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Prediction of breast cancer 
using blood microbiome 
and identification of foods 
for breast cancer prevention
Jeongshin An 1,2,5, Jinho Yang 3,4,5, Hyungju Kwon 2, Woosung Lim 2, Yoon‑Keun Kim 3,5* & 
Byung‑In Moon 2,5*

The incidence of breast cancer (BC) is increasing in South Korea, and diet is closely related to the high 
prevalence of BC. The microbiome directly reflects eating habits. In this study, a diagnostic algorithm 
was developed by analyzing the microbiome patterns of BC. Blood samples were collected from 
96 patients with BC and 192 healthy controls. Bacterial extracellular vesicles (EVs) were collected 
from each blood sample, and next-generation sequencing (NGS) of bacterial EVs was performed. 
Microbiome analysis of patients with BC and healthy controls identified significantly higher bacterial 
abundances using EVs in each group and confirmed the receiver operating characteristic (ROC) 
curves. Using this algorithm, animal experiments were performed to determine which foods affect EV 
composition. Compared to BC and healthy controls, statistically significant bacterial EVs were selected 
from both groups, and a receiver operating characteristic (ROC) curve was drawn with a sensitivity 
of 96.4%, specificity of 100%, and accuracy of 99.6% based on the machine learning method. This 
algorithm is expected to be applicable to medical practice, such as in health checkup centers. In 
addition, the results obtained from animal experiments are expected to select and apply foods that 
have a positive effect on patients with BC.

Breast cancer (BC) is a severe health problem worldwide and is the most prevalent cancer among women1. In 
Korea, BC has become the most common cancer in women in 2020, and the proportion of patients with BC is 
increasing every year2. Despite effective treatment, BC is highly prevalent. Therefore, we aimed to focus on pre-
venting BC occurrence by studying the causes of BC. Hereditary BC comprises only 5–10%3 of all BCs. Dietary 
issues are another cause of BC4. Dietary patterns are either directly or indirectly related to the microbiome and 
BC5 is associated with changes in eating habits6: higher consumption of red or processed meats and foods with 
a high glycemic index is associated with an increased risk of BC4. In this study, the influence of the microbiome, 
which is closely related to eating habits, was analyzed in Korean patients with BC.

Radiographic examination and histopathological biopsy of breast tissues are currently used to diagnose BC7. 
A biopsy is performed through imaging examination when the Breast Imaging-Reporting and Data System (BI-
RADS) is category 4A or higher8, with the patients being diagnosed with BC if cancer cells are found. Although it 
is the most accurate way to identify cancer in tissues, the size of the cancer must be large enough to be detected by 
imaging. Furthermore, benign mimicry of malignant tumors presents difficulties in diagnosis, even for the most 
experienced pathologist9. Another option for diagnosis is the analysis of microbiome patterns in the blood, and 
a previous study has assigned unique patterns in the microbiome to each cancer10. In addition, the microbiome 
composition is altered by various factors such as diet, infection, and lifestyle reflecting individual environment11.

An ideal diagnostic program would detect high-risk groups of BC while increasing the possibility of early 
diagnosis of cancers that can be missed in imaging tests. We attempted to diagnose BC using a noninvasive 
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microbiome ratio. This was verified using data from Korean patients with BC, and the accuracy was compared 
using the three verified methods which are stepwise, linear discriminant analysis (LDA) and LDA effect size 
(LEfSe), and machine learning algorithm. In particular, machine learning methods on data are advantageous 
for diagnosis because they are flexible and scalable and can be trained to detect complex nonlinear relationships 
between variables that cannot be easily captured by traditional statistical methods12. In addition, experiments 
using animals on prebiotics were showed which food is meaningful in breast cancer. These probiotics may be 
useful to prevent BC in patients. In this process, we analyzed the microbiome using bacterial extracellular vesicles 
(EVs) from the blood. Bacterial EVs are nanometer-sized organs that contain bioactive nucleic acids, lipids, and 
proteins inside a lipid bilayer13. Since EVs are found floating in the bloodstream, they are a great tool to analyze 
the microbiome in the body14.

