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Abstract

Background The introduction of deep learning in both imaging and genomics has sig-

nificantly advanced the analysis of biomedical data. For complex diseases such as cancer,

different data modalities may reveal different disease characteristics, and the integration of

imaging with genomic data has the potential to unravel additional information than when

using these data sources in isolation. Here, we propose a DL framework that combines these

two modalities with the aim to predict brain tumor prognosis.

Methods Using two separate glioma cohorts of 783 adults and 305 pediatric patients we

developed a DL framework that can fuse histopathology images with gene expression pro-

files. Three strategies for data fusion were implemented and compared: early, late, and joint

fusion. Additional validation of the adult glioma models was done on an independent cohort

of 97 adult patients.

Results Here we show that the developed multimodal data models achieve better prediction

results compared to the single data models, but also lead to the identification of more

relevant biological pathways. When testing our adult models on a third brain tumor dataset,

we show our multimodal framework is able to generalize and performs better on new data

from different cohorts. Leveraging the concept of transfer learning, we demonstrate how our

pediatric multimodal models can be used to predict prognosis for two more rare (less

available samples) pediatric brain tumors.

Conclusions Our study illustrates that a multimodal data fusion approach can be success-

fully implemented and customized to model clinical outcome of adult and pediatric brain

tumors.
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Plain Language Summary
An increasing amount of complex

patient data is generated when

treating patients with cancer, includ-

ing histopathology data (where the

appearance of a tumor is examined

under a microscope) and molecular

data (such as analysis of a tumor’s

genetic material). Computational

methods to integrate these data

types might help us to predict out-

comes in patients with cancer. Here,

we propose a deep learning method

which involves computer software

learning from patterns in the data, to

combine histopathology and mole-

cular data to predict outcomes in

patients with brain cancers. Using

three cohorts of patients, we show

that our method combining the dif-

ferent datasets performs better than

models using one data type. Methods

like ours might help clinicians to

better inform patients about their

prognosis and make decisions about

their care.
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G lioma is the most prevalent brain tumor type, accounting
for almost 80% of all malignant primary brain tumors1.
Gliomas are classified by their origin and usually graded

based on their behavior and/or histopathological features using
the World Health Organization (WHO) Classification of Tumors
of the Central Nervous System (CNS), the international standard
for brain and spinal cord tumor grading2,3. In 2016, the WHO
revisited these guidelines recommending histopathological diag-
nosis in combination with molecular markers (e.g. IDH1/2
mutation status) to classify gliomas and other CNS tumors. For
example, gliomas with IDH mutations are distinct from IDH-
wildtype gliomas with different prognosis and these molecular
features are now also reflected in the WHO grading2,4,5. Of late,
DNA-methylation has also been suggested as an additional fea-
ture to classify CNS tumors6,7. Brain tumors are graded on a
scale from 1 to 4, but gliomas are mostly classified as either
high-grade glioma (HGG), including grades 3 and 4 gliomas—
which are highly malignant with overall bad prognosis—or low-
grade glioma (LGG), including grades 1 and 2—which are less
aggressive and have better prognosis but may develop into HGG
at a later stage. The HGG group mainly consists of Glioblastoma
multiforme (GBM), the most aggressive malignant brain tumor,
accounting for 60% of all brain tumors in adults1.

In infants, children or young adolescents, the majority of brain
tumors are LGGs. These pediatric LGGs are fundamentally dif-
ferent from adult LGGs in that they rarely develop into malignant
HGGs and generally show excellent survival outcome8. HGGs are
less common in this young population, representing only 8–12%
of pediatric CNS tumors, with GBM and anaplastic astrocytoma
being the most common ones9. Other pediatric brain tumors are
medulloblastoma and ependymoma, two malignant subtypes.
Malignant brain tumors are one of the highest mortality causes in
the pediatric cancer population. For this reason, their study has
attracted wide clinical interest, but pediatric brain tumors have
presented challenges in predicting tumor behaviors, mainly due
to the relatively low numbers of individual tumor types10.

Understanding biological mechanisms of cancer in patient
survival is crucial to support treatment decisions but also to
improve cancer prognosis estimates. Several statistical methods
have been proposed for modeling survival distributions. For
cancer, most popular methods to predict survival times are
nonparametric approaches including the Kaplan-Meier
estimator11 and log-rank test12 or the semi-parametric Cox
proportional hazards (Cox-PH) model13. While the former two
are univariate, the Cox model is a multivariate approach. In its
essence, Cox-PH is a multiple linear regression between the event
of incidence (which is expressed as a hazard function) and several
predictor variables, with the assumption that for each group the
hazard of the event is a constant multiple of the hazards in any
other group. Importantly, while the Cox model makes parametric
assumptions about the predictor variables, it does not make any
assumptions about the baseline hazard function itself. Not
assuming an underlying distribution of survival times combined
with its multivariate nature makes Cox-PH widely accepted as the
method of choice to model cancer prognosis and to compare
survival characteristics between different groups14.

The main input sources in current cancer prognosis models are
either patient characteristics such as age, gender, tumor stage, and
known comorbidities, sometimes in combination with histo-
pathological risk factors15 or genomic data16,17. Recently, more
data types are routinely generated and made available via public
large-scale collaborative initiatives like The Cancer Genome Atlas
(TCGA)18. However, as these are now often high-throughput and
high dimensional, their complexity and volume present chal-
lenges to traditional survival analysis methods. Continuous
improvements in deep learning (DL) enabled their use for

complex clinical data and neural networks (NN) have become an
increasingly popular tool for survival predictions. Especially the
combination of NN architectures with the Cox-PH has gained a
lot of momentum, mainly because this approach enables the use
of more complex non-linear models on censored data17. Two
examples are DeepSurv19 and Cox-nnet20. While the former uses
patient’s clinical characteristics as input features, the latter uses
genomic data as input. Both frameworks consist of a NN archi-
tecture with a Cox regression model as the output layer, and have
shown to outperform traditional Cox-PH models. Interestingly,
some studies showed that when these DL models were used on
other diseases they also had better results than Cox-PH, sug-
gesting that these models can be transferred and used for dif-
ferent, but conceptually similar tasks17. Another example is
SALMON that, by also leveraging a combination of NN and Cox-
PH, merges clinical data with multi-omics data including mRNA,
miRNA, copy number and mutation burden data to estimate
breast cancer prognosis21.

