
Systems biology

Implementation of a practical Markov chain Monte Carlo

sampling algorithm in PyBioNetFit

Jacob Neumann1, Yen Ting Lin 2, Abhishek Mallela 3, Ely F. Miller1,

Joshua Colvin1, Abell T. Duprat1, Ye Chen4, William S. Hlavacek 5,* and

Richard G. Posner1,*

1Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA, 2Information Sciences Group, Computer,

Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA, 3Department of

Mathematics, University of California, Davis, CA 95616, USA, 4Department of Mathematics and Statistics, Northern Arizona University,

Flagstaff, AZ 86011, USA and 5Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los

Alamos, NM 87545, USA

*To whom correspondence should be addressed.

Associate Editor: Christina Kendziorski

Received on September 21, 2021; revised on November 30, 2021; editorial decision on December 31, 2021; accepted on January 3, 2022

Abstract

Summary: Bayesian inference in biological modeling commonly relies on Markov chain Monte Carlo (MCMC) sam-
pling of a multidimensional and non-Gaussian posterior distribution that is not analytically tractable. Here, we pre-
sent the implementation of a practical MCMC method in the open-source software package PyBioNetFit (PyBNF),
which is designed to support parameterization of mathematical models for biological systems. The new MCMC
method, am, incorporates an adaptive move proposal distribution. For warm starts, sampling can be initiated at a
specified location in parameter space and with a multivariate Gaussian proposal distribution defined initially by a
specified covariance matrix. Multiple chains can be generated in parallel using a computer cluster. We demonstrate
that am can be used to successfully solve real-world Bayesian inference problems, including forecasting of new
Coronavirus Disease 2019 case detection with Bayesian quantification of forecast uncertainty.

Availability and implementation: PyBNF version 1.1.9, the first stable release with am, is available at PyPI and can
be installed using the pip package-management system on platforms that have a working installation of Python 3.
PyBNF relies on libRoadRunner and BioNetGen for simulations (e.g. numerical integration of ordinary differential
equations defined in SBML or BNGL files) and Dask.Distributed for task scheduling on Linux computer clusters. The
Python source code can be freely downloaded/cloned from GitHub and used and modified under terms of the BSD-3
license (https://github.com/lanl/pybnf). Online documentation covering installation/usage is available (https://pybnf.
readthedocs.io/en/latest/). A tutorial video is available on YouTube (https://www.youtube.com/watch?v=
2aRqpqFOiS4&t=63s).

Contact: wish@lanl.gov or richard.posner@nau.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Given a model structure, a dataset and a prior distribution for model
parameter values, Bayesian inference (Gelman et al., 2014) is a
dataset-dependent transformation from the prior distribution, which
encodes pre-existing knowledge (external to the dataset of interest)
about parameter values, to a posterior distribution, which probabil-
istically quantifies new data-informed parameter estimates. The pos-
terior is typically characterized through Markov chain Monte Carlo
(MCMC) sampling (Andrieu et al., 2003). The MCMC sampling

problems that arise in biological modeling applications of Bayesian
inference are often challenging, because the posterior is typically far
from Gaussian and multidimensional. A major benefit of Bayesian
inference is the ability to quantify uncertainties in parameter esti-
mates (in terms of the parameter posterior), and also in predictions,
which is accomplished by performing an array of simulations based
on different samples from the parameter posterior. Thus, practical
MCMC sampling methods are important for assessing the reliability
of predictions obtained from data-driven model parameterizations.

VC The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1770

Bioinformatics, 38(6), 2022, 1770–1772

https://doi.org/10.1093/bioinformatics/btac004

Advance Access Publication Date: 5 January 2022

Applications Note

https://orcid.org/0000-0001-6893-8423
https://orcid.org/0000-0003-3588-5358
https://orcid.org/0000-0003-4383-8711
https://github.com/lanl/pybnf
https://pybnf.readthedocs.io/en/latest/
https://pybnf.readthedocs.io/en/latest/
https://www.youtube.com/watch?v=2aRqpqFOiS4&hx0026;t=63s
https://www.youtube.com/watch?v=2aRqpqFOiS4&hx0026;t=63s
https://www.youtube.com/watch?v=2aRqpqFOiS4&hx0026;t=63s
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac004#supplementary-data
https://academic.oup.com/


Few software tools provide implementations of MCMC sam-
pling methods that enable fast setup of Bayesian inference jobs
through compatibility with standardized model-specification for-
mats used in biological modeling, such as SBML (Keating et al.,
2020), BNGL (Faeder et al., 2009) and PySB (Lopez et al., 2013).
Examples of such software tools include BayesSB (Eydgahi et al.,
2013), PyDREAM (Shockley et al., 2018), PTEMPEST (Gupta
et al., 2018) and PyBioNetFit (PyBNF) (Thomas et al., 2016; Mitra
et al., 2019).

