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An immune indicator based on BTK 
and DPEP2 identifies hot and cold 
tumors and clinical treatment 
outcomes in lung adenocarcinoma
Tao Han 1,4, Yafeng Liu 1,2,4, Jing Wu 1,2,3*, Ying Bai 1,2, Jiawei Zhou 1, Chunxiao Hu 1, 
Wenting Zhang 1, Jianqiang Guo 1, Qingsen Wang 1 & Dong Hu 1,2,3*

In lung adenocarcinoma (LUAD), immune heterogeneity of hot and cold tumors has been recognized 
as one of the major factors affecting immunotherapy and other common treatments. However, 
there is still a lack of biomarkers that can effectively identify the immunophenotype of cold and 
hot tumors. First, the immune signatures were obtained based on literature mining, including 
macrophage/monocyte, IFN-γ response, TGF-β response, IL12 response, lymphocyte activation, 
and ECM/Dve/immune response. Subsequently, LUAD patients were further clustered into different 
immune phenotypes based on these immune signatures. Next, the key genes related to the immune 
phenotypes were screened by WGCNA analysis, univariate analysis, and lasso-cox analysis, and the 
risk signature was established via the key genes. In additional, we compared the clinicopathological 
characteristics, drug sensitivity, the abundance of immune infiltration, and the efficacy of 
immunotherapy and commonly used therapies between patients in the high- and low-risk groups 
in LUAD. LUAD patients were divided into immune hot phenotype and immune cold phenotype 
groups. The clinical presentation showed that patients with the immune hot phenotype had higher 
immunoactivity (including higher MHC, CYT, immune, stromal, ESTIMATE scores, higher abundance 
of immune cell infiltration, higher abundance of TIL, and enrichment of immune-enriched subtypes) 
and better survival outcomes than those with the immune cold phenotype. Subsequently, WGCNA 
analysis, univariate analysis, and lasso-cox analysis identified the genes highly associated with the 
immune phenotype: BTK and DPEP2. The risk signature, consisting of BTK and DPEP2, is highly 
correlated with the immune phenotype. High-risk scores were enriched in patients with immune cold 
phenotype and low-risk scores were enriched in patients with immune hot phenotype. Compared 
to the high-risk group, the low-risk group had better clinical performance, higher drug sensitivity, 
and a higher degree of immunoactivity, as well as better efficacy in receiving immunotherapy and 
common adjuvant therapy. This study developed an immune indicator consisting of BTK and DPEP2 
based on the heterogeneity of hot and cold Immunophenotypes of the tumor microenvironment. 
This indicator has good efficacy in predicting prognosis and assessing the efficacy of immunotherapy, 
chemotherapy, and radiotherapy. It has the potential to facilitate personalized and precise treatment 
of LUAD in the future.

Lung cancer is the leading cause of cancer-related morbidity and mortality1. Among them, lung adenocarcinoma 
(LUAD) is the most common lung cancer subtype, accounting for 40% of lung cancers2. Despite the increasing 
number and sophistication of therapeutic approaches for tumors in recent years, the 5-year survival rate of LUAD 
patients remains only 10–20%3. Currently, chemotherapy and molecular targeted therapy are still two common 
treatment strategies for LUAD, with platinum-based combination chemotherapy being the first-line treatment 
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for advanced LUAD. However, the intra-tumoral heterogeneity of LUAD makes these conventional therapies 
often fail to achieve the desired results4. Therefore, we still need further improvements in the treatment of LUAD.

In recent years, immunotherapy has become increasingly important in the field of oncology treatment5, and 
the therapy has provided clinical benefits in many cancer types such as lung cancer, acute lymphoblastic leukemia, 
and melanoma6–8, yet there are still many patients who cannot benefit from immunotherapy9. Current biomark-
ers for predicting patient response to immunotherapy include tumor mutational burden (TMB)8, programmed 
cell death ligand 1 (PD-L1) expression10, and degree of cytotoxic T-cell infiltration11. These biomarkers have 
different accuracy and utility rates, and the robust biomarker of immunotherapy response remains a key chal-
lenge in the field12.

Previous studies have demonstrated that the efficacy of clinical anticancer therapy could be impacted by vari-
ous factors in the tumor immune microenvironment (TIME)13. Tumor-associated macrophages (TAM), a major 
component of TIME, can promote tumor growth, angiogenesis, and metastasis14,15. The infiltration and activation 
of T lymphocytes can promote anti-tumor immune responses and inhibit tumor development16. Cytokines can act 
as cancer suppressors or promoters by positively or negatively regulating immune cell functions. Among them, 
IFN-γ can promote the antitumor immune response by activating T cells17. IL-12 promotes the proliferation of 
natural killer cells and T cells and the production of IFN-γ, thus inducing cellular immunity18. In turn, the secre-
tion of TGF-β can suppress antitumor immunity by limiting T-cell infiltration19. In addition, the extracellular 
matrix (ECM) in TIME can also affect tumor-adaptive immune responses by blocking the antigenic expression 
of antigen-presenting cells (APC) and inhibiting T-cell activity20,21. These results illustrate the critical role of 
complex signaling within the tumor immune microenvironment in clinical treatment13. Therefore, exploring 
the heterogeneity of the tumor immune microenvironment in LUAD may help identify potential biomarkers 
associated with cancer progression and treatment selection.