With the technological advances in high-throughput sequen-
cing and digital pathology, more quantitative tumor data is
rapidly becoming available. Combined with deep learning algo-
rithms, it is now possible to process this data to its fullest
potential. However, while there have been already substantial
efforts to develop multimodal data fusion methods for oncology,
there are few that combine genomic with histopathological data22.
Also, so far most of this work relied on the fusion of separately
trained models (late fusion)23. Joining information from these
two data modalities and exploring differences between fusion
methods, presents a promising strategy to take advantage of the
available heterogeneous information. Ideally, such a unified fra-
mework could uncover complex interactions leading to more
accurate tumor profiling, ultimately resulting in better survival
predictions and better disease management. Recent work in this
space indeed showed that a model integrating features from
Whole Slide Images (WSI) with genomic data improved prog-
nosis predictions from the unimodal models. For example, Zhan
et al. extended the Cox-nnet framework and developed a two-
stage Cox-nnet model that integrates pathological images with
gene expression data for survival analysis in liver cancer. Their
results illustrate that imaging features add additional predictive
information, as the combined model is more accurate than the
model with gene expression alone24. Two other integrative fra-
meworks focusing on renal cell cancer prognosis also had better
performance than when using histopathological or genomic fea-
tures alone25,26.

Also for brain cancer, a handful of studies investigated the
fusion of these complementary modalities for survival prediction.
One study trained a convolutional NN (CNN) with Cox-PH as
output layer on histopathology images for survival analysis in
glioma patients with and without inclusion of two genomic
markers, i.e., IDH mutation and 1p/19q codeletion27. This study
showed that the model including the genomic data had better
predictive performance than the one without these features.
Another example is the “pathomic fusion” framework that uses
attention gating and tensor fusion to integrate features from WSIs
with genomic features23. Validated on both renal and glioma
cohorts, this model outperformed unimodal and late fusion
algorithms for cancer diagnosis and prognosis. These results show
that imaging and genomic data, though very different in nature,
both may contain different aspects of disease characteristics that
are important for survival prediction.

For adult, but especially for pediatric brain tumor patients,
approaches are urgently needed to predict clinical outcome and
assist physicians to make treatment decisions. Here, we propose a
comprehensive framework to fully integrate multiple data mod-
alities including digital pathology (WSIs) and expression data

ARTICLE COMMUNICATIONS MEDICINE | https://doi.org/10.1038/s43856-023-00276-y

2 COMMUNICATIONS MEDICINE |            (2023) 3:44 | https://doi.org/10.1038/s43856-023-00276-y | www.nature.com/commsmed

www.nature.com/commsmed


(RNA sequencing and microarrays) to develop a unified model
for brain tumor survival prediction. The backbone of this fra-
mework is composed of different CNN architectures connected to
a Cox-PH output module. Using two separate glioma cohorts of
783 adults from TCGA and 305 pediatric patients from Pediatric
Brain Tumor Atlas (PBTA), we implement and compare three
strategies for data fusion: early fusion, late fusion, and joint
fusion. Using a cross-validation approach, our results show that
the suggested strategies for multimodal data fusion enable the
integrated models to achieve improved prediction accuracy than
using histopathology and genomic data in isolation. Interestingly,
further analysis of the model interpretation shows that joining
pathology features with genomic data adds more meaningful
biological insights into specific cancer mechanisms. Additional
validation of the adult glioma models on an independent cohort
of 97 adult GBM patients illustrates that the multimodal models
perform better on new data from different cohorts. Lastly, when
transferring the pediatric glioma models to two other pediatric
brain tumor subtypes with low sample numbers, all three data
fusion strategies perform better. Thus, also in transfer learning an
approach using multiple modalities potentially adds value in
predicting survival probabilities.

Materials and methods
Data. Brain tumor data from three sources were used: (i) Adult
cohort from TCGA consisting of 783 samples28, (ii) Pediatric
cohort totaling 305 samples from the PBTA29 available through
the Gabriella Miller Kids First Data Resource Portal (KF-DRC,
https://kidsfirstdrc.org), and (iii) data from 97 adult patients from
the National Cancer Institute’s Clinical Proteomic Tumor Ana-
lysis Consortium Glioblastoma Multiforme (CPTAC-GBM)
cohort30 (Fig. 1).

The used adult brain cancer TCGA cohort consisted of a
glioma cohort with LGG and GBM samples. Only samples having
both histopathology data and expression data were selected. For

the former data type, TCGA contains imaging data originating
from fresh frozen (FF) and formalin-fixed paraffin-embedded
(FFPE) tissue slides, but as FFPE fixation better preserves tissue
architecture only samples with this data type were included. For a
total of 426 LGG samples also RNA-sequencing (RNA-seq) data
was available, but only 158 of the GBM samples had
corresponding RNA-seq data. To augment this GBM dataset,
also samples with microarray expression data instead of RNA-seq
were included thereby adding 199 patients. The final adult glioma
dataset consisted of 783 samples, with 426 LGG samples and 357
GBM samples (Fig. 1a).

The pediatric brain cancer cohort from PBTA (Kids First)
consisted of four tumor subtypes: LGG, HG astrocytoma, HG
ependymoma, and HG medulloblastoma. Also for this cohort,
only samples having both histopathological images and expres-
sion data (RNA-seq) were selected (N= 305). LGG and
astrocytoma samples were combined in a pediatric glioma group
(N= 198). For ependymoma and medulloblastoma there were 47
and 60 patient samples, respectively. Compared to glioma,
pediatric ependymoma, and medulloblastoma both arise from
different cell types and occur in disparate brain regions. As such,
these three brain tumor subtypes were considered separate disease
entities (Fig. 1c).

The third dataset consisted of 97 GBM patients from the
CPTAC cohort having both histopathology images and RNA-seq
data. This dataset was not used for training or fine-tuning but
kept as an independent cohort for model validation (Fig. 1b).

All data used in this project constitutes secondary data use of
publicly available data from The Cancer Genome Atlas project
(TCGA), The Children’s Brain Tumor Tissue Consortium
(CBTTC) project and the National Cancer Institute’s Clinical
Proteomic Tumor Analysis Consortium Glioblastoma Multi-
forme (CPTAC-GBM) project. All samples have been collected
and utilized following strict human subjects’ protection guide-
lines, informed consent, and IRB review of protocols as part of

Fig. 1 Overview of used datasets and samples. a Adult brain tumor The Cancer Genome Atlas (TCGA) cohort (N= 783) consisting of both low-grade
glioma (LGG) (N= 426) and glioblastoma (GBM) (357) samples. For the LGG samples, both histopathology images and RNA-sequencing data were
available. While histopathology images were available for all GBM samples, 158 of these had RNA-sequencing, and 199 microarray expression data. b Adult
Clinical Proteomic Tumor Analysis Consortium (CPTAC)-GBM cohort with histopathology and RNA-sequencing data (N= 97). c Pediatric Brain Tumor
Atlas (PBTA) Kids First cohort (N= 305). This cohorts consists of four tumor subtypes: LGG and high-grade (HG) astrocytoma (combined in one Glioma
group, N= 198), ependymoma (N= 47), and Medulloblastoma (N= 60). Both histopathology images and RNA-sequencing data were available for all
samples of this pediatric cohort.
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these original projects. The relevant data is publicly available for
academic research.