In recent work (Lin et al., 2021), we used an adaptive MCMC
sampling method described by Andrieu and Thoms (2008) to make
daily 7-day ahead forecasts of newly detected Coronavirus Disease
2019 (COVID-19) cases with Bayesian quantification of forecast
uncertainties. In this work, we found the sampling method to be
easy to use and efficient. Thus, we implemented this method in
PyBNF, a general-purpose software package designed to support
parameterization of biological models. We also added various other
features, such as support for a negative binomial likelihood function
NBðr; pÞ wherein the hyperparameter r may be specified before in-
ference or jointly inferred with model parameters. We evaluated
new PyBNF features by solving an array of test problems and com-
paring the results against independently generated results.

2 Methods and implementation

PyBNF’s new MCMC sampler, am, is based on the pseudocode
labeled ‘Algorithm 4’ in Andrieu and Thoms (2008). See also
Supplementary Methods. The am method is adaptive, meaning that
the covariance matrix of the multivariate Gaussian proposal distri-
bution (i.e. the distribution used to stochastically generate move
proposals), is learned/optimized on-the-fly during sampling. Both
the starting point for sampling and the algorithmic parameters of
the proposal distribution are initialized on the basis of user-supplied
inputs. Warm starts and continuation are supported. Multiple
chains may be generated in an embarrassingly parallel fashion on a
computer cluster and combined to decrease the wall-clock time
required to complete an inference job. If this approach is used, each
chain should be evaluated to check for efficient sampling as recom-
mended in Supplementary Methods. Usage of the am method is fully
explained in the online PyBNF documentation.

Inference job setup files for test problems are included in the
latest PyBNF distribution. The files are also provided as
Supplementary Files S1–S4, which are ZIP archives. As described in
Mitra et al. (2019), inference job setup requires a configuration file
(marked by a CONF filename extension), a model-definition file
compatible with either BioNetGen (Harris et al., 2016) or
libRoadRunner (Somogyi et al., 2015) (marked by a BNGL or XML
filename extension), and one or more files containing data in a tabu-
lar format (marked by an EXP filename extension). PyBNF is com-
patible with models available in BNGL (Faeder et al., 2009) and
SBML (Keating et al., 2020) formats. BNGL and SBML files can be
generated by diverse tools, including BioNetGen (Harris et al.,
2016), PySB (Lopez et al., 2013) and Tellurium (Choi et al., 2018).

3 Results

To assess the correctness and practicality of the am method, we used
it to solve a series of increasingly challenging test problems. We eval-
uated am relative to mh, a sampler implemented in PyBNF version
1.01 (Mitra et al., 2019) that uses a fixed move proposal distribu-
tion, and against PyBNF-independent problem-specific solutions.

We started with a linear regression problem involving synthetic
data (Supplementary File S1 and Supplementary Methods). For this
problem, an analytical expression for the posterior exists. PyBNF’s
am method was able to reconstruct the analytical posterior nearly
exactly (Supplementary Fig. S1), whereas mh failed with the same
computational budget.

We next considered a non-linear regression problem: inferring the
values of four parameters in a two-phase exponential decay model for
viral dynamics under therapy (Ho et al., 1995; Perelson et al., 1996;

Supplementary File S2 and Supplementary Methods). Results gener-
ated using PyBNF’s am method were found to be consistent with
results generated using problem-specific code (Supplementary Figs
S2–S4).

Using a previously established benchmark problem (Harmon
et al., 2017; Mitra et al., 2019; Supplementary File S3 and
Supplementary Methods), we evaluated the efficiency of am relative
to mh. Results obtained using the two methods are consistent
(Supplementary Fig. S5). For each of the 16 adjustable parameters in
the benchmark problem, we calculated the effective sample size
(ESS) for an equal-length chain of parameter values obtained using
either am or mh (Supplementary Methods and Supplementary Table
S1). ESS for am was typically larger than for mh, indicating greater
efficiency. The ratio ESSam/ESSmh ranged from 3.03 to 27.7, with a
mean (median) of 11.5 (10.5).

Finally, we used PyBNF’s am method to reproduce inferences
performed in the epidemiological forecasting study of Lin et al.
(2021; Supplementary File S4 and Supplementary Methods). As
illustrated in Figure 1, marginal posteriors found using the problem-
specific code of Lin et al. (2021) and am are indistinguishable.
Supplementary Figures S6–S20 show the full results of our compari-
son of am against the code of Lin et al. (2021).