In this study, we obtained six immune expression signatures by reviewing the literature and classified patients 
into two immune phenotypes based on these immune signatures. Subsequently, two key genes, BTK and DPEP2, 
were selected using WGCNA and LASSO analysis, and an risk signature was established that was highly cor-
related with the immune phenotypes. The risk signature was significantly correlated with immune infiltration, 
immunotherapy, and other common treatments, which could be an immune indicator to clinical precision 
treatment options in the future.

Materials and methods
Data collection and download.  RNA sequencing data and clinical information of lung adenocarcinoma 
patients were downloaded from the Cancer Genome Atlas database (TCGA, https://​www.​cancer.​gov/​about-​nci/​
organ​izati​on/​ccg/​resea​rch/​struc​tural-​genom​ics/​tcga) on the UCSC website at the University of California, Santa 
Cruz (http://​xena.​ucsc.​edu)22. The RNA sequencing data included 517 tumor samples and 59 normal tissue 
samples (Supplementary Table  1). RNA sequencing data and corresponding clinical information of datasets 
GSE3774523, GSE7209424, GSE6846525, and GSE12604426 were downloaded from the Gene Expression Omnibus 
(GEO) database (https://​www.​ncbi.​nlm.​nih.​gov/​geo).

Consensus clustering analysis.  The immune enrichment score was calculated based on six immune sig-
natures in LUAD patient tumor samples via single-sample gene set enrichment analysis (ssGSEA)27. Immune 
signatures included "macrophage/monocyte"28, "IFN-γ response", "TGF-β response", "IL12 response"29, "lym-
phocyte activation" and "ECM/Dve/immune response (a mix of ECM, muscle/myeloid development and inflam-
matory response genes)"30. Subsequently, TCGA LUAD cancer samples were clustered into different phenotypes 
via Consensus clustering analysis based on immune enrichment score. Intra-group consistency indicated the 
optimal number of clusters is k = 2 as the number of clusters (k) increased from 2 to 9. The ssGSEA and cluster 
analysis were implemented by the R packages "GSVA" and "Consensus Cluster Plus" respectively. The immune 
enrichment score of these six immune signatures was applied to each LUAD patient by the UMAP algorithm, 
and the immune subtypes identified by the clustering analysis were integrated to visualize the tumor samples in 
two dimensions using UMAP1 and UMAP2. UMAP analysis was constructed by the R package "Umap".

Evaluation of antitumor immunoactivity.  The evaluation of the immunological activity characteris-
tics of both groups including 【1】 histopathological slide (H&E staining), the H&E images of LUAD patients 
from The Cancer Imaging Archive (https://​www.​cance​rimag​ingar​chive.​net), and tumor-infiltrating lymphocyte 
(TIL) patterns assessed via a convolutional neural network31. 【2】 TIMER, which is used to assess the abun-
dance of tumor-infiltrating immune cells32. 【3】 Immune, stromal and ESTIMATE score, which was used to 
assess immunoactivity ,was calculated by ESTIMATE algorithm33. 【4】 MHC score: Based on the average gene 
expression in the "core" MHC-I (including HLA-A, HLA-B HLA-C, TAP1, TAP2, NLRC5, PSMB9, PSMB8, 
and B2M), which indicates the antigen presentation required for T cell recognition of tumor and subsequent T 
cell-mediated killing34. 【5】 CYT score, which reflects the cytolytic activity of immune cells used to kill tumor 
cells and is calculated as the geometric mean of the genes GZMA and PRF135. 【6】 Tumor microenvironment 
(TME) subtypes: which include immune-enriched, non-fibrotic (IE); fibrotic (F); immune-enriched, fibrotic 
(IE/F); immune-depleted (D)36.

Construction of co‑expressed gene modules.  The LUAD tumor and normal groups were analyzed 
for differences with a |log2FC|≥ 1.5 and p < 0.05 criterion to obtain DEGs. The R package "WGCNA" was used 
to analyze the most relevant modules of DEGs and the core genes in the modules for immunophenotyping. The 
adjacency matrix is transformed into a topological overlap matrix (TOM), and genes are classified into different 
gene modules through the TOM-based similarity metric. The optimal soft threshold was 3 when the correlation 

https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
http://xena.ucsc.edu
https://www.ncbi.nlm.nih.gov/geo
https://www.cancerimagingarchive.net


3

Vol.:(0123456789)

Scientific Reports |         (2023) 13:5153  | https://doi.org/10.1038/s41598-023-32276-2

www.nature.com/scientificreports/

coefficient was Greater than 0.85, According to the average-linkage hierarchical clustering and the optimal soft 
threshold power while merging modules with distances less than 0.25, and a minimum module size is 30 to 
identify key modules. The protein–protein interaction network was calculated through the STRING database 
(https://​string-​db.​org) and visualized by Cytoscape.

