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Abstract

Motivation: Accurate disease phenotype prediction plays an important role in the treatment of heterogeneous dis-
eases like cancer in the era of precision medicine. With the advent of high throughput technologies, more compre-
hensive multi-omics data is now available that can effectively link the genotype to phenotype. However, the inter-
active relation of multi-omics datasets makes it particularly challenging to incorporate different biological layers to
discover the coherent biological signatures and predict phenotypic outcomes. In this study, we introduce
omicsGAN, a generative adversarial network model to integrate two omics data and their interaction network. The
model captures information from the interaction network as well as the two omics datasets and fuse them to gener-
ate synthetic data with better predictive signals.

Results: Large-scale experiments on The Cancer Genome Atlas breast cancer, lung cancer and ovarian cancer data-
sets validate that (i) the model can effectively integrate two omics data (e.g. mRNA and microRNA expression data)
and their interaction network (e.g. microRNA-mRNA interaction network). The synthetic omics data generated by the
proposed model has a better performance on cancer outcome classification and patients survival prediction com-
pared to original omics datasets. (i) The integrity of the interaction network plays a vital role in the generation of syn-
thetic data with higher predictive quality. Using a random interaction network does not allow the framework to learn
meaningful information from the omics datasets; therefore, results in synthetic data with weaker predictive signals.
Availability and implementation: Source code is available at: https://github.com/CompbioLabUCF/omicsGAN.
Contact: wzhang.cs@ucf.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

omics data along with clinical information of patients can help

1 Introduction
bridging the gap between genotype and phenotype by exploring the

Complex diseases such as cancer are highly heterogeneous with dif-
ferent subtypes leading to varying clinical outcomes including prog-
nosis, response to treatment and chances of recurrence and
metastasis (Ahmed et al., 2020; Krzyszczyk et al., 2018; Wang et al.,
2014b). Disease phenotype prediction has been the subject of inter-
est to clinicians and patients for many decades. The recent develop-
ments in high throughput sequencing technologies are capable of
measuring molecular activities in cells and allow researchers to ob-
tain multi-omics data with sufficient quality and yield (Goodwin
et al., 2016). It has revolutionized medical and biological research
by offering a more comprehensive view of the underlying biological
process of disease and identify accurate molecular signatures for
characterizing or predicting disease phenotypes. Analysis of multi-

flow of information within different omics layers (Subramanian
et al., 2020). These omics layers provide non-redundant predictive
signals for predicting therapeutic response. Removing one of them in
a prediction system will lead to performance degradation (Wang
et al., 2014a). Therefore, multi-omics data may provide a comple-
mentary set of information to understand the molecular basis of dis-
eases. Predicting the phenotype using the multi-omics data as
independent sets of features will fall short in characterizing the
prediction.

Disease phenotypes depend on molecular profiles and interplay at gen-
omic, epigenomic, transcriptomic, proteomic and metabolomic levels
(Subramanian et al., 2020) which are interconnected with each other
through complex networks (Ahmed et al, 2021). For instance,
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mictoRNA (miRNA) regulates mRNA expression by complementarily
binding to recognition sequences in the 3’ untranslated region of their tar-
get mRNAs leading to mRNA degradation and/or mRNA translation in-
hibition (Yeh et al., 2017). The abundance of a particular miRNA does
not illustrate the full picture without knowing which mRNAs get inhibited
by that miRNA; because miRNA does not directly influence the pheno-
type; rather, regulates the mRNA translation into protein that subsequent-
ly determines the phenotype. Moreover, mRNA can be regulated by other
modulators like RNA binding protein (RBP) (Nussbacher and Yeo,
2018). RBPs bind RNA through globular RNA-binding domains (RBDs)
and alter the expression of the bound RNAs (Hentze et al., 2018). RNA-
RBP interaction obtained from crosslinking and immunoprecipitation-
based CLIP-Seq can also be applied to characterize the relation between
omics data. Hence, integrating the interaction network into multi-omics
data analysis will capture the regulatory effect and establish a better cor-
relation with the phenotype.