Preprocessing
Gene expression data. For both adult and pediatric RNA-seq,
genes with missing values were removed after which gene counts
were normalized by performing a log-transformation followed by
z-score transformation. Microarray data from the TCGA GBM
samples was preprocessed in the same way: genes with missing
values were removed followed by a log- and z-score transfor-
mation. After standardizing the data, the Combat-Seq package
was used to account for any batch effects in the adult TCGA
expression data31. As for the CPTAC and pediatric cohorts all the
data came from the same batch, no batch correction step was
performed. In the last step the overlapping genes between the
TCGA and pediatric cohort were determined (=12,778). Only
these were kept in the final expression vector for each sample.

Histopathology data. In clinical practice, FFPE or FF specimens
are generated and used for histopathological assessment. While
FFPE fixation can result in cross-linking, degradation, and frag-
mentation of DNA, it has several advantages over FF such as
preservation of the cellular and architectural morphology, easy
storage, and availability32. Both have already been used in DL
histopathology-focused applications, however, because FFPE
better preserves tissue morphology, these images were selected.
As in digital pathology a tissue slide is scanned at various mag-
nifications resulting in a giga-pixel WSI, the main challenge of
working with digital pathology WSIs is their size. Typically, a
WSI is 50k by 50k pixels and does not fit in the memory of a
standard GPU. To tackle this high dimensionality, a common
workaround is to extract smaller patches at a high resolution33,34.
After downloading the FFPE images, an OTSU image segmen-
tation was performed to separate target tissue from the
background35. Non-overlapping patches of 224 × 224 pixels were
subsequently extracted from the foreground region at a ×20
resolution using the OpenSlide library36. In case multiple slides
were available for the same patient, patches were extracted from
all slides. The median number of patches for a WSI was 2900 for
the adult cohort and 6600 for the pediatric cohort. One important
factor when dealing with clinical images is the presence of stains
(mainly from hematoxylin and eosin) buts also the variability
originating from different hospitals37. Stain normalization and/or
augmentation steps are essential steps for more robust and better-
performing models, with the latter shown to be the most
important for CNNs with the limited added value of the former38.
For this reason and the fact that color normalization comes with
computational challenges, it was chosen to perform a stain aug-
mentation step by adding random color jitter (using ColorJitter
function from PyTorch) to mask the hematoxylin and eosin
stains without normalization.

Survival prediction. The goal of survival prediction is to predict
the likelihood that a patient will survive till time t. As already
described above, Cox-PH is a widely used method to model
patient’s survival times given their baseline feature data X. Cox-
PH model is expressed by the hazard function h(t) which can be
estimated for a patient i as:

hðtjXiÞ ¼ h0ðtÞeðβXiÞ ð1Þ

with h0(t) the baseline hazard function, Xi the patient’s covariate
vector, β the corresponding coefficient vector, and β Xi the log-
risk function.

One major advantage of this model is that it can deal with
censored data, i.e. data where some of the patients have an

unknown time of event (death) due to missing data or the fact
that they are still alive at the end of the study. To estimate the β
values in the Cox-PH model, a partial likelihood function is
constructed and optimized to get a maximum likelihood
estimator without the need to estimate or know the baseline
hazard h013. Thus, when performing a Cox regression, the
coefficients vector β is tuned to optimize the partial likelihood,
which in practice is done by minimizing the negative log-
likelihood, also known as Cox loss:

LðβjXÞ ¼ � ∑
ijCi¼1

Xiβ� log ∑
jjYj≥Yi

eXjβ

 ! !
ð2Þ

with β the coefficient vector and Xi the covariate or feature vector,
Yi the survival time and Ci the censor indicator for patient i.

Importantly, this loss function can be adapted and implemen-
ted in a DL architecture to enable more complex non-linear
relations. In the Cox module of our framework, Xiβ is changed by
fθ(Xi) where fθ represents a non-linear mapping learned by the
first layers of our NN that extract the patient features from the
input data. Here, θ constitutes the model parameters including
weights and biases of each NN layer. Our objective is thus to
minimize the following loss function:

LðβjXÞ ¼ � ∑
ijCi¼1

f θðXiÞ � log ∑
jjYj≥Yi

ef θðXiÞ
 ! !

ð3Þ

This Cox module is used as the output layer of our NN
framework and generates survival scores for each sample. Note
that in practice ∑jjYj≥Yi

ef θðXiÞ is not determined for all patients,

but a batch sampling strategy is used where this sum is calculated
for the patients of each current batch.

Feature extraction
Feature extraction and survival prediction for histopathological
data. To extract histopathology features from the tissue slides, the
generated 224 × 224 patches are used as input of a ResNet-50
CNN39 (see section Model Training for more details) which
returns a feature vector of size 2048 × 1 for each patch (Fig. 2a).
These features are next mapped to a survival (risk) score through
a fully connected output layer using the adapted Cox loss
(Equation 3) as loss function. Model training was patch-based,
i.e., the model aims at predicting a survival score for each patch.
During the model evaluation, the risk scores of all patches from
the same patient are averaged to obtain one final patient’s risk
score. Similarly, when needed for downstream analysis, features
of all patches from the same patient are averaged to derive one
global feature representation for each patient.

Feature extraction and survival prediction for expression data.
Feature extraction of the high dimensional expression data was
done using a multi-layer perceptron (MLP) architecture (see
section Model Training for more details). Using the same
approach as for the histopathology data, this MLP outputs for
each sample a genomic feature vector of size 2048 × 1 (Fig. 2b)
which is then mapped to a risk score through a fully connected
output layer using the adapted Cox loss (Equation 3) as loss
function.

Multiscale data fusion. Although every single modality may be
predictive by itself, the aim of this study is to explore the added
value in predictive power when these modalities are combined in
one model. Because histopathological imaging data and genomic
data are both highly dimensional and cover different scales, it is
not feasible to directly combine the data at the input level. Here,
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three data fusion strategies are examined to integrate these two
data types: (i) early fusion (ii) late fusion, and (iii) joint fusion.

