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Abbreviations
APC	� Antigen-presenting cells
ATMP	� Advanced Therapy Medicinal Product
CAR​	� Chimeric antigen receptor
CTL	� Cytotoxic T lymphocytes
EMA	� European Medicine Agency
E:T	� Effectors:targets
IFNγ	� Interferonγ
LvSN	� Lentiviral supernatant
PBMC	� Peripheral blood mononuclear cells 

(PBMCs)
(r)IL-1RAP	� (Recombinant)interleukin-1 receptor acces-

sory protein
ScFv	� Single-chain fragment variable
SD	� Standard deviation
TCR​	� T-cell receptor

Background 

Many chimeric antigen receptor (CAR) T-cell therapies are 
being developed to treat various cancers. Five such therapies 
have been approved by regulatory agencies for blood cancers 
unresponsive to other treatments, such as B-cell acute lymphoid 
leukemia [1], B-lymphoma (diffuse large B-cell [2] and mantle 

cell lymphoma [3]), and multiple myeloma [4]. These therapies 
must be subjected to robust quality controls to ensure the safety 
of each batch and the final product. Considering high inter-donor 
or patient variability, a quality control strategy would help the 
Advanced Therapy Medicinal Product (ATMP) manufactur-
ers to optimize and standardize their manufacturing processes, 
guaranteeing their reproducibility [5]. We need to quantify the 
potency of CAR T-cells using validated assays and good labo-
ratory practices (GLP) before entering into pilot clinical trials 
(phase 3) to register for the ATMP.

The European Medicine Agency (EMA) defines potency 
as the measure of biological activity (target-specific cytotox-
icity of CAR T-cells) using a bioassay, based on the attribute 
of the product (target antigen), which is linked to the relevant 
biological properties (cytotoxicity and related effects). Bio-
logical activity is the specific ability or capacity of a product 
to achieve a defined biological effect [6].

CAR T-cells activate when their extracellular domain 
comprising a single-chain fragment variable (scFv) antibody 
recognizes the target cell surface antigens. The signal travels 
through the transmembrane domain to the intracellular CD3-
zeta costimulatory domain (mainly CD28- or 4-1BB-derived 
domains). This TCR-like activation induces proliferation, 
cytokine secretion, and cytotoxicity.

To date, measuring cytotoxicity is the preferred assay to 
assess CAR T-cell potency, although standardized assays 
are currently unavailable. The 51Cr-release assay remains 
the gold standard to assay cytotoxicity; however, it is haz-
ardous and almost untransferable due to 51Cr radioactivity 
[7]. We need to develop alternative potency assays to quan-
tify parameters such as transgene expression, proliferative 
capacities, phenotype (memory vs. effector), exhaustion 
phenotype, the release of lytic granules (perforin or gran-
zyme A/B), or cytokine secretion that reflect CAR T-cell 
cytotoxicity.

Activated immune cells degranulate and release cyto-
lytic enzymes. This process involves the fusion of the 
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granule membrane with the cytoplasmic membrane of 
the immune effector cells, resulting in surface exposure 
of lysosomal-associated proteins present inside the lytic 
granules, such as CD107a glycoprotein-1 (LAMP1). Mem-
brane expression of CD107a represents a surrogate marker 
of cytotoxicity of activated and degranulating immune 
cells. The relationship between CD107a expression and 
cytotoxicity has been well established in NK cells [8–10]. 
CD107a flow cytometry and microscopy are used to study 
the cytotoxicity of cytotoxic T lymphocytes (CTLs) [7, 11].

CAR T-cells can be activated using reagent-coated 
beads, target tumor cell lines, antigen-presenting cells 
(APC) [12], artificially engineered APC [13], or cell 
membrane-derived vesicles [14]. In this study, we devel-
oped a rapid, simple, efficient, and inexpensive assay to 
characterize our Interleukin-1 receptor accessory protein 
(IL-1RAP)-CAR T-cells [15]. We used a cell-free target, 
recombinant IL-1RAP (rIL-1RAP) protein coated on a 
substrate (96-well plates), to evaluate the cytotoxicity of 
IL-1RAP-CAR T-cells.

Materials and methods

Healthy donor blood samples and cell lines

We collected blood samples anonymously from healthy 
donors at the French Blood Center (Besançon, France) and 
isolated fresh peripheral blood mononuclear cells (PBMCs) 
using Ficoll Hypaque density centrifugation (Lymphocyte 
separation medium, Eurobio). The donors provided written 
informed consent, and the study was conducted accord-
ing to the ethical guidelines (Declaration of Helsinki) and 
approved by the local CPP-Est (France).