We analyzed microbiome data from patients recruited by more than two institutions and developed a pre-
dictive model for BC diagnosis. This study compared microbiome patterns through three statistical methods, 
including machine learning, and focused on identifying prebiotics that is helpful for BC prevention by validating 
this model.

Results
Diversity.  Alpha diversity was analyzed using the observed OTUs, Chao1 index, Simpson index, and Shan-
non index for richness and evenness. The observed OTUs, Simpson index, and Shannon index in HC were 
significantly higher than those in BC; however, the Chao1 index in HC was significantly lower than that in BC 
(p < 0.05) (Fig. 1A). Rarefaction curves based on Chao1 index for the sequences per sample are shown in Sup-
plementary Fig. 1.

The PCoA plot based on the Bray–Curtis dissimilarity matrix showed significant differences in beta diversity 
between BC and HC groups by PERMANOVA at all levels (p < 0.001) and distinct clustering at lower taxonomic 
levels (genera and species) (Fig. 1B–D, Supplementary Fig. 2A–C).

Metagenome profiles of serum samples.  At the phylum level, Proteobacteria, Firmicutes, Actinobacte-
ria, and Bacteroidetes were dominant in HC and BC groups, accounting for over 94% of the bacterial abundance 
(Fig. 2A). Actinobacteria, Bacteroidetes, and Cyanobacteria abundance differed significantly between HC and BC 

Figure 1.   Difference of diversity between breast cancer and healthy control. (A) Alpha diversity including 
Observed OTUs, Chao1 index, Shannon index and Simpson index. Principal Coordinate Analysis (PCoA) at the 
(B) phylum level, (C) family level, and (D) genus level.
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groups (p < 0.05): 14.6 ± 7.2%, 6.6 ± 3.7%, and 1.2 ± 1.6% in HC and 12.9 ± 4.1%, 14.2 ± 3.7%, and 0.5 ± 0.6% in BC 
for Actinobacteria, Bacteroidetes, and Cyanobacteria, respectively (Fig. 2B).

At the class level, the abundances of Gammaproteobacteria, Actinobacteria, and Clostridia were higher than 
10% in both HC and BC groups (Supplementary Fig. 3A). Gammaproteobacteria, Clostridia, Bacteroidia, Negati-
vicutes, and Coriobacteriia abundances were significantly lower in HC than in BC, whereas Bacilli, Actinobacteria, 
Alphaproteobacteria, and Oxyphotobacteria were significantly higher in HC than in BC (Supplementary Fig. 3B).

At the order level, 16 and 13 taxa accounted for > 1% in HC and BC, respectively. Pseudomonadales was 
dominant in HC with 18.5 ± 10.6% abundance and Enterobacteriales was dominant in BC with 23.3 ± 11.2% abun-
dance (Supplementary Fig. 3C). Clostridiales, Enterobacteriales, Pseudomonadales, Bacteroidales, Lactobacillales, 
Bacillales, Bifidobacteriales, Betaproteobacteria, Corynebacteriales, Micrococcales, Selenomonadales, Rhizobiales, 
Sphingomonadales, Propionibacteriales, and Coriobacteriales abundances were significantly different between 
HC and BC groups (p < 0.05) (Supplementary Fig. 3D).

At the family level, there were 21 and 16 taxa over 1% in HC and BC, respectively. Pseudomonadaceae was 
dominant in HC with 10.5 ± 8.5%, while Enterobacteriaceae and Ruminococcaceae were dominant in BC with 
23.3 ± 11.2% and 10.8 ± 5.2% abundances, respectively (Fig. 2C). Enterobacteriaceae (6.3–23.3%), Ruminococ-
caceae (7.6–10.8%), Bacteroidaceae (2.0–9.1%), Bifidobacteriaceae (1.3–7.3%), and Veillonellaceae (1.0–2.9%) 
abundances were significantly increased in BC, whereas Pseudomonadaceae (10.5–4.8%), Moraxellaceae 
(8.0–3.8%), Streptococcaceae (4.5–2.8%), Lactobacillaceae (4.3–2.7%), Staphylococcaceae (5.2–1.4%), Burkholde-
riaceae (3.7–2.8%), Corynebacteriaceae (4.0–1.0%), Prevotellaceae (2.3–1.7%), Micrococcaceae (2.7–1.2%), and 
Sphingomonadaceae (2.7–0.8%) abundances were significantly decreased (Fig. 2D).