Several advanced multi-omics data integration frameworks have
been proposed in the last five years (Argelaguet et al., 2018; Nguyen
et al., 2019; Rappoport and Shamir, 2019; Zhou et al., 2019).
However, few approaches link different omics profiles using molecu-
lar interaction (Koh et al., 2019). Most of them ignore the relations
across different biological layers in their analysis. The power of high
throughput technologies cannot be fully utilized unless the multi-
omics data with its intermodal relations are considered in studies.

In recent vyears, generative adversarial networks (GAN)
(Goodfellow et al., 2014) has gained popularity in solving problems
within the scope of computational biology. GANs take random
noise or predefined data as input and generate plausible synthetic
data similar to a real dataset by imitating the distribution of the real
data. There are several studies that use GAN-based algorithms to
generate data from single or multiple omics datasets. Kim et al.
(2018) used GAN for better biomarkers identification by generating
a reconstructed functional interaction network from multi-omics
datasets. Ghahramani et al. (2018) integrated diverse single-cell
RNAseq (scRNA-seq) datasets from different labs and experimental
protocols to simulate realistic scRNA-seq data that covers the full
cell type diversity. Park et al. (2020) on the other hand used GAN to
generate gene expression from bulk RNA-seq datasets. GANs can
learn non-linear relationships between features of omics data during
training that can be used later for additional insight (Ghahramani
et al., 2018). It can handle missing data and also promising for miss-
ing value imputation because of its capability of learning and imitat-
ing any distribution of data (Xu et al., 2020). Based on its property
of imitating distribution, we can design a GAN with one omics data
from one distribution as input to the generator and another omics
data with different distribution as real dataset in the discriminator to
generate a synthetic data retaining information from both omics
datasets.

In this study, we propose a biologically motivated deep learning-
based model, omicsGAN, to predict disease phenotype by integrat-
ing two omics data and the interaction between them (e.g. mRNA
expression, miRNA expression and miRNA-mRNA interaction net-
work). The proposed model introduces a generative adversarial
method to generate a new enriched feature set for each omics data
combining information from the other omics dataset and the inter-
action network resulting in a better prediction. Experimental results
verify that our proposed framework generates datasets with stronger
molecular signatures to better understand the biological mechanism
that leads to the disease state and improve disease outcome predic-
tion compared to the biological features derived from single or con-
catenated omics data.

2 Materials and methods

In this section, we first introduce the mathematical notations
employed in this study, followed by the proposed framework,
omicsGAN, for generating synthetic omics data for disease outcome
prediction using multi-omics data. The framework can take any two
omics data with biological relations between each other as input. In
this section, we used miRNA, mRNA and miRNA-mRNA inter-
action network for illustrative purposes. We then discuss the

evaluation metrics and introduce two evaluation methods; a classifi-
cation model and a penalized Cox regression model that use the syn-
thetic data for disease phenotype prediction and patient survival
prediction, respectively.

2.1 Overview of the framework

For the multi-omics data analysis, using extra omics data as an inde-
pendent feature set provides additional information for downstream
analysis. However, different omics profiles are often linked with
each other through a complex biological interaction network. Our
proposed framework, omicsGAN, can capture the information from
this inter-omics network and integrate it with the omics datasets
through a GAN to update them iteratively. After successful training
of the network, it will generate new feature sets corresponding to
each omics data that contain information from both modality and
their interaction network. In this section, the framework is intro-
duced on mRNA and miRNA expression datasets; however, this
framework can work with any two omics data that are related to
each other, given that their interactions are biologically meaningful.
mRNA and miRNA expression are correlated to disease phenotype,
although, the bipartite interaction network between them can be
leveraged to increase the correlation by incorporating miRNA regu-
lation on mRNA translation. mRNAs directly influence phenotype
by translating into proteins that control all physiological activities in
a cell; however, miRNA binds to mRNA and regulates its translation
into protein, thus indirectly controls the phenotype. From a biologic-
al point of view, knowing the expression of a miRNA does not pro-
vide enough information without knowing the mRNAs that it
targets. For an accurate and realistic downstream analysis, realizing
the interaction between omics data into calculation is crucial as well
as challenging for the researchers.

