female reproductive systems have
been reported to be negatively affected by a number of nanoparticles. The transmission
of genetic and epigenetic information to subsequent generations is carried out by germ
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cells, which serve as a link between generations. It has been addressed how different
nanoparticles can be hazardous to the reproductive system. Even though it is unavoidable
and has been determined to have a slower effect on people, animals, and the environment,
careful consideration of the effects and toxicity of nanoparticles is essential.
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