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Abstract

Summary: echolocatoR integrates a diverse suite of statistical and functional fine-mapping tools to identify, test en-
richment in, and visualize high-confidence causal consensus variants in any phenotype. It requires minimal input
from users (a summary statistics file), can be run in a single R function, and provides extensive access to relevant
datasets (e.g. reference linkage disequilibrium panels, quantitative trait loci, genome-wide annotations, cell-type-
specific epigenomics), thereby enabling rapid, robust and scalable end-to-end fine-mapping investigations.

Availability and implementation: echolocatoR is an open-source R package available through GitHub under the
GNU General Public License (Version 3) license: https://github.com/RajLabMSSM/echolocatoR.

Contact: brian_schilder@alumni.brown.edu or towfique.raj@mssm.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genome-wide association studies (GWAS) across a variety of pheno-
types and quantitative trait loci (QTL) have identified many signifi-
cant genetic associations. However, widespread non-independence
between genomic variants due to linkage disequilibrium (LD) makes
it difficult to distinguish causal variants from correlated non-causal
variants (Pasaniuc and Price, 2017; Pritchard and Przeworski, 2001;
Yang et al., 2011). Fine-mapping aims to identify the causal var-
iant(s) and thus the mechanisms underlying a phenotype (Broekema
et al., 2020; Hutchinson et al., 2020; Schaid et al., 2018; Spain and
Barrett, 2015). This methodology has been especially important to
the study of medical conditions such as diabetes (Gaulton et al.,
2015; Mahajan et al., 2018), rheumatoid arthritis (Kichaev and
Pasaniuc, 2015; Westra et al., 2018) and obesity (Zhang et al.,
2018).

Many fine-mapping tools have been developed over the years
(Broekema et al., 2020; Hutchinson et al., 2020; Schaid et al., 2018;
Spain and Barrett, 2015), each of which can nominate partially over-
lapping sets of putative causal variants. It can therefore be useful to
compare results from multiple fine-mapping methods with comple-
mentary strengths and weaknesses, such as the ability to model mul-
tiple causal variants or incorporate functional annotations.
However, these powerful methods are underutilized in no small part
due to technical reasons (e.g. lack of availability in the same

programming language, idiosyncratic file inputs/outputs, gathering
and formatting of datasets). We therefore developed echolocatoR,
an open-source R package that conducts end-to-end statistical and
functional fine-mapping, annotation, enrichment and plotting that
only requires GWAS/QTL summary statistics as input (Fig. 1a). In
addition, we have launched the echolocatoR Fine-mapping Portal
(https://rajlab.shinyapps.io/Fine_Mapping_Shiny), an interactive
database of standardized fine-mapping results across 11þ GWAS/
QTL datasets ( Navarro et al., 2021; de Paiva Lopes et al., 2021;
Schilder and Raj 2020). All of these fine-mapping results, plots and
associated LD data are API-searchable and accessible, and can be
imported directly into R via designated echolocatoR functions (see
vignette: https://rajlabmssm.github.io/echolocatoR/articles/PD_loci_
vignette.html).

2 Implementation

The full echolocatoR fine-mapping pipeline can be run using just the
finemap_loci() function, which ultimately produces an organized
folder structure containing study- and locus-specific multi-tool fine-
mapping results tables and annotated multi-track plots. If some stage
of the pipeline has been run previously for a given locus, finema-
p_loci() will automatically detect and use the associated files, saving
time for when testing different parameters. Most echolocatoR
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functions can run on a standard laptop (tested on a MacBook Pro
with a 2.3 GHz Intel Core i5 processor and 8 GB 2133 MHz
LPDDR3 memory), or take full advantage of its parallelizing capa-
bilities on a high-performance computing (HPC) cluster.

2.1. Rapid, robust and scalable fine-mapping
By default, echolocatoR automatically indexes the user’s summary
statistics file using Tabix (Li, 2011) for rapid on the fly querying.
Locus-specific summary statistics are then extracted, standardized
and filtered according to user-controllable parameters such as win-
dow size (61 Mb surrounding the index SNP by default), minor al-
lele frequency (MAF) threshold, LD block and many other features.

echolocatoR integrates a suite of existing fine-mapping tools,
which currently includes: ABF (Benner et al., 2016; Wakefield,
2007; Wellcome Trust Case Control Consortium et al., 2012),
GCTA-COJO (Yang et al., 2012), FINEMAP (Benner et al., 2016),
SuSiE (Wang et al., 2020), PolyFun (Weissbrod et al., 2020) and
PAINTOR (Kichaev et al., 2017), the latter of which can be run
with (i.e. PAINTORþ) or without (PAINTOR-) functional annota-
tions. Colocalization tests between pairs of GWAS and/or QTL can
also be performed using coloc (Giambartolomei et al., 2014) to iden-
tify locus-specific phenotype-relevant tissues and cell types and pri-
oritize GWAS/QTL datasets for joint functional fine-mapping.

Each fine-mapping tool produces its own 95% Credible Set
(CS95%). The precise meaning of this term varies by tool but can be
understood as the SNPs with 95% probability of being causal in the
phenotype of interest. However, inter-tool comparisons have
observed that there is substantial heterogeneity in their CS95%

(Weissbrod et al., 2020), leading to questions about the validity of
any single tool in all situations, which can be strongly influenced by
the degree of LD complexity and the true number of causal SNPs
(Pasaniuc and Price, 2017; Pritchard and Przeworski, 2001; Yang
et al., 2011). We, therefore, define Consensus SNPs as those that
were identified in the CS95% of two or more tools, representing high-
confidence putative causal SNPs. Indeed, we have shown that these
Consensus SNPs have significantly higher predicted regulatory im-
pact than either lead GWAS SNPs or individual tool CS95% SNP sets
in Parkinson’s Disease (PD) (Schilder and Raj, 2020). Within the
results files, echolocatoR automatically adds columns for Support
(the number of tools that a given SNP was in the CS95%), Consensus
SNP status, as well as mean posterior probabilities (PP) across all
fine-mapping tools used.