Early fusion. The first approach, also known as feature fusion, is
characterized by concatenating the features extracted from the
imaging data, i.e. the 2048 × 1 feature vector outputted by the
Resnet-50, with the extracted genomic features, i.e., the 2048 × 1
feature vector generated by the MLP. For the imaging data, fea-
ture vectors of all used patches from the same patient are first
averaged to derive one global feature representation for each
patient. After concatenating these global feature vectors with the
genomic feature vectors for all patients, a new Cox module (MLP)
is trained on this merged data with the adapted Cox loss as loss
function. Note that in this setup, the two feature extraction
models as well as the final MLP are independently trained with
distinct Cox modules (Fig. 3a). The final target value is the risk
score generated by the last Cox module.

Late fusion. In late fusion, for each data modality a separate
model is trained, and fusion is done at the output stage. In other
words, the risk scores predicted by each independent model are
combined and a new Cox regression model (Cox module) is
trained on these merged scores. Also here, each model is trained
independently, and the final output value is the risk score esti-
mated by the last Cox module (Fig. 3b).

Joint fusion. The last strategy is a joint data fusion approach
where the histopathology and expression modalities are trained
simultaneously to generate a joint feature vector that is then fed
into a fully connected layer optimizing for Cox loss. Thus, in this
intermediate approach, the feature extractions from the histo-
pathology images and the expression data are learned at the same
time and together with the final risk score. In contrast to the
previous two strategies, here the Cox loss is fed back to the feature
extraction layers thereby affecting feature learning (Fig. 3c).

Model development
Model training. For both the adult TCGA and pediatric glioma
cohorts five models were trained: (i) histopathology model,
(ii) RNA expression model, (iii) early fusion multimodal
model, (iv) late fusion multimodal model, and (v) joint fusion
multimodal model. For each cohort, samples were shuffled into a
training and test set at an 80/20 ratio with stratification on age,
gender, tumor grade (high/low), and survival time. This test set
was left out during model training and only used for calculating
model performance. A 10-fold stratified cross-validation (CV)
was performed on the training set of the adult cohort, while a
fivefold stratified CV strategy was chosen for the pediatric glioma
cohort (since this cohort contained fewer samples). The optimal
weights for each model were saved based on the epoch that
achieved the highest validation accuracy. The best model was
chosen based on the CV configuration with the lowest validation
loss. This final model was next evaluated on the test set.

For the histopathology model a ResNet-50 CNN architecture39

was chosen with the ADAM optimizer40. Weight initialization
was done using the weights of a pretrained model on ImageNet41.
After empirical testing, only the last ResNet block was further
fine-tuned while freezing the other blocks, as fine-tuning more
blocks resulted in overfitting the training set. Following a grid
search an optimal learning rate of 5e-4 was set for the adult
cohort and 5e-3 for the pediatric cohort. The model was trained
using a batch-size of 128 patches and for each batch the
associated loss was the Cox loss between the patches of that batch.
Note that in this setup it is not possible to directly optimize the
loss for all patients, but that the model learns to distinguish high-
from low-risk patients within a batch. However, using a higher
batch-size of 128 makes this approximation robust. To increase
computational efficiency, not all patient patches are used for
training but for each WSI 100 random patches are selected. This
number was chosen after comparing performance versus
computational resources and time using either 1, 10, 100, 500,

Fig. 2 Feature extraction and survival prediction for histopathological and expression data. a ResNet-50 feature extraction flow for pathology image
patches. bMulti-Layer Perceptron (MLP) feature extraction flow for gene expression data. Both extraction flows produce a modality-specific feature vector
of dimension 2048 × 1.
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Fig. 3 Visualization of the three data fusion strategies to integrate histopathological and expression data. a Early or feature fusion. b Late fusion, and
c Joint fusion.
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1000, or 2000 patches. For each number, 10 training runs were
performed and CI scores were calculated for the test set
(Supplementary Figure S1). After this experiment a total of 100
random patches per WSI was chosen as a trade-off between
performance and computational complexity.

For the RNA expression model, a three-layer MLP was used
with an input layer of size 12,778 (= number of genes), hidden
layer of size 4096, and output layer with a dimension of 2048.
Before each layer, a dropout with probability 0.5 was implemen-
ted, and the non-linear ReLu function was used as activation
function. The 2048 × 1 feature vector is next mapped to a risk
score through a fully connected output layer (Cox MLP module)
with an output dimension of size 1 (the risk score) using the
adapted Cox loss as loss function. The ADAM optimizer was also
used for this RNA model. Using the same approach as for the
histopathology model, an optimal learning of 1e-5 was applied for
the adult cohort, and 1e-4 for the pediatric cohort.

As described above for the early/feature fusion multimodal
model, after concatenating the imaging features and genomic
features into a 4096 × 1 vector this data is used as input data of a
MLP with two hidden layers. The adapted Cox loss is again used
as loss function together with the ADAM optimizer. Similar as for
the RNA model, a dropout with probability 0.5 was implemented
before each layer, and the non-linear ReLu function was used as
activation function. This early Cox MLP module has an input
layer of size 4096, two hidden layers of size 2048 and 200 and
output layer of size 1. For both the adult and pediatric cohort, a
learning rate of 1e-6 was applied.

The joint fusion model consists of a histopathology model and
an expression model that are trained simultaneously and are then
connected to a fully connected output layer (Fig. 3c). A potential
issue that comes with this joint training approach is that the
learning rates of the two modalities might differ. As histopathol-
ogy training is patch-based, the model needs to go through all
patches of a patient to learn the patient’s feature representation.
For the expression data, on the other hand, each generated feature
vector immediately corresponds to one patient. For this reason,
the genomic modality may learn a patient’s expression features
faster than the histopathology modality. To tackle this potential
discrepancy and to balance the learning speed, for each
submodule different learning rates are used, with a higher
learning rate for the histopathology feature extraction (5e-5 for
the adult cohort and 5e-4 for the pediatric cohort) and a smaller
learning rate for the genomic feature extraction (1e-6 for the adult
cohort and 1e-5 for the pediatric cohort). As this joint strategy is
the most complex model, a dropout with probability 0.8 is added
to the final output layer together with a larger learning rate (1e-2
for the adult cohort and 1e-3 for the pediatric cohort) to avoid
overfitting.

Performance metrics. Model performances on survival prediction
were evaluated with two standard evaluation metrics: (i) the
Concordance Index (CI)42,43 and (ii) the Integrated Brier Score
(IBS)44. The CI is a performance measure that evaluates how well
the predicted risk score ranks patients according to their actual
survival time. It is calculated by dividing the number of pairs of
subjects whose predicted risks are correctly ordered, by the
number of admissible pairs of subjects. As such, a value of 1
indicates perfect prediction with all pairs correctly ordered, and a
value of 0.5 indicates random prediction. In this formula, a pair of
subjects is considered as admissible if none of the events in the
pair is censored or the earlier time in the pair is not censored.
Another metric, the Brier score, is calculated by the squared
differences between observed survival status and the predicted
survival probability at a given time point. The IBS represents the
overall Brier score for all available times and evaluates the

accuracy of the survival predictions. Contrary to the CI, an IBS of
0 indicates perfect predictions, while an IBS of 1 indicates entirely
inaccurate predictions. IBS values were calculated with the
“survcomp” package in R45.