At the genus level, 20 and 16 genera occupied more than 1% of the abundance in HC and BC, respectively. 
Pseudomonas was dominant in HC (10.5 ± 8.5%), while Enterobacter was dominant in BC (19.4 ± 11.1%) (Fig. 3A). 
Enterobacter, Bacteroides, Bifidobacterium, Faecalibacterium, and Subdoligranulum abundances were signifi-
cantly lower in HC than in BC, whereas Pseudomonas, Streptococcus, Lactobacillus, Staphylococcus, Acinetobacter, 
Enhydrobacter, Corynebacterium 1, Cutibacterium, Sphingomonas, and Cupriavidus were significantly higher in 
HC than in BC (p < 0.05). In particular, the fold changes in Enterobacter, Bacteroides, Corynebacterium 1, and 
Cutibacterium were 17.25, 4.66, 0.21, and 0.26, respectively (Fig. 3B,C).

Figure 2.   Metagenome profiles in serum of patients with breast cancer and healthy controls. (A) The 
composition of microbiome at the phylum level, (B) the difference of main phyla, (C) the composition of 
microbiome at the family level, and (D) significantly different taxa at the family level.
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At the assigned taxa to species level, Enterobacter hormaechei, Pseudomonas lurida, Pseudomonas psychro-
phile, Kluyvera intermedia, Micrococcus sp. DW-1, Sphingomonas sp. 2F2, and Rhizobium sp. Root483D2 and 
Lactobacillus murinus levels were significantly different between the HC and BC groups (Supplementary Fig. 3E).

Significant biomarkers increased in HC based on LEfSe analysis at the genus level included Pseudomonas, 
Staphylococcus, Acinetobacter, and Corynebacterium 1, whereas Bifidobacterium, Bacteroides, and Enterobacter 
abundances were decreased in HC. For these genera, log10(LDA score) was higher than 4 (Fig. 4A,B).

Diagnostic models for breast cancer.  Using EV metagenomic profiles in serum, diagnostic models were 
developed to distinguish between healthy patients and patients with BC. SD-M and LD-M used logistic regres-
sion with stepwise selection for biomarker selection based on significantly different genera and LEfSe analyses, 
respectively. The SD-M yielded five microbial EV genera as biomarkers: Enterobacter, Bacteroides, Kluyvera, 
Pseudomonas, and Parabacteroides. Meanwhile, LD-M revealed six microbial EV genera as biomarkers: Entero-
bacter, Pseudomonas, Bacteroides, Staphylococcus, Acinetobacter, and Corynebacterium 1. In the case of ML-M, 
the relative abundance of total microbial EV metagenomics was input as a variable for analysis rather than spe-
cific biomarkers. Model performance was evaluated using test sets based on AUC, sensitivity, and specificity. The 
resulting BC diagnostic models all revealed AUCs higher than 0.97 and specificity with a value of 1.00. ML-M 
showed a higher AUC and sensitivity than those of SD-M and LD-M (Fig. 5). In addition, there were no altera-
tions in the AUC, sensitivity, or specificity when age was incorporated as a covariate.