We cultivated K562, CCL-243™, ATCC®), and Mono-
Mac-6 myeloid (ACC-124™, DSMZ®, Germany) cell lines 
in complete medium (RPMI1640, 10% heat-inactivated fetal 
bovine serum, and 100 µM penicillin/streptomycin) at 37 °C 
with 5% CO2.

Lentiviral construct, supernatant production, 
and ex vivo T‑cell transduction

The CAR lentiviral construct (pSDY-iC9-IL1RAPCAR-
∆CD19) (Fig. 1A) contains a procaspase-9 suicide gene 
safety switch, a ΔCD19 cell surface marker, and the IL-
1RAP-CAR scFv sequence linked to two costimulatory 
domains (4-1BB and CD28) and one signaling domain 
(TCR-ζ). Lentiviral supernatant production has been previ-
ously described [15, 16].

We sorted healthy donor T-cells from PBMCs and acti-
vated them using CD3/CD28 microbeads (Dynabeads® 
CD3/CD28 CTS®, Gibco, Life Technologies). We trans-
duced the T-cells on day 2 by adding a suspension of 105 
cells (without human serum (HS)) to each well contain-
ing 150 µl of concentrated IL-1RAP lentiviral supernatant 
(LvSN) in a 24-well plate. CAR T-cells were then expanded 
until day 9 in TexMacs™ medium (Miltenyi Biotec), supple-
mented with 350 IU/ml IL-7 and 56 IU/ml IL-15 (Miltenyi 
Biotec), 8% human serum (French Blood Center, Besançon, 
France), and 100 µM penicillin/streptomycin (Eurobio) at 
37 °C and 5% CO2 (Fig. 1B).

The transduction efficiency was established by staining 
CD19 with an allophycocyanin (APC)–conjugated anti-
CD19 antibody (clone LT19) and CD3 VioBlue (Clone 
REA613) (Miltenyi Biotec) and analyzing the transduced 
cell using flow cytometry (BD Canto II).

IL‑1RAP protein production and coating

The recombinant protein was developed and produced by Dia-
clone SAS (Besançon, France). The human IL-1RAP extracel-
lular domain sequence ([Ser21 to Glu359], accession number: 
Q9NPH3.2) followed by a C-terminal Histag was cloned into 
an expression vector optimized for expression in mammalian 
cells. The cloning was validated by Sanger sequencing. The 
expression vector was transfected into CHO cells for 14 days. 
Purification was performed using immobilized metal affinity 
chromatography (IMAC) with nickel Sepharose resin.

The purified product was suspended in PBS (pH 7.4, 
155 mM NaCl, 8 mM Na2HPO4, and 1.8 mM KH2PO4) and 
sterilized using 0.2 µm filters. The purity of the final product 
was evaluated using SDS-PAGE. We first validated our rIL-
1RAP by comparing it with the rIL-1RAP from two other sup-
pliers (Bio-Techne, Minneapolis, USA, and ACROBiosystems, 
Newark, USA) using ELISA with anti-IL-1RAP monoclonal 
antibodies (B-L43 and B-R58) (Diaclone, Besançon, France).

The IL-1RAP protein suspended in PBS (Gibco™, Ther-
mofisher; France) was coated overnight at different concen-
trations (0.01 − 10 µg/ml) on the surface of a 96-well plate 
(Falcon® 24-well Clear Flat Bottom TC, Corning, France) 
(Fig. 1C).

Fig. 1   Schematic representation of lentiviral construct, IL-1RAP-
CAR T-cell production and principle of coated recombinant target 
IL-1RAP-CAR T-cell recognition. A Schematic lentiviral construct 
crrying 3 different transgenes. B Workflow of IL-1RAP-CAR T-cell 
production and CD107a staining and IFNγ secretion quantifica-
tion assays. C Schematic recognition of coated rIL-1RAP by IL-
1RAP-CAR T-cells. D Representative cytometry plot of CD3 + /
CD19 + staining of untransduced and IL-1RAP-CAR T-cells at day 
9. E Right: Lentiviral transduction efficiency for donor T-cells meas-
ured using flow cytometry (n = 3). Left: CD4/CD8 T-cells ratio for 
cultured and untransduced and IL-1RAP-CAR T-cells. Results are 
presented as mean ± SD for 3 independent transductions of 3 different 
donor PBMCs