Here, we defined a “Composite Score” (CS, Equation 4) that
consists of both the CI and IBS with the aim to combine these two
scores, each with different purposes, in one single metric:

CSmodelX ¼ CImodelX þ ð1� IBSmodelXÞ
2

ð4Þ

The CS is thus an average of a relative measure (CI) and an
absolute error metric (IBS) and allows straightforward evaluation
and comparison of different models. Note that in this definition, a
value of 1 indicates perfect prediction, while a value of 0 implies
entirely inaccurate predictions.

Kaplan-Meier curves are used as a final evaluation method to
visualize survival predictions and performance of each model46.
To generate these curves, test data were first divided into two
groups: (i) a poor survival group containing samples with
predicted risk scores greater than the median predicted risk, and
(ii) a good survival group, containing samples with predicted risk
scores smaller than the median predicted risk. Next, Kaplan-
Meier curves are generated for these two groups in one figure
per model.

Model validation. To evaluate the adult TCGA glioma models,
additional validation was done on an independent dataset of 97
GBM adult patients from the CPTAC repository. This dataset was
not used in any training or fine-tuning step but kept as a separate
independent cohort for final model validation.

Transfer learning. The technique transfer learning enables NNs
trained on one task to be repurposed to another related task. The
knowledge learned from the previous training round is trans-
ferred to the current task and is often done to save time, get better
performance, or when fewer data are available for the second task.
Here, we explored if information learned from one brain tumor
cohort can be leveraged to make survival predictions on another
cohort. Specifically, we investigated transfer learning of the
pediatric glioma models to the other two pediatric brain tumor
subtypes, i.e. ependymoma and medulloblastoma. Although each
of these brain tumor cohorts—pediatric glioma, pediatric epen-
dymomas, and pediatric medulloblastoma—is characterized by
different clinical features, such as patient demographics, brain
regions, tumor subtypes/cells of origin, they may share some
known or unknown commonalities that could be exploited. A
direct transfer of the pediatric glioma models was done on the
smaller ependymoma and medulloblastoma cohorts and survival
predictions were assessed.

Model Interpretability analysis. To compare unimodal inter-
pretability versus multimodal interpretability of the expression
data, the relation between the RNA input features and the
models’ predictions was assessed by backpropagation of the
gene expression (RNA only) and joint fusion models. For each
of the 12,778 genes, the gradient (= the relative importance
with respect to the survival prediction) was calculated for all
cohort samples. Using the Molecular Signature Database
(MSigDB) from Broad Institute, individual genes were next
mapped to the Reactome pathway collection (C2:CP collection
v7.5, downloaded from https://data.broadinstitute.org/gsea-
msigdb/msigdb/release/7.5/)47,48. The importance of each
pathway was assessed by averaging the gene gradients of the
associated gene set. Here, negative gradients indicate con-
tribution of the pathway to a lower risk prediction and positive
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gradients indicate contribution to a higher risk prediction. In a
final step, these pathway gradients were visualized in a sum-
mary plot using SHAP (SHapley Additive exPlanations)49.

Similarly, to investigate model interpretability of the histo-
pathology data, both a qualitative and quantitative analysis was
performed on the FFPE only and joint fusion model predictions.
For the former, predicted risk scores of the test set samples were
backpropagated and model gradients were determined for the
input patches. For each patch, model features were next visualized
by plotting a saliency map that highlights absolute gradient values
(model importance) for each pixel. The resulting heatmap is next
overlayed with the original patch (transparency value of 0.5) to
visualize the tissue regions which contributed the most to the
outputted risk sore. In addition to model visualization, a
quantitative analysis was performed by segmenting the different
cell types within the input patches using a HoverNet network
pretrained on the PanNuke dataset50,51. Cell type distributions
were compared between bad and good survival samples as well as
between high-risk and low-risk patches in one sample.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Results
Multimodal data fusion and model development on glioma
cohorts. A total of five models (two single and three multimodal
models) were developed and evaluated for both the adult TCGA
and the pediatric glioma cohorts. Resulting composite scores are
shown in Table 1, corresponding CI and IBS scores can be found
in Supplementary Tables S1 and S2. The first two columns show
the mean score with the standard deviation of each model, while
the last column shows the performance of the best-performing
CV model on the test set. Figure 4 displays the corresponding
Kaplan–Meier curves for the test set of the adult cohort (left
panel) and the test set of the pediatric cohort (right panel).

For the adult glioma data, the Kaplan–Meier curves of all five
scenarios show large separations for the poor survival group and
good survival samples of the test set (log-rank test P value
<0.0001, N= 156). Supplementary Table S3 shows the distribu-
tion of different diagnostic and genetic subtypes amongst these
poor survival and good survival groups. The histopathology and
gene expression single modality models achieve good survival
predictions, with a CS of 0.805 and 0.780 on the test set,
respectively. The data fusion models have better performances
than single modality models, achieving CS scores of 0.822 for the
late and feature fusion models and 0.836 for the early fusion

model. A pairwise comparison (Wilcoxon signed-rank test for 1:1
comparison and Kruskal–Wallis test followed by Dunn’s test for
multiple pairwise comparison) of the CS distributions for the
validation and test sets indeed revealed significantly improved
predictive performance of the multimodal models over the
unimodal models (Fig. 5, Supplementary Table S4).

Next, for the pediatric glioma data the Kaplan–Meier curves
show a good split between the high and low-risk patients of the
test set (log-rank test P value <0.03, N= 39), with the best
separation for the multimodal fusion models. While also for this
cohort, the unimodal models achieve good performance (CS of
0.854 and 0.811 respectively for the histopathology and gene
expression model), the multimodal models again result in better
survival predictions for the test set samples with the best
performance for the early fusion model (CS of 0.919). Boxplots of
the CS distributions for the validation and test sets are shown in
Supplementary Figure S2. Note that due to the limited sample size
(fivefold CV) it was not possible to perform a Wilcoxon or
Kruskal–Wallis pairwise comparison.

In summary, we observe improved predictive performance in
overall survival prediction from data fusion methods on both
adult and pediatric multi-scale data cohorts, with the early fusion
strategy the best-performing model in our experiments. These
results suggest that integration may have discovered additional
information that is not revealed in either modality when used in
isolation.