Relationship between breast cancer and diet.  To assess the relationship between serum microbial 
EV-associated BC and diet, the serum EV microbiome of mice treated with RCD, HFD, and HFD + diet was 
analyzed. Table 1 shows the alterations in the biomarkers associated with BC. Enterobacter and Bacteroides abun-
dances increased significantly in BC after HFD intervention (p < 0.05). In addition, Staphylococcus and Acine-
tobacter abundances decreased in BC after HFD intervention; however, these were not significant. Enterobacter 
abundance was significantly decreased by the addition of ginger, onion, and pumpkin, and that of Bacteroides 
was significantly decreased by the addition of pumpkin, compared to HFD group (p < 0.05). Bifidobacterium 
abundance was decreased by the supplementation of onion and pumpkin by 0.3-fold; however, it was not sig-

Figure 3.   Metagenome profiles in serum of patients with breast cancer and healthy controls at the genus level. 
(A) Abundance of microbiome, (B) heatmap of taxa that > 1% of the average abundance in any group, (C) 
significantly different genera.
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Figure 4.   Significantly different taxa between breast cancer and healthy control based on the linear 
discriminant analysis (LDA) and effect size (LEfSe) analysis. (A) LDA score and (B) Cladogram.

Figure 5.   Receiver operating characteristic (ROC) curve of a diagnostic model using test set: SD-M: The model 
based on significant difference, LD-M: The model based on LEfSe analysis, and ML-M: The model based on 
machine learning method.
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nificant. Pseudomonas abundance was significantly increased by the addition of turmeric (p < 0.05), and then 
increased through pumpkin and ginger by over fourfold, but not significantly. There was no significant altera-
tion in the abundances of Staphylococcus, Acinetobacter, and Corynebacterium 1 between HFD and HFD + diet; 
however, Acinetobacter abundance was drastically increased through onion and pumpkin by fourfold and 2.1-
fold, respectively, and that of Corynebacterium 1 was increased after bellflower root intervention by 3.1-fold. The 
serum bacterial EV composition differed significantly between the different dietary groups, and the fitted values 
obtained through each model were also subsequently altered. However, the difference between the dietary effects 
of RCD and HFD on breast cancer risk was not statistically significant (Fig. 6A). The absolute and negative/
positive values of fold-changes in the fitted model values between HFD and HFD + diet groups differed between 
the models. Breast cancer risk drastically decreased with the addition of ginger in both SD-M and LD-M. Sup-
plementation with pumpkin, turmeric, lotus root, and cabbage reduced the BC risk in HFD-fed mice through 

Table 1.   Significant alteration of relative abundance in mouse serum microbiome composition of genera in 
clinical tests after dietary intervention. Test 1: regular chow diet (RCD) vs. high fat diet (HFD), Test 2: HFD vs. 
HFD + diet.

Taxon

Test 1 Test 2

RCD HFD HFD Garlic Ginger Turmeric Lotus root Cabbage
Bellflower 
root Onion Broccoli Pumpkin

Enterobac-
ter 0.30 ± 0.32 0.82 ± 0.66 0.31 ± 0.14 0.32 ± 0.42 0.01 ± 0.01 0.51 ± 0.73 0.51 ± 0.45 0.48 ± 0.47 0.06 ± 0.12 0.03 ± 0.05 0.35 ± 0.40 0.00 ± 0.00

Bacteroides 0.80 ± 1.06 3.18 ± 2.69 5.94 ± 5.50 7.23 ± 6.42 4.08 ± 3.61 1.91 ± 2.61 2.47 ± 0.70 4.28 ± 3.82 5.84 ± 5.79 5.29 ± 5.82 7.02 ± 2.19 0.82 ± 1.17

Bifidobacte-
rium 4.41 ± 2.46 4.55 ± 2.42 4.80 ± 4.25 9.87 ± 13.34 4.90 ± 4.31 7.69 ± 7.16 10.59 ± 7.07 11.38 ± 7.65 3.51 ± 3.70 5.57 ± 4.53 1.62 ± 1.84 1.63 ± 2.99

Pseu-
domonas 2.20 ± 3.22 2.27 ± 1.78 1.44 ± 2.11 1.22 ± 1.57 5.19 ± 4.80 8.84 ± 5.14 2.16 ± 1.38 1.92 ± 1.81 1.03 ± 1.62 1.82 ± 1.13 0.19 ± 0.14 6.15 ± 10.22