The notations to define the proposed model, omicsGAN, are
summarized in Table 1. Let N be the adjacency matrix of miRNA-
mRNA interaction network and the dimension of the network is
p x m, where p is the number of miRNAs and 2 is the number of
mRNAs. The dimensions of the mRNA (X) and miRNA (Y) expres-
sion data are m x n and p X n, respectively, with 7z being the number
of samples. Updated (synthetic) mRNA (H®) and miRNA (H;k))
where k € {1,2,3,....,K}, will correspond to the dimension of the
input mRNA and miRNA expression datasets, respectively, and K is
the total number of updates in omicsGAN.

In this study, we predict disease outcome using two omics data
and the interaction network between them as illustrated in
Figure 1a. The framework takes mRNA (X), miRNA (Y) and nor-
malized interaction network (S) as input and iteratively updates
them to find two new feature sets that incorporates information
from both omics data and their biological interactions, where § =
D,’ND,*. Dx and Dy are two diagonal matrices with Dx(7,i) =
> ING,#)| and Dy (i,i) = 37, IN(7,/)|. A classification model is then
applied on the new feature sets to predict the disease phenotype.
Figure 1b and c illustrate the frameworks for the first update (k=1)
of the mRNA and miRNA datasets, respectively. Each box in

Table 1. Notations for omicsGAN

Name Definition

X e R mRNA expression obtained from RNA-seq

Y e R miRNA expression obtained from miRNA-seq

hik) € R™” Intermediate value of mRNA expression in the kth update
h(yk) € RV Intermediate value of miRNA expression in the kth update
H® ¢ R  mRNA expression (synthetic) in the kth update

H§k> € R”*”  miRNA expression (synthetic) in the kth update

Z, e R Final mRNA expression (synthetic), Z, = chk,)

Z, € R Final miRNA expression (synthetic), Z, = H;k”)

N € {-1,1}”*"Adjacency matrix of miRNA-mRNA interaction network

Dx € R"™™  Diagonal matrix: Dx (i, i) = >, [N(j, 1)
Dy € RP*P Diagonal matrix: Dy (i,7) = 3=, IN(i, /)| )
S € R Normalized adjacency matrix, S = D’ND,?
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(a). Deep learning-based integration of multi-omics dataset to predict cancer phenotype
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Fig. 1. (a) An illustration of the proposed generative adversarial framework (omicsGAN). Two omics datasets are updated once in each box through an adversarial game be-

tween the generator (marked by orange line) and critic (marked by blue line). Generator and critic are trained for each omics data independently and the updated datasets are
applied for disease phenotype prediction. (b) Update of mRNA feature set. Generator uses miRNA expression data and miRNA-mRNA bipartite network to synthesize an
mRNA expression data. Both synthetic and input mRNA expression data are passed through a critic that tries to differentiate the real and synthetic data. (c) Update of miRNA
feature set. Generator uses mRNA expression data and miRNA-mRNA bipartite network to synthesize an miRNA expression data. Both synthetic and input miRNA expres-

sion data are passed through a critic that tries to differentiate the real and synthetic data

Figure la represents kth update which contains two Wasserstein
GANs (wGANSs) (Arjovsky et al., 2017) for two omics data. After
the wGAN:Ss are successfully trained, each generator generates a syn-
thetic data which will be alike the input omics dataset and consid-
ered as the updated omics data from that box. For each update, an
intermediate value for miRNA expression is first generated from the
generator using mRNA expression and normalized adjacency matrix
representing the interaction network. An intermediate value for the
mRNA is also found in a similar procedure:

(k) _ 1) T
b = GHY .S (1
by = GHE.S). @)