Construction of the risk signature.  First, 19 prognosis-related genes were filtered out from the co-
expressed module genes by univariate Cox analysis, followed by a least absolute shrinkage and selection opera-
tor (LASSO) analysis to reduce the size of prognosis genes previously filtered by the "glmnet" R package. The 
Lambda value was 0.043. Each patient’s risk score was calculated as risk score = −0.077*BTK–0.021*DPEP2.

Drug sensitivity analysis.  The "pRRophetic" R package was performed to calculate the half maximal 
inhibitory concentration (IC50) of the drugs for each LUAD patient sample37. Then, the IC50 of drug was com-
pared between patients in different risk groups.

Correlation of the risk signature and immunotherapy response.  Protein expression of PD-L1 was 
analyzed by reverse phase protein array (RPPA) analysis and downloaded from The Cancer Proteome Atlas 
(TCPA, http://​tcpap​ortal.​org). Tumor immune dysfunction and exclusion (TIDE) is an approach to predicting 
immunotherapy responses by pretreatment tumor profiles. The TIDE algorithm is based on two mechanisms of 
tumor immune evasion: induction of T cell dysfunction in tumors with high cytotoxic T lymphocyte (CTL) infil-
tration and exclusion of T cell infiltration in tumors with low CTL levels38. TIDE score and immune responses 
of TCGA lung adenocarcinoma patients were calculated by the TIDE website (http://​tide.​dfci.​harva​rd.​edu) after 
uploading scaled transcriptome profiles. Immunophenoscore (IPS), tumor mutational burden, neoantigen num-
ber, clonal neoantigen number, and subclonal neoantigen number of LUAD patients were obtained from the 
Cancer Immunome Atlas (TCIA, https://​tcia.​at)39.

UALCAN, TIMER, and TISCH databases.  The UALCAN online analysis website (http://​ualcan.​path.​
uab.​edu/​index.​html) was used to assess the change in protein levels of BTK and DPEP2 expression40. The TIMER 
database is a publicly available database for analysis of TCGA (https://​cistr​ome.​shiny​apps.​io/​timer) about 
immune infiltration of cancers32. The Tumor Immune Single Cell Center (TISCH) is a single-cell RNA sequenc-
ing (scRNA-seq) database focused on the tumor microenvironment (TME). The TISCH database could provide 
detailed cell type annotation at the single cell level to analyze the tumor microenvironment in different cancers41 
(http://​tisch.​comp-​genom​ics.​org/​home).

Statistical analysis.  The significance of differences between the two groups of patients was calculated by 
the Wilcoxon rank sum test. Univariate Cox analysis and LASSO analysis were applied to identify the key genes 
in the module for the risk model. Kaplan–Meier(K–M) survival analysis was used to assess the survival differ-
ences between the high-risk and low-risk groups. Independent prognostic factors were identified by univariate 
and multivariate Cox analysis. Categorical data were analyzed by Chi-Squared Test. p < 0.05 was considered 
statistically significant. ns: non-significantly different; *** p < 0.001; ** p < 0.01; * p < 0.05.

Results
Construction and validation of the cold and hot immunophenotypes in lung adenocarci-
noma.  We used the immune expression signatures ("macrophage/monocyte"28, "TGF-β response," "IFN-γ 
response", "IL12 response"29, "lymphocyte activation" and "ECM/Dve/immune" response30) to comprehensively 
depict the immunoactivity of LUAD tumors. The immune enrichment score for these immune signatures was 
calculated using ssGESA27 (Supplementary Table 2), then LUAD patients were divided into 2 groups by con-
sensus clustering analysis (Fig. 1A–C). In addition, the UMAP visualizes both immune subtype populations 
(Fig. 1D).

In order to investigate the differences in immunoactivity between these two immune populations, we chose 
Histopathological slides of tumor tissue (H&E staining) and corresponding tumor-infiltrating lymphocytes (TIL) 
to assess the differences in the level of immune infiltration between these two immune subtype populations. The 
result demonstrated that patients of cluster 1 have a higher level of immune infiltration compared to patients of 
cluster 2 (Fig. 1E). Therefore, here we defined Cluster 1 patients as immune hot phenotype and Cluster 2 patients 
as immune cold phenotype. Later, to further compare the differences in immunoactivity between these two 
subtypes, we evaluated the anti-tumor immune activity score, including CYT score35, immune score, stromal 
score, ESTIMATE score33, and MHC score34 in both groups (Fig. 1F). The results suggested that these immune 
scores were significantly higher in patients of the immune hot phenotype than in patients of the immune cold 
phenotype. Also, the TIMER algorithm showed a more abundance of immune cell infiltration in the immune 
hot phenotype group32 (Fig. 1F).