◂



279Immunologic Research (2023) 71:276–282	

1 3

CD107a degranulation assay

We analyzed the results for CD107a staining with anti-
CD107a-PE (BD Bioscience), anti-CD3-Pacific Blue 
(Miltenyi Biotec), anti-CD19-APC (Miltenyi Biotec), and 
anti-CD8 FITC (Diaclone) antibodies for each CAR T-cell 
using flow cytometry (BD Canto II, Becton Dickinson, 
le Pont de Claix, France). Nine days after production, we 
added CD107a-PE antibody to 105 cells before stimulat-
ing the CAR T-cells with coated IL-1RAP protein or co-
cultured living tumor cells (K562 and/or Mono-Mac-6) 
for 5 h at an effector:target (E:T) ratio of 1:5 in 96-well 
plates. We included a negative control (human serum albu-
min 4% (Albunorm™, Octopharma) or the medium alone 
(TexMACs™, 350 IU/ml IL-7, and 56 IU/ml IL-15)) for 
every experiment. The cultures were incubated for 1 h at 
37 °C and 5% CO2, and for an additional 4 h in the presence 
of the secretion inhibitor monensin (BD GolgiStop™, BD 
Biosciences).

IFNγ ELISA

Culture supernatants (from the CAR T-cell co-cultures with 
tumor cells or rIL-1RAP) were assessed for IFNγ secretion 
after 6 h of co-culturing (105 CAR T-cells or T-cells at 0.5 × 106 
cells/ml) using the human IFNγ ELISA kit (Diaclone, Besan-
çon, France) according to the manufacturer’s instructions.

Statistical analysis

Graphical and statistical analyses were performed using 
GraphPad software 8.0.2 by ANOVA statistical test.

Results

Production of IL‑1RAP‑CAR T‑cells

Our IL-1RAP-CAR LvSN transduced primary T-cells effi-
ciently (49.93 ± 8.39%, n = 3, Fig. 1D and E) in an ex vivo pro-
duction process (using IL-7 and IL-15 cytokines). The CD4/
CD8 ratio in LvSN-transduced IL-1RAP-CAR T-cells is simi-
lar to that in the untransduced/cultured T-cells (7.56 ± 2.82% 
vs. 5.16 ± 2.45%, respectively, n = 3) (Fig. 1E).

Coated rIL‑1RAP stimulates IL‑1RAP‑CAR T‑cells, 
inducing cytotoxic degranulation

The purified rIL-1RAP was first validated at different 
coating concentrations (0, 0.01, 0.1, 0.5, 5, 7.5, and 

10 µg/ml) for CD3 + /CD19 + (transduced cells) and com-
pared with the recombinant proteins from two other sup-
pliers using CD107a staining (Fig. 2A). The rIL-1RAP 
was comparable to the recombinant proteins from the 
suppliers at different purification stages (Fig. 2B (left)). 
We observed a significant dose–effect (p < 0.05, n = 3) 
at 0.01 µg/ml and a plateau at 5 to 10 µg/ml (Fig. 2B 
(right)). For quality control experiments (CD107a 
degranulation or IFNγ assays), we used a single concen-
tration of purified rIL-1RAP (7.5 µg/ml).

To verify whether IL-1RAP-CAR was constructed suc-
cessfully and degranulated upon recognizing the coated 
rIL-1RAP, we indirectly checked transgene expression 
using ΔCD19 cell surface staining. Both transgenes are 
separated by a T2A sequence that allowed stoichiomet-
ric protein expression. We thus analyzed the level of 
CD107a in different CD19 expressing subpopulations 
of transduced T-cells (Fig. 2C (left)) co-cultured with 
varying concentrations of coated rIL-1RAP. We noted 
a significant difference between CD107a staining of 
IL-1RAP-CAR T-cells and untransduced T-cells start-
ing at 0.1 µg/ml of rIL-1RAP independent of the CD19 
transgene expression level. We also observed a positive 
correlation between the CD107a expression and CD19 
cell surface staining in CAR T-cells (Fig. 2C (right)).

Finally, we showed that CD107a cytotoxic degranulation 
of CAR T-cells and untransduced T-cells after co-cultur-
ing them with rIL-1RAP (36.22 ± 18.61 vs. 1.32 ± 0.26%, 
respectively, n = 3) was comparable to when they were co-
cultured against living Mono-Mac-6 cell line (26.58 ± 3.44 
vs. 4.01 ± 1.5%, respectively, n = 3) (Fig. 2D).