This mRNA (or miRNA) intermediate value hik) contains infor-
mation from miRNA (mRNA) in the last update Hg,k"l) and inter-
action network S but has no relation with the mRNA (miRNA)
expression value H*~" in the last update. The intermediate mRNA
(or miRNA) expression value hgf) along with the input mRNA
(miRNA) expression value H*~1) are then passed through a critic to
ensure they are similar to each other:

lossy = Dioss (b, HV) (3)
lossy = Doy (b, Ht V) (4)

Do 1s the critic loss between the intermediate value and the in-
put value. After training by minimizing the critic loss, the updated
mRNA and miRNA dataset Hff) and H™® are learned, respectively.
This step force the distribution of pr (or H;k)) toward the distribu-
tion of Hik’l) (H;kil)). The boxes (updates) in Figure la are
arranged in a cascaded structure where each box is trained separate-
ly. Once we have trained and got updates H® and H;k) from box k,
it is used as input in the following (k+ 1)th box. HLO) =X and

H® =Y are the input to the first layer (box) and after the Kth up-
date, Z, = Hik‘) and Z, = H;k‘) are our final synthetic datasets
which are used for the disease phenotype prediction, where k* is the
update that gives best prediction result on a separated validation set
of samples.

2.2 GAN model

GAN models are a class of unsupervised learning task that automat-
ically discovers and learns patterns and distribution in input data in
a way that the models can be used to generate new examples that
plausibly could have been drawn from the original dataset. It has
been widely used in image generation technologies (Zhang et al.,
2017). With some appropriately placed conditions, it can also be
used in computational biology to synthesize omics data. In general,
GANs use random noise to generate synthetic dataset by requiring
the distribution of the random noise toward the distribution of the
original data. It does not have to retain information from the ran-
dom noise; rather, try to make the noise as close to the original data
as possible in terms of distribution. In multi-omics study, we can
introduce a stream of information from one omics data in place of
random noise and incentivize the GAN to retain information from
this stream by using appropriate hyperparameters as well as forcing
the distribution toward a second omics data. This will ensure the in-
tegration of information from both omics data in the generated sam-
ples. We can also fuse the interaction network in the model through
the generator following the works of Kipf and Welling (2016).

Our proposed pipeline has two separate wGANs for two omics
data to update them into a new representation. Generators in each
wGAN are three layers fully connected neural network that gener-
ates a dataset based on one omics data and the normalized adjacency
matrix following the equations:

HY = (ReLU(ReLU(S  HE W))W w (5)
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B = (ReLU(ReLU(SH* VW ©))w)w ), (6)

where W' is the weight matrix in Ith layer and rectified linear unit
(ReLU) is the activation function. A fully connected neural network
is then trained as a critic to assign values to the obtained intermedi-
ate representation b*) and input dataset H*~". The critic is trained
five times for one training of the generator. Objective function for
training the critic is:

le = C(hy)) — C(HE), )
where C stands for the critic. Critic assigns larger values to the real
samples (i.e. Hﬁf’”) and smaller values to the synthetic ones (i.e.
h)(f)), thus trained by minimizing Equation (7). On the other hand,
generator tries to produce synthetic data that will fool the critic into
thinking it as real. Objective function for training the generator is:

6 = —C(h) +al|b - X]|,, (8)

where o is a coefficient to control the weight put on the two terms
of the equation. For a successful training, generator has to produce
data h;k) realistic enough that will be assigned a larger value by the
critic; therefore, it is trained by minimizing Equation (8). An L,-
norm is added to further steer the updated dataset toward the ori-
ginal mRNA expression and preserve the feature characteristics.
h;k) and H;b for miRNA update is derived using analogous
equations.

2.3 Evaluation methods

Classification model: We designed cancer outcome classification
tasks with the assumption that better quality of the synthetic data-
sets will lead to better signatures for disease phenotype prediction
compared to the original omics data. Support vector machine (SVM)
with linear kernel is implemented as a classifier for all experiments.
The datasets are divided into a ratio of 60%, 20%, 20% as numbers
of training, validation and test samples, respectively. This model was
implemented via Python package sklearn.svm (SVC) (Pedregosa
etal., 2011).