We next compared the immunophenotypes with the four well-defined tumor microenvironment (TME) sub-
types including immune-enriched, non-fibrotic (IE), fibrotic (F), immune-enriched, fibrotic (IE/F), and immune-
depleted(D)36. The results showed that most patients with TME subtype (D) were included in the immune cold 
phenotype group, while patients with TME subtype (IE/F), (IE) were more often included in the immune hot 
phenotype group (Fig. 1G). These results suggested a strong association between our immunophenotypes and 
different TME subtypes. Moreover, the Kaplan–Meier (K–M) survival analysis also showed a better prognosis 
for the immune hot phenotype (Fig. 1H).

https://string-db.org
http://tcpaportal.org
http://tide.dfci.harvard.edu
https://tcia.at
http://ualcan.path.uab.edu/index.html
http://ualcan.path.uab.edu/index.html
https://cistrome.shinyapps.io/timer
http://tisch.comp-genomics.org/home
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Figure 1.   Construction and validation of cold and hot immune subtypes in TCGA-LUAD patients. (A–C) 
K = 2 was determined as the optimal value for Consensus clustering analysis. (D) UAMP plot of LUAD patients: 
cluster 1 (hot, n = 243) patients in red and cluster 2 (cold, n = 274) patients in blue. (E) Histopathological picture 
of the tumor tissue (H&E staining) and its TIL pattern (https://​cance​rimag​ingar​chive.​net/​datas​cope/​TCGA_​
TilMap). The TIL pattern is identified by a convolutional neural network, where red pixels denote TIL patches, 
blue pixels denote non-TIL tissue patches, and black pixels denote non-tissue patches. (F) Distribution of CYT 
score, Immune score, Stromal score, ESTIMATE score, and MHC score of patients in both immune subtypes. 
The abundance of immune cell infiltration in patients with both immune phenotypes was calculated using 
TIMER. (G) Sankey diagrams of TME subtypes corresponding to different immune phenotypes patients. (H) 
Prognostic differences between patients with different immune phenotypes. (***p < 0.001; **p < 0.01; *p < 0.05).

https://cancerimagingarchive.net/datascope/TCGA_TilMap
https://cancerimagingarchive.net/datascope/TCGA_TilMap
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Identification of immunophenotype‑associated co‑expressed gene modules.  In order to find 
out key gene modules associated with immune phenotypes, we first performed differential gene expression anal-
ysis on tumor tissues and corresponding para-cancer tissues from lung adenocarcinoma patients (Supplemen-
tary Fig. 1A) and screened out those differential genes with |log2FC|> 1.5, p < 0.05 (n = 2537). Then, the total of 
2537 genes were assigned to the 9 modules via WGCNA analysis (Supplementary Fig. 1B, C, Fig. 2A). Based on 
the Person correlation coefficients between the modules and the sample characteristics of each module, it can be 
concluded that the brown module are closely associated with the hot immune phenotype. The correlation coef-
ficient reached 0.7 (Fig. 2B, p value < 0.001). The Module Membership (MM) and Gene Significance (GS) scores 
were strongly positively correlated with each other in the brown module (Fig. 2C). Then the hub genes were 
selected in the brown module based on the threshold MM > 0.8 and GS > 0.6, and finally 62 co-expressed hub 
genes associated with the immune phenotype were obtained. We imported these hub genes into the STRING 
database and visualized them as protein–protein interactions (PPI) networks by Cytoscape (Fig. 2D).

Construction of a prognostic risk signature associated with immunophenotypes.  The hub 
genes obtained from the weighted gene co-expression network analysis (WGCNA) brown co-expression module 
were subjected to univariate Cox analysis, and 19 genes associated with the prognosis were screened out (Sup-
plementary Fig. 2). We set the Lambda value to 0.043, and finally screened for 2 genes: BTK and DPEP2. The risk 
model equation was: risk score = −0.077*BTK–0.021*DPEP2 (Fig. 3A). K–M survival analysis demonstrated that 
patients’ survival in the high-risk group was significantly lower than those in the low-risk group: HR = 2.02, 95% 
CI (1.46–2.80), p < 0.001 (Fig. 3B,C).

Univariate Cox regression analysis risk score was statistically associated with OS (HR = 5.887, p = 0.008) 
(Fig. 3D). Considering that the role of other clinical characteristics on prognosis may affect the predictive effi-
cacy of risk score, we further assessed the independent predictive power of risk score using multivariate Cox 
analysis, which remained an independent prognostic indication of OS in LUAD patients after adjusting for other 
confounders (HR = 4.752, p = 0.03) (Fig. 3D). Next, we integrated the clinicopathological characteristics of the 
patients with the risk score and constructed a nomogram. The risk score contributed risk points from 0 to 100 in 
the nomogram (Fig. 3E). The C index of the nomogram was: 0.676, 95% CI (0.649–0.704). And the calibration 
chart showed a comparative agreement between predicted and observed 1-year, 3-year, and 5-year probabilities 
of OS (Fig. 3F). These results implied that our model is accurate in predicting patient prognosis.