Model evaluation on CPTAC. After preprocessing the pathology
images and expression data of the CPTAC samples, the developed
adult glioma models were next validated on this external cohort.
As this cohort only consists of GBM samples, especially the IBS is
of importance here while the CI and Kaplan–Meier curves less
relevant for this more homogeneous cohort (all HG). The CS and
IBS of each model can be found in Table 2, CI scores in Sup-
plementary Table S5. The multimodal models have a slightly
better CS compared to the histopathology and expression models.
Also in terms of IBS, fusion of the two modalities improves the
predictions with early fusion as the best scoring strategy.

Transfer learning between pediatric brain tumor subtypes.
Next, transfer learning was performed from pediatric glioma to
two other pediatric brain tumor subtypes with fewer available
samples, i.e., ependymoma, and medulloblastoma. Note that
like the CPTAC cohort, these two cohorts only consist of high-
grade samples. As such, also in this case the IBS is of special
interest. Table 3 contains both the CS and IBS performance of
each model with CI scores reported in Supplementary Table S4.

Table 1 Composite Scores (CS) of survival predictions on adult and pediatric glioma cohorts using two single modality models
(FFPE & RNA), and three data fusion methods (early, late & joint).

Cohort Strategy Model Training set CV ean(CS) ± stdev Validation set CV Mean(CS)
± stdev

Test set CS

Adult Single modality FFPE 0.874 ± 0.016 0.807 ± 0.018 0.805
RNA 0.861 ± 0.022 0.809 ± 0.037 0.780

Multimodal Early Fusion 0.876 ± 0.008 0.831 ± 0.022 0.836
Late Fusion 0.891 ± 0.011 0.832 ± 0.019 0.822
Joint Fusion 0.876 ± 0.026 0.824 ± 0.019 0.822

Pediatric Single modality FFPE 0.900± 0.010 0.792 ± 0.070 0.854
RNA 0.900 ± 0.050 0.907 ± 0.034 0.811

Multimodal Early Fusion 0.895 ± 0.037 0.880 ± 0.028 0.919
Late Fusion 0.930 ± 0.032 0.877 ± 0.059 0.913
Joint Fusion 0.981 ± 0.005 0.911 ± 0.022 0.883

The first two data columns show the results (mean and standard deviation (stdev)) on the cross-validation (CV) training and validation sets (10-fold CV for adults and fivefold CV for pediatric cohort).
The last column shows the result of the final model on the test set.
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Fig. 4 Kaplan–Meier curves of the adult glioma (N= 156) and pediatric glioma (N= 39) test set. a Histopathology model. b Gene expression model.
c Early or Feature fusion model. d Joint fusion model. e Late fusion model.
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For both cohorts, direct transfer of the glioma histopathology
model has the lowest performance for all metrics. The glioma
expression model on the other hand produces good survival
predictions. However, using the multimodal glioma models seems
to boost performance, especially in terms of IBS. For ependy-
moma, all data fusion strategies perform better with the joint
fusion approach having the best score. For medulloblastoma, only
early fusion of the features boosts performance over the RNA

expression model alone. Thus, also when using transfer learning
the two modalities add value in predicting survival probabilities.

Model interpretation. To interpret the genomic part of the
models and assess if they detect any relevant biological networks,
a pathway analysis was performed on the survival predictions by
the joint fusion model and the gene expression model. More
specifically, for each of these two models, the relative importance
of the gene expression features with respect to the survival pre-
dictions, i.e., the gene gradients, were assessed by back-
propagation of the predicted risks. Individual genes were next
grouped into Reactome pathways and average pathway gradients
were calculated. Figure 6 visualizes the average gradients of the
top 15 pathways that impact the survival prediction of the
pediatric glioma cohort, with negative gradients indicating a
contribution to a lower risk score for the sample, while positive
gradients lead to a higher risk score. Supplementary Figure S3
shows the same visualization for the adult TCGA glioma cohort.
For both models, known cancer pathways are detected. Note that
the joint model correctly identifies poor prognosis pathways
(positive values) related to RAS and NTKR signaling and that the
good prognosis pathways (negative values) capture pro-apoptotic
pathway and RUNX3, which was recently reported as a tumor
suppressor gene for glioma52. These results disappear in the RNA
only model, suggesting that the inclusion of histopathology
images helps the model select causal genes. On the other hand,
while using expression data alone many gene signatures are
identified that are predictive of survival, but few are biologically
relevant or are more upstream of the causal pathway.

A qualitative assessment of the histopathology (FFPE only) and
joint fusion model was performed by visualizing model gradients
on the input patches. Figure 7 shows the original tissue patch and
the resulting saliency maps for two samples of the adult glioma
test set, one bad survival sample with high-risk model score
(Fig. 7a) and one good survival sample with low-risk model score
(Fig. 7b). For both samples, a patch with a high-risk score and a
patch with a low-risk score in the two models is shown. A fourth
panel also displays the predominant cell types within each patch
determined by HoverNet50. For the bad survival sample (Fig. 7a),
it can be seen that for the patch with a higher risk score, both

Fig. 5 Boxplots of model performance for each model strategy on the adult glioma cohort. a Composite Score (CS) distribution on cross-validation (CV)
validation sets (N= 63). b CS distribution of each CV fold on the test set (N= 156). (*P value <0.05, **P value <0.01 and ***P value <0.005; pairwise
Wilcoxon signed-rank test).

Table 2 Results of survival predictions on the independent
Clinical Proteomic Tumor Analysis Consortium (CPTAC)
cohort using the models trained on the adult The Cancer
Genome Atlas (TCGA) cohort.

Strategy Model CPTAC

CS IBS

Single modality FFPE 0.663 0.237
RNA 0.679 0.205

Multimodal Early Fusion 0.710 0.174
Late Fusion 0.696 0.195
Joint Fusion 0.688 0.194

As this CPTAC cohort only consists of a homogeneous glioblastoma (GBM) high-grade (HG)
population, both the Composite Score (CS) and Integrated Brier Score (IBS) are shown.

Table 3 Transfer learning results of pediatric glioma models
on ependymoma and medulloblastoma pediatric cohorts.