Survival prediction model: A Cox proportional hazards model
with Elastic Net penalty (Simon et al., 2011) is applied to study the
correlation between patient’s overall survival and omics profiles.
The Elastic Net penalty uses a weighted combination of the L;-norm
and L,-norm penalties by maximizing the following log-likelihood
function,

B, 9)

log L(B) — (e 1h] + 5~
im1 i=1

1

where L(B) is the partial likelihood of the Cox model, o« > 0 is a
hyper-parameter that controls the amount of shrinkage, » € [0, 1]
is the relative weight of the L;-norm and L,-norm penalties, and
Pi(i € [1,m]) represents the coefficient for the ith genomic feature
in the omics data. The omics data is randomly splitted into train-
ing (80%) and test (20%) sets. Five-fold cross validation is per-
formed on training data to tune the hyper-parameter «. The high
risk group and low risk group are determined by the prognostic
index (PI) on the independent test set. The PI is the linear compo-
nent of the Cox model, PI = "X csr, where Xiei; is the omics pro-
file of the test set, and its risk coefficient was estimated from the
Cox model fitted on the training set. The high risk and low risk
groups are generated for Kaplan—Meier survival plot by splitting
the ordered PI with equal number of samples in each group in the
test set. Python package scikit survival (Polsterl, 2020) is applied
to implement Cox proportional hazards model with elastic net,
and lifelines (Davidson-Pilon, 2019) is used for Kaplan-Meier
plotting.

3 Experiments

We performed experiments on The Cancer Genome Atlas (TCGA)
datasets to evaluate the performance of omicsGAN with two different
interaction networks [e.g. miIRNA-mRNA interaction network and
transcription factor (TF)-gene interaction network]. In this section,
we first describe the datasets and two interaction networks used in
experiments. Next we introduce the experimental setup where we ex-
plain how to run our proposed model on TCGA data and generate
synthetic omics datasets. Lastly, we performed three experiments to
evaluate the performance of omicsGAN and the quality of its gener-
ated synthetic data: (i) comparing cancer outcome prediction power
of the real and synthetic datasets. The comparison was conducted in
two ways: classifying clinical variables of cancer patients and number
of significant features identified in each dataset; (ii) exploring the im-
pact of an accurate interaction network on the prediction power of
synthetic datasets; (iii) comparing the cancer patient’s overall survival
prediction using real and synthetic datasets.

3.1 Dataset and networks

The proposed framework, omicsGAN, was tested on TCGA breast
invasive carcinoma (BRCA), lung adenocarcinoma (LUAD) and
ovarian serous cystadenocarcinoma (OV) datasets (The Cancer
Genome Atlas Network et al., 2012, The Cancer Genome Atlas
Research Network ez al., 2011, 2014). The RNA-seq mRNA expres-
sion and miRNA expression datasets of each cancer type were down-
loaded from UCSC Xena Hub (Goldman et al., 2020). For the
mRNA expression, the log2(x + 1) transformed RSEM normalized
count with 20 531 genes was used and for the miRNA expression,
the log2(x + 1) transformed RPM value with 2166 miRNAs was
used in this study. The clinical information of the three cancer stud-
ies was downloaded from cBioPortal (Gao et al., 2013). In breast
cancer study, we classify the cancer patients based on estrogen recep-
tor (ER+ versus ER-) and triple negative (TN+ versus TN-) status.
Triple negative breast cancer patients test negative for all three
receptors that are commonly found in breast cancer: estrogen recep-
tors, progesterone receptors and excess HER2 protein. For lung can-
cer and ovarian cancer studies, we classify the patients based on
their survival time.