Staphylococ-
cus 1.23 ± 1.38 0.97 ± 0.79 2.16 ± 1.3 1.76 ± 1.71 2.47 ± 1.70 2.18 ± 2.09 1.46 ± 1.24 1.49 ± 2.18 0.56 ± 1.24 1.17 ± 1.24 0.24 ± 0.20 2.09 ± 1.59

Acineto-
bacter 4.62 ± 8.60 4.20 ± 3.41 6.50 ± 7.19 3.42 ± 2.25 4.32 ± 1.93 5.43 ± 4.08 1.84 ± 1.46 0.83 ± 0.74 4.50 ± 4.93 26.17 ± 31.12 0.25 ± 0.33 13.46 ± 20.37

Corynebac-
terium 1 0.56 ± 0.71 0.97 ± 1.19 1.52 ± 1.79 1.23 ± 0.90 2.13 ± 3.00 0.56 ± 0.76 2.99 ± 4.07 0.78 ± 0.29 4.75 ± 4.69 0.94 ± 1.15 0.35 ± 0.35 1.51 ± 1.25

Figure 6.   The predicted values of breast cancer risk in mice fed diets using diagnostic models. (A) Difference of 
fitted values between regular chow diet (RCD) and high-fat diet (HFD) and (B) Fold-changes between HFD and 
HFD + diet with garlic, ginger, turmeric, lotus root, cabbage, bellflower root, onion, broccoli, and pumpkin.
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SD-M and LD-M, respectively. However, the addition of cabbage increased the risk of BC through ML-M. In 
addition, the breast cancer risk was increased by the addition of garlic, bellflower root, and onion (Fig. 6B).

Discussion
In this study, we built a predictive model for BC diagnosis using the data of patients with BC and healthy con-
trols recruited from multiple institutions. BC-related microbiome data were used for this model, and a machine 
learning data analysis was performed. This model considers the presence or absence of BC, age, and specific 
microbiome levels in the blood as basic parameters. This model showed a satisfactory discriminant function 
(AUC, 0.99), which was better than that of conventional statistical analysis. In addition, this model can identify 
microbiomes that are at risk of BC and establish a high-risk group for BC.

Customized local and systemic therapies for BC have improved treatment outcomes and survival rates in 
patients with BC18. Despite these treatments, BC is the most common cancer among women in Korea2. These 
results show the importance of screening and prevention of high-risk groups as well as the treatment of BC. 
However, conventional tests, such as mammography and ultrasonography, are useful to diagnose cancer after 
it develops, and these test goals include early screening for breast cancer19. The use of a personalized surveil-
lance program prior to disease diagnosis can more accurately predict the risk of BC. Based on this program, 
we attempted to identify prebiotics that could help prevent BC. Machine learning algorithms can identify the 
patterns of patients with BC in microbiome data, providing an opportunity to improve the risk prediction of BC 
compared to traditional methods. The algorithms in this AI-based approach will provide useful analytics for 
identifying BC risk when used in health-screening centers.

The baseline parameters for this model were age and microbiome type. There was a clear difference in the 
microbiome abundances between BC and healthy control groups, and Bacteroidetes were more abundant at 
the phylum level of BC in comparison with Firmicutes. At the genus level in BC, four types of microbes were 
dominant, which was reflected in the ROC curve. In addition, the cut-off value was decided to select powerful 
biomarkers which showed the best performance of the diagnostic models developed using the biomarkers. The 
ROC curve was used to set the cut-off value and all of the log (LDA score) of the biomarkers used in the diag-
nostic model with the highest AUC were higher than 4. Therefore, this study showed that 4 is optimal cut-off 
value for diagnostic models. Previous studies set the cut-off value at 2 or 3 for binary analysis20,21. However, in 
this study, the biomarkers of the best performance model showed that 4 is the optimal cut-off value.