Strategy Model Ependymoma Medulloblastoma

CS IBS CS IBS

Single
modality

FFPE 0.601 0.318 0.544 0.407
RNA 0.670 0.290 0.683 0.251

Multimodal Early Fusion 0.701 0.187 0.710 0.218
Late Fusion 0.706 0.158 0.661 0.286
Joint Fusion 0.751 0.114 0.680 0.336

As these two other cohorts consist of a homogeneous high-grade population, both the
Composite Score (CS) and Integrated Brier Score (IBS) are shown.
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models focus on the tumor cell region in the upper right.
Interestingly, for the patch where both models predict a lower risk
score, the higher gradients of the joint fusion model predomi-
nantly correspond to the regions with lymphocytes, while for the
FFPE-only model higher gradients overlap with a region
containing lymphocytes, tumor cells, and epithelial cells. For
the good survival sample (Fig. 7b), the regions of interest in the
high- and low-risk patches seem to overlap for both models, but
with some differences in the location of the highest intensities
(gradient values). In this example, important regions correspond
with lymphocytes, dead cells, and tumor cells, as well as some
epithelial cells. Figure 7c shows the fraction of cell types in
samples of the adult glioma test set with a high-risk score (bad
survival) and low-risk score (good survival) in both the joint
fusion and histopathology model. The clearest distinguishing cell
types between these two groups are tumor cells and lymphocytes
with a higher fraction of tumor cells in high-risk samples (two
sample t test P value <2.2e-16, t= 22.682, df= 16679, high-risk
N= 78, low-risk N= 78) and a higher fraction of lymphocytes in
low-risk samples (two sample t test P value <2.2e-16, t=−43.225,
df= 16679, high-risk N= 78, low-risk N= 78).

Discussion
Using single data modalities to build predictive models for mul-
tifactorial diseases such as cancer might not provide sufficient
information about the heterogeneity of the disease to improve
clinical decision making. Development of effective biomedical
data fusion approaches is becoming increasingly important as
combining multi-scale biomarkers can be more accurate than any
single modality alone53. While most cancer biomarkers are based
on molecular data such as gene expression, histopathology images
potentially harness complementary information about the cellular
and morphological architecture of the tumor. Here, we propose a
framework to integrate these two data modalities to build a
unified prediction model for brain tumor survival analysis.

For an adult glioma cohort and a pediatric glioma cohort, five
independent survival prediction models were developed: one for
each single data modality and three multimodal models based on
different data integration strategies: early fusion, late fusion, and
joint training fusion. Models were evaluated using multiple
metrics: IBS, CI, and Kaplan-Meier curves. While the latter is
used to make a visual assessment of the predicted survival curves
for high-risk and low-risk samples, the former two provide a

Fig. 6 Visualization of pathway importance with respect to survival predictions for the pediatric glioma cohort. Pathways are ranked from top to bottom
based on the sum of the absolute gradients across all samples. Negative gradients contribute to a lower risk score, while positive gradients lead to a higher
risk score. a Top 15 pathways of the unimodal gene expression model (RNA only). b Top 15 pathways of the multimodal joint fusion model (histopathology
+ RNA data).
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numeric performance value. Where the IBS is an absolute error
metric indicating overall model performance, the CI represents a
relative measure rating the discriminative ability of a model. For a
more straightforward evaluation and comparison between the
different models, a composite score (CS) was defined. This score
ranges from 0 to 1, with 1 for perfect predictions, and merges
the CI and IBS scores in one combined metric. Using this CS as
main performance metric, the proposed fusion strategies achieve
synergistic performances and result in significantly better survival
predictions on the test set than using each single modality alone.

For both cohorts, the early fusion model attains the best perfor-
mance with a 0.4 and 0.7 increase in performance for adult and
pediatric test set, respectively, compared to the CS of the best-
performing single data model, FFPE. When testing our adult
glioma models on a third independent GBM dataset, the multi-
modal models perform better as well, with the early fusion again
being the best model. Interestingly, while the model trained on
histopathology data alone obtained pretty good performance
on the training cohort, it’s the least performing model when used
on this external cohort. This hints that multimodal models might

Fig. 7 Interpretability analysis of histopathology model with respect to survival predictions and cell type distributions. a Examples of high-risk and low-
risk patches for a bad survival sample. b Examples of high-risk and low-risk patches for a good survival sample. Left panel= original 224 × 224 patch, scale
bars (white insets), 20 µm; middle panels= overlayed saliency map for joint fusion and histopathology (FFPE only) models, Right panel= cell segmentation
predicted by HoverNet50. c Quantitative analysis of cell type composition in extracted 224 × 224 patches of bad survival and good survival samples of the
adult glioma test set. (***P value < 2.2e-16, two sample t test, high-risk N= 78, low-risk N= 78).
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be less cohort-specific while single data models are more prone to
overfitting on a specific training cohort. Indeed, as multimodal
approaches are intrinsically a type of ensemble learning, they can
have an advantage when one of the single modalities is not
accurately captured in external cohorts.

Many DL characteristics such as unsupervised learning and the
capability of handling complex data have increased its imple-
mentation in cancer research54. However, one major limitation is
the need for large datasets which puts constraints on clinical
applications with small sample sizes. Transfer learning can cir-
cumvent this drawback by leveraging a pretrained model for a
different but similar task55. With this in mind, we explored
whether information learned from the pediatric glioma cohort
could be used to predict prognosis on two other pediatric brain
tumors for which samples are sparser, i.e. ependymoma and
medulloblastoma. Our results indeed show that pediatric glioma
models can be directly used for survival prediction on the other
subtypes with reasonable performance. Also, the multimodal
models perform better than either single data model. In line with
the previous results, the early fusion model produces good scores
for both ependymoma and medulloblastoma, with the joint
fusion strategy the best-performing model for ependymoma. The
effectiveness of transfer learning demonstrated in our framework
is potentially helpful for survival predictions in a more general
context, where there is heterogeneity in the patient cohorts, as
well as in the context of pediatric brain tumor subtypes with small
cohort sizes where it is intractable to develop de novo models.

Although NNs have the reputation to be “black boxes”, tech-
niques exist to make (part of) these models interpretable. Here,
we combined saliency maps with cell segmentation analysis to
visualize which histopathology features (tissue morphologies) are
important in calculating the risk score in both the histopathology
and joint model. Post-hoc quantification of cell type composition
in histopathology patches showed a difference in tumor cell and
lymphocyte fraction between predicted bad and good survival
samples. In glioma, lymphocyte infiltration around the tumor has
indeed already been associated with a better prognosis56. We also
investigated how and which of the gene expression features are
related to the model output by backpropagation of the predicted
risk scores and performing a pathway analysis for each sample.
For both the gene expression model and the joint model, known
cancer pathways are found including cell cycle pathways linked to
poor prognosis, and pro-apoptotic signaling related to good
prognosis. For example, PTK6-directed cell cycle activity and
NTRK2/3 activation through RAS, RAC1, and CDK5 pathways are
identified as poor prognosis pathways consistent with previous
reports57–59. Contribution of RUNX2 and RUNX3 expression
is also observed. RUNX genes are frequently deregulated in
various human cancers, indicating their prominent roles in cancer
pathogenesis including glioma52,60. RUNX2 is upregulated in
multiple cancers and is also found to contribute to glial tumor
malignancy60. Elevated RUNX3 expression has also been observed
in various metastatic cancers, such as leukemia61, but in glioma it
has been shown to be a tumor suppressor52, and in our results,
these pathways are enriched in good prognosis. Growing evidence
indeed indicates that the roles of RUNX genes in carcinogenesis
are cell type-specific and context-dependent. Interestingly,
while signaling and regulation of RUNX transcription factors are
amongst the top pathways of the joint fusion model, these
observations are not prevalent in the RNA only model. This
suggests that the joint fusion model benefits from the combina-
tion of histopathology and expression data to uncover relevant
cancer pathways.