4 Conclusions

We find that the new am method available in PyBNF version 1.1.9 is
significantly more efficient than the mh method available in earlier
versions of PyBNF. We also find that the adaptive sampler is prac-
tical, in that it can be used to solve real-world inference problems,
including challenging inference problems that arose in a recent
COVID-19 forecasting effort (Lin et al., 2021; Fig. 1 and
Supplementary Figs S6–S20).

Funding

This work was supported by NIH/NIGMS grant [R01GM111510] and the

LDRD program at Los Alamos National Laboratory.

Conflict of Interest: none declared.

References

Andrieu,C. et al. (2003) An introduction to MCMC for machine learning.

Mach. Learn., 50, 5–43.

Andrieu,C. and Thoms,J. (2008) A tutorial on adaptive MCMC. Stat.

Comput., 18, 343–373.

Choi,K. et al. (2018) Tellurium: an extensible python-based modeling environ-

ment for systems and synthetic biology. Biosystems, 171, 74–79.

Eydgahi,H. et al. (2013) Properties of cell death models calibrated and com-

pared using Bayesian approaches. Mol. Syst. Biol., 9, 644.

Faeder,J.R. et al. (2009) Rule-based modeling of biochemical systems with

BioNetGen. Methods Mol. Biol., 500, 113–167.

Gelman,A. et al. (2014) Bayesian Data Analysis, 3rd edn. CRC Press, Boca

Raton, FL.

Gupta,S. et al. (2018) Evaluation of parallel tempering to accelerate Bayesian

parameter estimation in systems biology. In: 2018 26th Euromicro

International Conference on Parallel, Distributed and Network-based

Fig. 1. A comparison of selected marginal posteriors was obtained using PyBNF’s

am method (blue) and the problem-specific code of Lin et al. (2021; light red). Dark

red indicates overlap. The inference problem is that considered in Supplementary

Figure S7, which is related to a forecast of COVID-19 incidence for the metropol-

itan statistical area encompassing Los Angeles, CA. Nomenclature is the same as

that of Lin et al. (2021)

Implementation of a practical MCMC sampling algorithm 1771

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac004#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac004#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac004#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac004#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac004#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac004#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac004#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac004#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac004#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac004#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac004#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac004#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac004#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac004#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac004#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac004#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac004#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac004#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac004#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac004#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac004#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac004#supplementary-data


Processing (PDP), Institute of Electrical and Electronics Engineers (IEEE),

Piscataway, New Jersey, USA, pp. 690–697.

Harmon,B. et al. (2017) Timescale separation of positive and negative signaling cre-

ates history-dependent responses to IgE receptor stimulation. Sci. Rep., 7, 15586.

Harris,L.A. et al. (2016) BioNetGen 2.2: advances in rule-based modeling.

Bioinformatics, 32, 3366–3368.

Ho,D.D. et al. (1995) Rapid turnover of plasma virions and CD4 lymphocytes

in HIV-1 infection. Nature, 373, 123–126.

Keating,S.M. et al.; SBML Level 3 Community members (2020) SBML Level

3: an extensible format for the exchange and reuse of biological models.

Mol. Syst. Biol., 16, e9110.

Lin,Y.T. et al. (2021) Daily forecasting of regional epidemics of Coronavirus

Disease with Bayesian uncertainty quantification, United States. Emerg. Inf.

Dis., 27, 767–778.

Lopez,C.F. et al. (2013) Programming biological models in Python using

PySB. Mol. Syst. Biol., 9, 646.

Mitra,E.D. et al. (2019) PyBioNetFit and the biological property specification

language. iScience, 19, 1012–1036.

Perelson,A.S. et al. (1996) HIV-1 dynamics in vivo: virion clearance rate,

infected cell life-span, and viral generation time. Science, 271,

1582–1586.

Shockley,E.M. et al. (2018) PyDREAM: high-dimensional parameter inference

for biological models in python. Bioinformatics, 34, 695–697.

Somogyi,E.T. et al. (2015) LibRoadRunner: a high performance SBML simu-

lation and analysis library. Bioinformatics, 31, 3315–3321.

Thomas,B. et al. (2016) BioNetFit: a fitting tool compatible with BioNetGen,

NFsim and distributed computing environments. Bioinformatics, 32,

798–800.

1772 J.Neumann et al.