There are many reasons for the differences in the microbiome abundance, but one of them is probably the 
origin of food. Consumption of different kinds of prebiotics by mice resulted in a shift in the microbiome abun-
dance, even when no external bacteria were added. In other words, the gut microbiome abundance depends on 
the host’s diet, and a specific prebiotic may also create an environment where certain microbes, such as bacteria 
that prevent BC, predominate. The type of microbiome differs according to the type of food22, and the transi-
tion to the microbiome of the healthy control group or the BC group was confirmed through diet. Enterobacter, 
Bacteroides, and Bifidobacterium were more abundant in patients with BC, and Pseudomonas, Staphylococcus, 
Acinetobacter, and Corynebacterium 1 were more abundant in healthy controls. Analysis of the microbiome by 
food group through animal experiments on these bacteria revealed that ginger, onion, and pumpkin lowered 
microbiome abundance in patients with BC (Table 1). The models developed in this study showed 0–1 value 
range and meant the risk of breast cancer. The fitted values obtained through SD-L and LD-M increased after 
consumption of HFD and we suggested that HFD is a risk factor for breast cancer. In addition, the risk of HFD 
was proved in a previous study23. According to the algorithm, we showed that consumption of ginger, pumpkin, 
turmeric, lotus root, and cabbage decreased fitted value meaning the risk of breast cancer, especially adding ginger 
to SD-M and LD-M dramatically reduced the risk of breast cancer (Fig. 6B). The previous study also showed that 
low-fat diet, such as vegetable, fruit, and grain, may reduce the risk of breast cancer24.

The microbiome is emerging as a potential target for personalized medicine as it provides exciting solutions 
for some diseases25. Likewise, these three food groups are thought to be capable of inducing positive changes 
in the microbiome of patients with BC. Bellflower root and broccoli lowered the abundances of Pseudomonas 
and Staphylococcus which are abundant in healthy controls (Table 1). When the algorithm considered not only 
information on patients with breast cancer but also that on healthy controls through ML-M, adding cabbage 
increased the risk of BC the most (Fig. 6B). These results can be used as a reference for future clinical trials.

This study had some limitations. First, study participants in the cohort were enrolled exclusively in Korea. In 
addition, the incidence rate of BC in Korea is different from that in the West, and its incidence in young women 
is higher than that in Western countries26. Therefore, caution should be exercised when generalizing these results. 
Second, this algorithm does not take into account genetic problems, which account for 5–10% of BC cases3. Third, 
the pathogenesis of BC has not yet been elucidated, although there are some risk factors. Other environmental 
problems, such as pregnancy-associated factors, hormonal effect, and lifestyle factors should be considered27. 
In this study, these factors and BMI were excluded from the algorithm due to lack of clinical information of the 
control group. However, the microbiome itself already reflects these genetic and environmental factors according 
to previous study28. In addition, since there are only animal studies, these results alone cannot be a one-sided 
conclusion for patients with BC and need to be studied further. We plan to conduct clinical trials in the future 
so that patients with BC have options to choose more reliable foods.