Then we calculated the correlation between risk signature and immunophenotype. Compared with the 
immune hot phenotype group, the risk score was significantly higher in our immune cold phenotype group 
(Fig. 3G). The correlation heat map showed that risk score was significantly negatively correlated with MHC 
score, CYT score, and ESTIMATE score. TIMER also showed a negative correlation between risk score and the 
abundance of infiltration of immune cells such as T lymphocytes, B cells, macrophages, DC, and neutrophils 
(Fig. 3H) (p < 0.05, Spearman correlation test). These results demonstrated that the risk signature have promising 
efficacy in predicting the prognosis and immune status of LUAD patients.

Validation of risk signature for predicting immunoactivity and prognosis.  To further assess the 
robustness of the risk signature, two LUAD datasets GSE7209424, GSE6846525, and one non-small cell cancer 
(NSCLC) dataset GSE3774523 were downloaded from the GEO database to evaluate the model. K-M survival 
analysis showed that, in these 3 independent datasets, patients with low-risk scores all had a significantly better 
prognosis than patients with high-risk (p < 0.05) (Fig. 4A). Risk scores were also significantly negatively cor-
related with MHC scores and CYT scores (p < 0.001, Spearman’s correlation test) (Fig. 4B). TIMER consistently 
showed a significant negative correlation between risk scores and immune cell infiltration levels in all three 
validation sets (p < 0.01, Spearman’s correlation test) (Fig. 4C).

In addition, the ESTIMATE algorithm also showed a negative correlation between risk score and immune 
score, stromal score and ESTIMATE score, and a positive correlation with tumor purity in the 3 datasets 
(p < 0.001, Spearman correlation test) (Supplementary Fig. 3A–C). Taken together, all these results demonstrated 
the robustness of the risk signature in predicting patient prognosis and immune status.

Differences in the distribution and function of risk scores in LUAD patients with different clini-
cal characteristics attributes.  Analysis of clinicopathologic characteristics showed that patients with 
high-risk scores have a more advanced pathological stage (Fig. 5A–D). The results demonstrated that risk scores 
were strongly related to the clinical features and malignant phenotype of lung adenocarcinoma, which partially 
explains the poor prognostic clinical outcome in the high-risk group. In addition, Risk scores were higher in 
male patients than in female patients and higher in patients younger than 65 years of age than in those older than 
65 years of age (Fig. 5E,F). We then further explored whether the risk score remained associated with immune 
infiltration and OS in patients with different clinical features attributes. The results showed that the risk score 
showed a negative correlation with immune infiltration under all clinical characteristics attributes. Notably, the 
correlation between risk score and immune infiltration slight decreased in patients with higher pathological 
stage and N-stage (Fig. 5G). Prognostically, the risk score showed a predictive power for OS at all clinical char-
acteristics (Supplementary Fig. 4A–L).

The risk signature is associated with immunotherapy prognosis in lung adenocarcinoma.  Pre-
dictive markers of immune response play a vital role in the course of immunotherapy in patients. Therefore, we 
explored the relationship between risk scores and several common immune checkpoints. The results showed 
that PD-1, PD-L1, PD-L2, CTLA4, LAG3, and TIM3 were negatively correlated with the risk score (Fig. 6A). 
Similarly, risk scores were negatively correlated with these immune checkpoints in the 3 validation sets (Sup-
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Figure 2.   The identification of immunophenotype-related co-expression genes. (A) Construction of differential 
expression gene co-expression modules. (B) Correlation analysis of different modules with immune phenotypes. 
(C) Scatter plot of module membership (MM) versus gene significance (GS) in brown module. (D) The pie chart 
demonstrated the proportion of hub genes in brown modules, then the STRING database analyzed the 62 hub 
genes,61 hub genes were identified and visualized by Cytoscape. (The hub gene: GGTA1 cannot be identified by 
the STRING database).
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Figure 3.   The risk signature is associated with immunophenotypes (A) Screened out BTK and DPEP2 and 
constructed risk model by LASSO analysis with optimal lambda values (B) K-M survival analysis of patients in 
high- and low-risk groups. (C) The LUAD patients’ risk score distribution and survival status distribution. (D) 
Univariate and multivariate Cox regression analyses of the association between the prognosis of patients and 
different clinical-pathological factors(After exclusion of missing values, a total of 336 patients were included in 
the analysis). (E) Construction of a nomogram. (F) The construction of the calibration curve for the nomogram 
model, including three colored lines (blue, red, and purple) represent the performance of the nomogram. A 
closer fit to the diagonal gray line indicates a better estimation. (G) Distribution of risk score in two immune 
subtypes of LUAD patients. (H) Correlation of risk score with patients’ immune status using different immune 
scoring approaches to assess risk score (***p < 0.001; **p < 0.01; *p < 0.05).
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plementary Fig. 5A–C). Compared to the high-risk group, the low-risk group of LUAD patients from the TCPA 
database had higher levels of PD-L1 protein (Fig. 6B). These results suggested that the risk score may be closely 
related to the formation of a dysfunctional TIME. We next compared TMB, number of neoantigens (including 
number of clonal neoantigens and number of sub-clonal neoantigens), and IPS score between high-risk and 
low-risk groups of LUAD patients from TCIA39. The results suggested that high-risk patients had higher TMB 
and neoantigens (Fig. 6C, Supplementary Fig. 5D). The low-risk group had higher IPS-PD1/PD-L1/PD-L2, IPS-