Control co-cultures with IL-1RAP− K562 cell line or in 
the presence of albumin from human serum (HSA) did not 
induce cytotoxic degranulation. Gating of CD8− (i.e., CD4+) 
or CD8+ subpopulations showed the same results.

Induced IFNγ secretion by IL‑1RAP‑CAR T‑cells 
after co‑culture with coated rIL‑1RAP

We showed that the coated rIL-1RAP induced a maxi-
mum IFNγ secretion at a concentration of 0.1 µg/ml in 
CAR T-cells, which was significantly more than the 
IFNγ secretion by the untransduced T-cells (p > 0.05, 
n = 3), with a plateau at 0.5 µg/ml (Fig. 3A). The coated 
rIL-1RAP comparably assesses the CAR T-cell potency 
as a co-culture with living IL-1RAP cell surface anti-
gen (undetectable vs. 3557.00 ± 1559.05  pg/ml and 
756.66 ± 230.89 vs. 4166.66 ± 2420.3 pg/ml for IL-1RAP 
protein and the Mono-Mac6 line, respectively, n = 3) does. 
Specific IFNγ secretion was confirmed by the absence of 
secretion when cells were co-cultured with HSA or only 
the medium (Fig. 3B).
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Discussion

Assaying CAR T-cell functionality before using them clini-
cally is essential to ensure the efficacy and safety of the drug. 
Implementing and standardizing such analytical assays can 
be difficult if cell lines are used, compromising their repro-
ducibility. Thus, there is a need to develop a manageable, 
simpler, and easily reproducible method for antigen-specific 
stimulation of CAR T-cells. To explore CAR T-cell potency 
and cytotoxicity, well-characterized target cells (e.g., tumor 
cell lines) are used. However, cultures, especially multiple 
passages, may affect the health and behavior of the cells, 

affecting their transcriptomic activity and protein expres-
sion. We would require large-scale production and testing of 
cell lines, which would need to be cryopreserved. An aliquot 
would be defrosted each time we need to assay the CAR 
T-cells. Moreover, mistakes or an inversion of the cultured 
cell lines are unavoidable.

We hypothesized that a simple recognition interaction 
with the cognate antigen would stimulate CAR T-cells. Thus, 
we explored the use of a target antigen coated on plastic as 
an alternative to using cell lines expressing target antigen 
for studying CAR T-cell-specific stimulation and cytotoxic-
ity. We demonstrated that the target of our third generation 
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IL-1RAP-CAR T-cell-rIL-1RAP human protein coated on 
a plastic well plate—interacts and stimulates similarly the 
CAR T-cells just like the Mono-Mac-6 IL-1RAP+ cell line, 
which is known to stimulate the genetically modified IL-
1RAP T-cells [16].

After engaging with the antigen, the T-cell receptor 
(TCR) forms an immune synapse to recruit and reorganize 
various membrane proteins [17] in a bullseye structure. As 
a result, the intracellular actors mobilize to restructure the 
cytoskeleton. This polarizes the endosomal compartment 
to form lytic granules and cytokine vesicles that activate 
the cytotoxic function [18]. In CAR T-cells, while the clas-
sical bullseye structure is maintained, the CAR-mediated 
synapses display a non-classical structure that is rapidly trig-
gered after CAR-antigen interaction without the need for 
microtubule polarization. The CAR-mediated immune syn-
apses induce cytotoxicity faster than the conventional TCR-
mediated immune synapses [19, 20]. This explains why a 
coated protein target can stimulate a CAR T-cell without 
forming true physiologic immunologic synapse and can be 
used in an in vitro functional assay.

This technique could be helpful in transcriptomic, meta-
bolic, or phenotypic studies of CAR T-cells. It limits the 
interference of nucleic acids present in target cell lines and 
analysis bias linked to the presence of residual tumor cells. 
It also avoids contamination by eliminating the need to sort 
CAR T-cells from the co-cultured cells [21]. Sorting cells 
using flow cytometry or purification columns can phenotypi-
cally alter or activate them.

In conclusion, with our IL-1RAP-CAR T-cells model, we 
demonstrated that a rIL-1RAP protein coated on a substrate 
could substitute cell lines as a target for CAR T-cells in cyto-
toxicity assays. This work demonstrates that this assay can be 
used for research practices and most importantly for QC delivery 
regarding potency of final CAR T-cell products, avoiding use of 
living cell line targets and allowing rapid results. However, the 
coated target protein needs to be validated at a GLP level before 
using it in clinical practice to test CAR T-cell potency.
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