In summary, this study developed a model to predict BC using a machine-learning approach. Microbiome 
data were analyzed using a multi-institutional database in Korea, and its usefulness was verified through animal 
studies. This easily adaptable model can identify high-risk groups and guide individualized surveillance strate-
gies prior to diagnosis using commonly used imaging. Further improvement in this model is expected with 
additional data, such as genetic and other risk factors. Above all, this study is significant in that it identified the 
prebiotics that prevent BC.
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Materials and methods
Patient characteristics.  In total, serum samples from 96 patients with BC and 192 healthy controls (HC) 
were obtained from Ewha Womans University Hospital and Inje University Haeundae Hospital, respectively 
(Table 2). All participants were Korean females and the mean age of patients with BC was 51.5 years (median 
50 years) and that of healthy controls was 51.8 years (median 50 years). Healthy controls were screened using a 
general health examination. Each patient with BC showed symptoms or abnormal radiologic findings, leading 
them to visit the hospital for treatment. Among patients with breast cancer recruited, hormone receptor-positive 
subtypes, luminal A and B, were 68 (70.8%), and hormone receptor-negative subtypes, HER2 and TNBC, were 
28 (28.6%). The proportion of patients with hormone-positive breast cancer in all breast cancers is about 70%29, 
which is similar to the proportion of recruited patients at 70.8%. After the patient was histologically diagnosed 
with breast cancer, blood was collected before undergoing treatments such as surgery, chemotherapy, or radia-
tion therapy. None of the patients included in this study were diagnosed as diabetic or alcoholic, and smokers 
were not included in this study. Based on the World Health Organization (WHO) criteria of body mass index 
(BMI), 5 patients (7.2%) were below 18.5 (underweight), 64 patients (66.6%) were within the normal range of 
18.5–24.9, 21 patients (21.8%) were 25.0–29.9 (pre-obesity), and 6 patients (6.2%) were Obesity class I of 30.0–
34.9. Patients in the normal weight and pre-obesity accounted for 86.6% of the total. This study was approved 
by the Institutional Review Board of Ewha Womans University Hospital (IRB No. EUMC 2014-10-005) and Inje 
University Haeundae Hospital (IRB No. 1297992-2015-064). All methods in this study were conducted by the 
approved guidelines, and informed consent was obtained from all patients. All collected human serum samples 
were transferred to serum separator tubes (SST) and centrifuged at 3000 rpm for 15 min at 4 °C.

In vivo mouse study model.  Six-week-old female C57BL/6 mice at 6 weeks of age (Orient Bio Inc., Seong-
nam, Korea) were used in this study. The mice were housed and maintained under standard laboratory condi-
tions at 22 ± 2 °C and 50 ± 5% humidity under 12 h day and night cycles throughout the course of the in vivo 
study. The animal study was approved by the Institutional Animal Care and Use Committee of Chung-Ang 
University (Approval No. 2018-00057). All methods in this animal study were conducted in accordance with the 
approved guidelines.

Evaluation of dietary effects.  To analyze dietary effects, in vivo testing was conducted twice: before and 
after dietary intervention. First, the mice were randomly divided into two groups (n = 60): an RCD group fed a 
regular chow diet (RCD) and an HFD group fed a high-fat diet (HFD). Second, the mice were randomly divided 
into 11 groups (n = 5) due to prebiotics types including an RCD group, HFD group, and HFD + diet group fed 

Table 2.   Patient characteristics.

Healthy control Breast cancer

Female (total N) 192 96

Age (year) 51.8 ± 10.1 51.5 ± 11.1

Pathologic feature, N (%)

Tumor size

 Tis 3 (3.1)

 T1 54 (56.2)

 T2 35 (36.4)

 T3 4 (4.1)

Clinical node status

 N0 64 (66.6)

 N1 22 (22.9)

 N2 7 (7.2)

 N3 3 (3.1)

Tumor grade

 G1 1 (1.0)

 G2 50 (52.0)

 G3 45 (46.8)

Ki67

 ˂ 20% 45 (46.8)

 ≥ 20% 51 (56.2)

Clinical stage

 0 3 (3.1)

 I 44 (45.8)

 II 36 (37.5)

 III 13 (13.5)
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HFD supplemented with garlic (Allium sativum), ginger (Zingiber officinale), turmeric (Curcuma longa), lotus 
(Nelumbo nucifera) root, cabbage (Brassica oleracea var. capitata), bellflower (Platycodon grandiflorum) root, 
onion (Allium cepa), broccoli (Brassica oleracea var. italica), and pumpkin (Cucurbita moschata). The mice in 
RCD control group were fed regular chow containing 18% dietary fat (Research Diets, Inc., New Brunswick, NJ, 
USA) for four weeks. The mice in HFD group were fed a 60% fat diet (Research Diets, Inc.), and orally admin-
istered diet powder (100 µg) once daily for 4 weeks. At the conclusion of the 4-week study period, all mice were 
sacrificed and serum was collected under ketamine/xylazine anesthesia.