Figure 4.   Validation of the risk signature in GEO datasets. (A) Correlation of risk scores with prognosis in 
GEO datasets. (B) Correlation of risk scores with CYT score, MHC score in the GEO datasets. (C) Correlation 
of risk scores with immune cell infiltration abundance in the GEO datasets.
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CTLA4, and IPS-PD1/PD-L1/PD-L2 + CTLA4 scores, but there was no significant difference in IPS scores (Sup-
plementary Fig. 5E).

Figure 5.   Differences in risk scores in patients with different clinical features. (A–F) Distribution of risk scores 
in patients with LUAD at different clinical features. (G) Radar plot showing the correlation of risk scores with 
immune activity in patients with different clinical characteristic attributes, with the innermost circle correlation 
coefficient being 0 and the outermost circle correlation coefficient being -1. (***p < 0.001; **p < 0.01; *p < 0.05).
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Figure 6.   Relationship between risk signature and immunotherapy. (A) Correlation between risk scores and 
immune checkpoints. (B) Distribution of PD-L1 protein levels in high-risk and low-risk populations based on 
the TCPA dataset. (C) Distribution of TMB in high- and low-risk populations based on TCIA. (D) TIDE scores 
and response outcomes of immunotherapy in LUAD patients. Distribution of risk scores among TIDE predicted 
immunotherapy response or non-response groups, chi-square. p < 0.001. (E) Distribution of risk scores among 
immunotherapy responders and non-responders. (F, G) Association of risk score with OS and PFS in patients 
receiving immunotherapy (ns: no significant difference. (***p < 0.001; **p < 0.01; *p < 0.05).
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Then we introduced tumor immune dysfunction and exclusion (TIDE)38, and the results showed that the 
low-risk group (45.81%, 115/251) were more likely to respond to immunotherapy than those in the high-risk 
score group (27.09%, 68/251) among the patients predicted by TIDE to be likely to respond to immunotherapy 
(chi-square, p < 0.001, Fig. 6D). Considering the association between risk scores and clinicopathological features, 
we further analyzed the predictive efficacy of risk scores for immunotherapy in patients with different features. 
The results showed that the risk score had stable predictive efficacy for immunotherapy response in LUAD 
patients with different clinical features (Supplementary Fig. 5F).TIDE scores were lower in the low-risk group 
than in the high-risk group, implying that the low-risk group benefited more from immunotherapy compared 
to the high-risk group (Supplementary Fig. 5G). In addition, the T-cell exclusion score was significantly lower 
in the low-risk group than in the high-risk group (Supplementary Fig. 5H), but the T-cell dysfunction score was 
higher than in the low-risk group (Supplementary Fig. 5I).

To further validate the predictive effect of risk score on immunotherapy response, we introduced an immuno-
therapy cohort GSE12604421 (n = 16). The results demonstrated that the risk score was significantly higher among 
non-responders compared to responders (Fig. 6E). The area under the ROC curve (AUC) for the risk score was 
0.927 when differentiating between responders and non-responders (Supplementary Fig. 5J). Furthermore, OS 
and PFS survival analysis also showed that patients in the low-risk group had longer overall survival time and 
progression-free survival time than the high-risk group (Fig. 6F,G). In conclusion, the above results demonstrated 
the effectiveness of risk scores in predicting the efficacy of immunotherapy.

The risk signature is associated with the efficacy of common clinical treatments.  Tumor 
immune microenvironment is commonly considered to be related to chemotherapeutic efficacy42. Therefore, 
We investigated the association between risk scores and the sensitivity of common anti-tumor drugs for lung 
cancer43,44. The results showed that the IC50 of the drugs (gemcitabine, cisplatin, and gefitinib) was significantly 
lower in the low-risk group than in the high-risk group (Fig. 7A–C).

Afterward, we compared the risk score to the prognosis of treated LUAD patients. The results showed that 
higher risk scores tend to imply a worse prognosis in LUAD patients receiving radiotherapy and chemotherapy. 
chemotherapy (OS: HR = 2.42, p = 0.005; PFI: HR = 1.46, p = 0.101) (Fig. 7D,E), and radiotherapy (OS: HR = 2.84, 
p = 0.005; PFI: HR = 1.38, p = 0.359) (Fig. 7F,G). All of these results suggested a greater benefit from chemotherapy 
or radiotherapy for LUAD patients in the low-risk group compared to the high-risk group.