There are a couple of important remarks that come with the
proposed methodology. Firstly, the training and feature extrac-
tion for the histopathology data is patch-based, meaning that the

model aims at predicting survival scores for each patch. However,
in model testing, the risk scores of all the patches of a patient are
averaged to get the final risk score. As such, during training we do
not leverage multiple patches to obtain the prediction for one
WSI. One reason for reducing the number of patches per slide
during training is hardware limitations. If multiple patches per
slide would be used to obtain predictions during training, the
total number of slides per training batch would need to be
reduced. However, the Cox loss requires many slides per training
batch to learn the differences in survival times. Therefore, given
the computational restraints, it was not possible to increase the
number of used patches per slide during training. Alternative
approaches could be considered for potential improvement.
One option is using a different metric other than Cox loss, which
does not require many slides per training batch. For example, the
survival problem could be structured as a classification problem,
an approach that has already been applied for the prediction of
lung cancer prognosis62.

Secondly, although these last few years other and newer CNN
architectures have become available, such as DenseNet, EfficientNets,
and InceptionNets63, for the histopathology model a ResNet-50
CNN architecture39 was chosen. While newer, more complex models
might add value they often come with additional computation time,
cost, and potential memory explosion. ResNets on the other hand
provide a good balance between computation needs and model
performance. But, if hardware limitations are not an issue, it could be
worthwhile to explore some newer CNN architectures, especially for
unimodal model development. As multimodal fusion approaches
already have additional computational needs, ResNet architectures
provide a good compromise between too complex and too simple
models. Furthermore, it has already proven its value as a good model
for clinical images, also in brain tumors64,65.

A third remark concerns the variety of multimodal approaches.
The main aim of multimodal learning is to achieve higher
accuracy than when using a single modality by integrating
mutually complementary information from multiple modalities.
So far, most research on multimodal frameworks concerns the
development of effective data fusion approaches across different
modalities. One important decision is at what specific modeling
stage the data fusion will take place. Here, we investigated early
fusion, late fusion, and joint fusion strategies. While all three
results in good performances compared to unimodal models, in
our experiments early fusion seems to be the most robust strategy
overall. However, since different modalities cover data in different
forms, each modality has specific data distributions, data volume,
noise, and thus a different convergence rate. Indeed, learning
different modalities at the same rate often leads to (i) a decreased
performance, or (ii) a negligible better performance compared to
the single data models. Suboptimal learning rates thus prevent
maximal use of the potential of combining complementary
modalities66. In our experiments, for every single modality a grid
search was performed to find the optimized learning rate per
cohort for the unimodal model. In the early and late fusion
approaches, these modality-specific learning rates were kept, and
only the learning rate of the final Cox module was optimized. The
joint fusion model is the most complex multimodal framework
where both modalities are learned simultaneously. To tackle the
higher volume of the histopathology data, different learning rates
are used, with a higher learning rate for the histopathology data
and a smaller learning rate for the genomic data as well as a
different learning rate for the last Cox module. These multimodal
learning rates were determined via grid search and fine-tuned by
empirical testing. But, although the fusion of data modalities
boosted the survival predictions in both our training cohorts and
external cohorts, the multimodal frameworks might benefit from
more optimized learning rates. The idea to find modality-specific
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learning rates has recently gained attention and methods are
becoming available66–68. While these are currently still compu-
tational intense, optimized modality-specific learning rates will
avoid overfitting of some modalities and underfitting of others,
and ultimately lead to (i) better representation of each modality,
(ii) detection of the relevant biological interplay between mod-
alities, and (iii) improved generalization to different cohorts.

Lastly, while we show that our multimodal approaches have
better performance for prognosis prediction than using each
modality in isolation, further evaluation is needed to compare our
models with existing clinical models. Stratification in current
clinical practice is based on a combination of clinical and/or
pathological and/or molecular features. In comparison, our
approach aims to handle this heterogeneity in one model. While
our results suggest that data fusion is a promising strategy to
address the differences between diagnostic subcategories in a
unified framework, an additional assessment is needed to proof
the value and utility in a real clinical setting.

In summary, for complex diseases such as brain tumors, single
data modalities are often not sufficient to disclose the disease
trajectory. Neither genomic features nor imaging completely
explains the behavior and variable prognosis of brain tumors in
pediatric or adult patients. DL methods have now enabled com-
bining these heterogeneous data sources such as images and
genomic data. Here, we showed that a combined model is better
at capturing patient prognosis. Moreover, interpretation of the
joint molecular-imaging model shows that selected genes define
molecular pathways that have previously been involved in
determining the prognosis of brain tumor patients. This suggests
that a multimodal deep learning approach is a promising way of
capturing the disease trajectories of brain tumor patients. In
future work, the data fusion framework can be expanded to
include more data modalities, such as for example radiographic
images. CT scans and MRI images have already been used in
tumor survival prediction69 and incorporating them may poten-
tially further improve the survival prediction performance.

Data availability
Datasets analyzed during the current study were derived from their respective data
portals: (i) Adult glioma cohort from The Cancer Genome Atlas (TCGA) available via the
GDC data portal (https://portal.gdc.cancer.gov/repository), (ii) Pediatric brain tumor
cohort from the Pediatric brain Tumor Atlas (PBTA) available through the Gabriella
Miller Kids First Data Resource Portal (KF-DRC, https://kidsfirstdrc.org) and (iii) Adult
glioblastoma cohort from the National Cancer Institute’s Clinical Proteomic Tumor
Analysis Consortium (CPTAC) with RNA-seq data available at the GDC data portal
(https://portal.gdc.cancer.gov/repository) and the pathology images at The Cancer
Imaging Archive (TCIA) Portal (https://www.cancerimagingarchive.net/datascope/cptac/
home/). Source data underlying the graphs in the main figures are available as
Supplementary Data 1. All other data are available from the corresponding author upon
reasonable request.

Code availability
The source code of the models used to perform the results and analyses presented in this
manuscript are available on GitHub at https://github.com/gevaertlab/
MultiModalBrainSurvival and Zenodo at https://doi.org/10.5281/zenodo.7644876.
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