EV DNA extraction and sequencing.  To extract EVs from serum, centrifugation, filtering, and boil-
ing were performed as previously described15. Serum EV DNA was extracted using the DNeasy PowerSoil kit 
(QIAGEN, Germany). Finally, the extracted EV DNA from each sample was quantified using the QIAxpert 
(QIAGEN, Germany). Isolated EV microbial genomic DNA was amplified by targeting 16S V3-V4 hypervariable 
regions as primers: 16s_V3_F(5′-TCG​TCG​GCA​GCG​TCA​GAT​GTG​TAT​AAG​AGA​CAG​CCT​ACGGGNGGC​
WGC​AG-3′) and  16s_V4_R (5′-GTC​TCG​TGG​GCT​CGG​AGA​TGT​GTA​TAA​GAG​ACA​GGA​CTACHVGGG​
TAT​CTA​ATC​C-3′)16,17. Libraries were prepared using PCR products, and all amplicons were sequenced using 
MiSeq (Illumina, USA).

Metagenomic analysis of microbial EV composition.  Taxonomic assignments were performed using 
the profiling program MDx-Pro ver.2 (MD Healthcare, Korea). Briefly, paired-end reads were filtered accord-
ing to the barcode, and primer sequences were trimmed using Cutadapt (version 1.1.6) and then merged with 
CASPER. To obtain high-quality sequencing reads, sequences with read lengths less than 350 bp or over 550 bp 
and Phred quality scores below 20 were discarded. The VSEARCH de novo clustering method was used to assign 
Operational taxonomic units (OTUs) to the genus level with a 97% similarity threshold. OTUs containing one 
sequence in only one sample were excluded from further analyses. Subsequently, taxonomic assignments were 
conducted at the species level using UCLUST and QIIME 1.9.1 against the Silva 132 database under default 
parameters. If clusters could not be assigned at the genus level owing to insufficient taxonomic information in 
the database, the taxon was assigned to the next highest level. Brackets around the taxon name represent an 
unverified suggested a taxonomic assignment based primarily on whole-genome phylogeny within the genomic 
database.

Predictive diagnostic model development.  To develop a BC diagnostic model, we considered the rela-
tive abundances of OTUs at the genus level as model variables. First, we selected candidate biomarkers with 
p-values < 0.01, fold-changes greater than twofold, and average relative abundances greater than 1%. The bio-
markers included as model variables were selected using methods to determine the model with the highest area 
under the curve (AUC) value, sensitivity, specificity, and accuracy. The first model (SD-M) used biomarkers with 
differing variables based on significantly different genera. The biomarkers of the second model (LD-M) were 
based on linear discriminant analysis (LDA) and LDA effect size (LEfSe). LEfSe was used to select significant 
biomarkers, and the cut-off of the log (LDA score) was set at 4 by ROC curve. Diagnostic models were calcu-
lated using logistic regression with stepwise selection, in which the Akaike information criterion (AIC). We also 
analyzed age as a covariate, in addition to SD-M and LD-M. The third model (ML-M) was developed using a 
machine learning algorithm based on the gradient boosting machine (GBM) ensemble method using micro-
biome composition. GBM was incorporated in the model using the gradient boosting regressor of scikit-learn 
(version 0.21.3) in Python (version 3.6.9). The diagnostic models were developed with the training and test sets 
used at an 80:20 ratio for model validation.

Statistical analysis.  Significant differences in the age and microbiome composition in the serum were 
determined using Student’s t-test or Wilcoxon rank-sum test. Principal coordinate analysis (PCoA) based on 
the Bray–Curtis dissimilarity distance was conducted to determine individual taxa-level clustering of groups. 
Permutational multivariate analysis of variance (PERMANOVA) was used to analyze the p-values for the PCoA. 
LEfSe was also used to select significant biomarkers, and the cut-off of the log (LDA score) was set at 4. The 
results were considered significant when p-values were less than 0.05 (p < 0.05) and all analyses were conducted 
using R version 3.6.1.

Data availability
The raw sequence data and processed data of metagenome analysis are available through the Sequence Read 
Archive under BioProject ID: PRJNA834579, PRJNA834581, and PRJNA834582.
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