BTK and DPEP2 expressed in macrophages to promote immune infiltration.  Considering the 
robustness of the risk score in predicting prognosis and immune activity in lung adenocarcinoma , we further 
explored the role of BTK and DPEP2, which are key genes comprising the risk score. It was found that tumor tis-
sues had lower expression of BTK and DPEP2 at mRNA and protein levels compared to normal tissues (Supple-
mentary Fig. 6A,B). In addition, patients with high BTK and DPEP2 expression tended to have longer survival 
(Supplementary Fig. 6C). In terms of clinical features, the expression of BTK and DPEP2 was lower in higher 
pathological stages (Supplementary Fig. 6D,E). These results suggest that BTK and DPEP2 may be involved in 
the antitumor process of lung adenocarcinoma.

To further investigate the role of BTK and DPEP2 in the remodeling of the tumor immune microenviron-
ment. We next explored the link between BTK and DPEP2 and immune cell infiltration. As expected, the TIMER 
database showed a significant positive correlation between BTK and DPEP2 expression and immune cell infiltra-
tion and a significant negative correlation with tumor purity (Fig. 8A). Meanwhile, several NSCLC single-cell 
sequencing datasets from TISCH41 showed that both BTK and DPEP2 were mainly expressed on monocytes 
and macrophages (Fig. 8B,C). The results imply that BTK and DPEP2 may regulate the abundance of immune 
infiltration and promote anti-tumor immunity by affecting the function of macrophages and monocytes.

Discussion
A growing number of studies have found that the effectiveness of clinical therapy is often influenced by the tumor 
immune microenvironment13,45–47. Therefore, we need a biomarker that reflects the tumor immune microenvi-
ronment to help guide the clinical treatment strategy for LUAD.

In this study, LUAD patients were divided into immune hot and immune cold phenotypes by six immune 
signatures related to the immune microenvironment. Histopathological sections of tumor tissues, TIL patterns, 
and assessment of antitumor immune activity showed that patients with the immune hot phenotype had a bet-
ter immune status. The prognostic analysis also showed a longer survival time for patients in the group with 
immune hot phenotype.

We identified core gene modules that were important in the immune hot phenotype by WGCNA analysis. 
Then we screened the core genes via univariate Cox analysis and lasso-cox analysis to construct a risk model 
which was highly correlated with the immune phenotype. Compared to the low-risk group, patients in the high-
risk group were significantly more enriched in the immune cold phenotype group and had lower infiltration 
abundance of immune cells, immune scores, and shorter survival time. In addition, the risk score remained an 
independent predictor of OS in LUAD patients after adjusting for other confounding factors. Risk signature 
also had good efficiency in the validation of the 3 GEO datasets. These results illustrated the good efficiency 
and robustness of our risk features in identifying the immune status of patients as well as survival prognosis.

Correlation analysis with clinical features showed that high-risk scores were significantly enriched for known 
malignant clinical features, which is consistent with the poor prognosis of patients with high risk scores. Also, 
this suggests that risk scores may evaluate tumor progression and malignancy. In addition, we further analyzed 
the correlation of risk score with immune infiltration and prognosis in different pathologic stages. Interestingly, 
we found that the correlation between risk score and immune infiltration score decreased in higher pathological 
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stages. Here, we hypothesize that as pathological staging progresses, the expression of BTK and DPEP2, which 
constitute the risk score, gradually decreases, as does their ability to promote immune infiltration, ultimately, 
making the correlation between risk score and the abundance of immune infiltration in TME diminish. However, 
the underlying mechanisms remain to be further explored.

We next explored the relationship between risk score and immunotherapy response in LUAD patients. The 
results demonstrated that the risk score was negatively correlated with several common immune checkpoints 
PD-L1, PD-1, LAG3, PD-L2, TIM3, and CTLA-448. Consistently, PD-L1 protein expression was higher in the 
low-risk group than in the high-risk group. These results suggest that risk scores probably predict the dysfunc-
tional TIME. Immunophenoscore (IPS), as a predictor, can evaluate the immunotherapy response of patients 
efficiently39, and in our study IPS-PD-1/PD-L1/PD-L2, IPS-CTLA4, IPS-CTLA4 + PD1/PD-L1/PD-L2 scores all 
suggested that patients with LUAD in the low-risk group were more suitable for immune checkpoint inhibitor 
therapy. In addition, recent studies have shown that genomic instability affects immune response and immu-
notherapy efficacy49, in our study, patients in the high-risk group had a higher frequency of tumor mutation 
burdens. It was shown that high TMB in patients not receiving immunotherapy tended to imply higher pathologi-
cal staging and poorer survival outcomes50, similar to the clinical characteristics of the patients in the high-risk 
group of this study. This phenomenon explains to some extent why TMB was more enriched in the high-risk 
group. Among patients receiving immunotherapy, it is generally believed that patients with high TMB respond 
better to immunotherapy than those with low TMB51,52. Interestingly, a recent study points to a potential central 
role of the tumor microenvironment including CD8T cells, macrophages, and dendritic cells in TMB predicting 
immunotherapy53. Furthermore, Sinha et al. in their study suggested that different immune activities can influ-
ence the predictive efficacy of TMB54. Therefore, based on these results, it is reasonable to believe that it is the 
lower immune infiltration of TME in the high-risk group that leads to the elimination of the immunotherapeutic 
stratification ability of TMB.