2.2. Extensive database access
A common barrier to performing accurate fine-mapping is access to
the appropriate LD reference panels (Benner et al., 2017). Currently,
API access is provided for 1000 Genomes Phases 1 & 3 (with select-
able subpopulations) (The 1000 Genomes Project Consortium,
2015), UK Biobank (Bycroft et al., 2018; Sudlow et al., 2015;
Weissbrod et al., 2020) or user-supplied VCF files or LD matrices.
Unlike existing LD querying tools (Machiela and Chanock, 2015),
echolocatoR does not restrict the size of LD matrices to allow com-
prehensive fine-mapping of all loci regardless of size or complexity.

2.3. Genome-wide annotations
Genome-wide annotations can be used to compute SNP-wise prior
probabilities for functional fine-mapping (e.g. PolyFun,
PAINTORþ). API access to a large compendium of genome-wide
annotations and epigenomic data is provided, including tissue and/
or cell type/line-specific chromatin marks from Roadmap
(Bernstein et al., 2010; Satterlee et al., 2019), ENCODE (Jou
et al., 2019), genic annotations through biomaRt (Durinck et al.,
2009), HaploReg (Ward and Kellis, 2012; Zhbannikov et al.,
2017), cell-type-specific epigenomic datasets (Nott et al., 2019;
Corces et al., 2020) and hundreds of additional annotations
through the R package XGR (Fang et al., 2016). catalogueR
(https://github.com/RajLabMSSM/catalogueR), another R package
developed by our group, provides rapid API access to full summary
statistics from 112 uniformly reprocessed QTL datasets (across 21
studies) with parallelized Tabix queries. echolocatoR can utilize all
genome-wide annotations and datasets to compare enrichment
across different SNP groups (e.g. GWAS lead SNPs versus CS95%

versus Consensus SNPs) using XGR (Fang et al., 2016), GoShifter
(Trynka et al., 2015), S-LDSC (Bulik-Sullivan et al., 2015;

Fig. 1. echolocatoR facilitates automated end-to-end fine-mapping. (a) Workflow of

the echolocatoR pipeline: (i) user specifies the path to their full GWAS/QTL sum-

mary statistics, (ii) locus subsets are queried and saved in a standardized format, (iii)

LD is extracted, computed from VCF or supplied by the user, (iv) statistical, func-

tional and/or trans-ethnic/joint fine-mapping are performed, (v) results are visualized

at study-, locus- and variant-level scales, (vi) in silico validation tests for differences

in functional impact between SNP groups of interest, (vii) GWAS/QTL summary sta-

tistics, fine-mapping results and annotations are merged into a file with one SNP per

row, (viii) narrowed SNPs lists can be targeted in validation experiments. (b)

Example multi-track plot for the Parkinson’s Disease locus MED12L: (i) Manhattan

plot of GWAS -log10(P-values) colored by the degree of correlation (r2) with the lead

SNP, (ii) gene transcript models, (iii) GWAS -log10(P-values) zoomed in at 20�, (iv)

per-SNP posterior probabilities (PP) from four different fine-mapping tools, (v)

histogram and called peaks across multiple brain cell-type-specific epigenomic assays

(Nott et al., 2019), (vi) cell-type-specific PLAC-seq interactions, PLAC-seq anchors,

enhancers and promoters (Nott et al., 2019). The vertical red line indicates the loca-

tion of the lead GWAS SNP, while the vertical gold lines indicate the location of

Consensus SNPs
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Finucane et al., 2015; Gazal et al., 2017) and/or bootstrapping
analyses.

2.4. In silico validation
We also built in API access to in silico validation datasets, including
massively parallel reporter assays (MPRA) (Tewhey et al., 2018; van
Arensbergen et al., 2019), S-LDSC heritability enrichment and pre-
dictions from multiple machine learning models trained on tissue-
and cell-type-specific epigenomic annotations: Basenji (Kelley et al.,
2018) and DeepSEA (Zhou and Troyanskaya, 2015) (provided by
Dey et al. (2020)) as well as IMPACT (Amariuta et al., 2019).
Finally, we integrated motifbreakR which uses a comprehensive set
of algorithms and position weight matrices (n¼9933) to assess
whether fine-mapped variants fall within sequence motifs and to
what extent they disrupt binding to specific transcription factors
(Coetzee et al., 2015).

2.5. Multi-track plotting
High-resolution multi-track plots are automatically generated for
each locus (Fig. 1b) and can include any combination of the follow-
ing tracks: Manhattan plots of GWAS/QTL P-values or tool-specific
fine-mapping PP colored by LD with the lead SNP, mean PP, gene
body models and all aforementioned genome-wide annotations.
Plots can be further customized as returned patchwork or ggplot
objects.

3 Conclusion

Overall, echolocatoR removes many of the primary barriers to per-
form a comprehensive fine-mapping investigation while improving
the robustness of causal variant prediction through multi-tool con-
sensus SNP identification and in silico validation using a large com-
pendium of (epi)genome-wide annotations. Thus, we hope that
echolocatoR will make fine-mapping a standard practice, thereby
uncovering human disease etiology and accelerating the develop-
ment of novel therapeutics.
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