In order to further understand the predictive effect of risk signature on the immune response. We introduced 
the TIDE algorithm to predict the likelihood of patient response to immunotherapy38. The results showed that 

Figure 7.   Association of risk signature with common clinical treatments. (A–C) Distribution of drug IC50 
concentrations in patients in the high-risk group and low-risk group. (D, E) Survival curves of OS (overall 
survival) and PFI (progression-free interval) in TCGA-LUAD patients receiving chemotherapy. (F, G) Survival 
curves of OS and PFI in TCGA-LUAD patients receiving radiotherapy. (***p < 0.001; **p < 0.01; *p < 0.05).
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the low-risk group was more likely to respond to immunotherapy. At the same time, the risk score demonstrated 
robust predictive efficacy for immunotherapy in patients with different clinical features. The TIDE scores and 
T-cell exclusion scores were higher in the high-risk group. The higher TIDE scores represent a higher likelihood 
of immune evasion and poorer treatment outcomes. Therefore, the lower-risk group with lower TIDE scores may 
have a better prognosis38. In the immunotherapy cohort of LUAD, GSE12604426, our risk score also showed good 
efficacy in distinguishing between responders and non-responders to immunotherapy. The non-responders had 

Figure 8.   Association of BTK and DPEP2 with immune infiltration. (A)TIMER database to calculate the 
correlation of BTK and DPEP2 with immune cell infiltration in LUAD patients. (B, C) Calculation of BTK and 
DPEP2 expression levels in different cell subpopulations using the TISCH website.
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significantly higher risk scores than the responders. In conclusion, all these results suggest that our risk score 
can be used to predict immunotherapy response in patients with LUAD.

Analysis of the relationship between risk scores and IC50 concentrations of drugs that commonly used to 
treat lung cancer like cisplatin, gefitinib and gemcitabine43,44, were higher in the high-risk group. It implies that 
patients in the low-risk group may have better efficacy when treated with chemotherapy or targeted therapy. As 
expected, K-M survival analysis showed significantly better OS in the low-risk group than in the high-risk group 
in patients receiving chemotherapy. At the same time, the risk score is also efficient in predicting the survival of 
patients receiving radiotherapy. These results suggest that the risk score can be used to predict the response of 
LUAD patients after receiving radiotherapy and chemotherapy.

Considering the relationship between the risk model and the presence of immune infiltration, and immuno-
therapy, we further explored the possible roles of the two genes used to construct the model: BTK and DPEP2 
genes in the tumor microenvironment of lung adenocarcinoma. BTK is present a tyrosine kinase in normal B cells 
at all stages of maturation except for plasma cells, and it is mainly downstream of pre-BCR and BCR. In cancer, 
the pathogenesis of BTK in mature B-cell malignancies has been well studied55, but its role in lung adenocarci-
noma is unknown. DPEP2 was originally identified as a membrane-bound dipeptidase that hydrolyzes LTD4 to 
LTE4, and both substrates and products of DPEP2 have been associated with inflammatory diseases56,57. Studies 
have shown that DPEP2 can regulate inflammation caused by macrophages and is also associated with mac-
rophage differentiation58,59. Our study showed that the expression of BTK and DPEP2 in tumor tissues of LUAD 
patients was significantly and positively correlated with the infiltration of immune cells, the TISCH database 
showed that BTK and DPEP2 were mainly expressed in monocytes/macrophages41. We hypothesize that BTK 
and DPEP2 genes may alter the immune microenvironment of tumors by affecting the function of macrophages 
and the anti-tumor therapeutic effect, which deserves further research.

Although the risk signature constructed in this work can be used as an immune indictor to predict immu-
notherapy response and prognosis of LUAD patients, there are still some flaws existing. First, all cases in this 
study were retrospective samples, needing to be further validated. Secondly, the ways used to validate the effect 
of the immune signature score are mainly indirect assessment of the predictive power of the signature score for 
immunotherapy response, and only a few patients within the immunotherapy cohort were used to validate the 
predictive effect of the signature score. Therefore, some robust direct evidence is still necessary in the future.

Conclusions
In conclusion, this study clustered LUAD into hot and cold immunophenotypes by known immune signatures 
and established an immune indictor consisting of BTK and DPEP2 associated with hot and cold immunopheno-
types, which showed good efficiency in identifying hot and cold immune phenotypes and assessing prognosis, 
clinical radiotherapy and chemotherapy efficacy, immune infiltration, and immunotherapeutic effects in LUAD.

Data availability
The datasets analyzed during the current study are available in the [Gene Expression Omnibus] (https://​www.​
ncbi.​nlm.​nih.​gov/​geo/), including GSE37745, GSE72094, GSE68465 and GSE126044 datasets.
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