The miRNA-mRNA interaction network was obtained from
TargetScanHuman (Agarwal et al., 2015). TargetScanHuman reports
effective miRNA-mRNA interactions with context++ model, thereby
providing valuable gene-regulatory networks with the miRNA
involved. miRNA can bind to mRNA to cause more rapid degrad-
ation of the mRNA molecule, therefore reducing the amount of pro-
tein translated from that mRNA. A modified adjacency matrix
represented the interaction network, where each interaction was val-
ued as -1 to imitate that miRNA negatively regulates the expression of
the targeted mRNA and no interaction was valued as 1. The miRNA-
mRNA bipartite network contained 163 568 interactions in total. The
TF-gene interaction network was downloaded from RegNetwork
(Liu et al., 2015). The genes present in both lists of TFs and target
genes were removed from the list of target genes. The modified bipart-
ite interaction network contained sets of 1053 and 2859 non-overlap-
ping genes representing TFs and their target genes, respectively, with
8170 total interactions between them.

3.2 Running omicsGAN on the TCGA datasets

To evaluate the proposed generative model on the TCGA omics
datasets, we first updated the mRNA and miRNA (or TF and their
target gene) expression profiles 5 times (K=35). The generator and
critic are fully connected neural networks with two hidden layers for
the generator and one for the critic. The generator hidden layers
have 512 and 768 neurons, respectively, whereas the critic hidden
layers have 256 and 128 neurons, respectively. In both generator
and critic, the activation function of the hidden layers is ReLU and
the output layer is linear. Moreover, hidden layers in critic have
dropout with a probability of 0.3. RMSprop optimizer was applied
to train both the generator and the critic. Hyperparameters were
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Table 2. Hyperparameters in omicsGAN used in the study

Hyperparameter miRNA-mRNA TF-gene
BRCA  LUAD oV LUAD

Onmics 1 generator learning Se-6 Se-6 Se-6 Se-6
rate

Onmics 1 critic learning rate Se-§ Se-§ Se-5 Se-§

Omics 1 Ly-norm coeffi- 0.01 0.01 0.1 0.0001
cient (o)

Onmics 2 generator learning Se-6 Se-6 Se-6 Se-6
rate

Onmics 2 critic learning rate Se-5 Se-5 Se-5 Se-5

Omics 2 Ly-norm coeffi- 0.001 0.001 0.001 0.001

cient (o)

selected through grid search and details of the hyperparameters used
in this study are listed in Table 2. In Table 2, Omics 1 is the mRNA/
gene expression data for both interaction networks, Omics 2 is
miRNA expression in miRNA-mRNA interaction network and TF
in TF-gene interaction network. The learning rate was chosen from
{1e-8, le-7, Se-7, le-6, Se-6, 1e-§, Se-5, le-4, Se-4, 1le-3, Se-3, le-
2} and the candidates for the coefficient « were {le-5, le-4, le-3,
le-2, 0.1, 1, 10}. For batch size, we selected among the options {16,
32, 64, 128, 256}, and no mini batch. The validation set described
in Section 2 were employed for tuning all hyperparameters. All
updated mRNA and miRNA (or gene and TF) datasets
(k=1,2,..,5) are sequentially fed into the classifier. The SVM-
based classifier described in Section 2 was used for classification in
all experiments. In the classifier, the dataset was divided into five
folds with three folds for training, one fold for validation (parameter
tuning and synthetic data update selection) and one fold for testing.
We repeated the five-fold splitting 50 times on each dataset. The
updated mRNA/gene expression (k*) with the highest AUC score for
validation samples was selected as the final synthetic mRNA/gene
expression output from the model and similarly the updated
miRNA/TF expression with the highest AUC score for validation
samples was selected as the final synthetic miRNA/TF expression
output. Figure 2 illustrates the process of selecting the final synthetic
mRNA and miRNA datasets from all available updates for TCGA
breast cancer patients outcome prediction. k =1 gives the best valid-
ation AUC for synthetic mRNA expression whereas k=2 gives the
best validation AUC for synthetic miRNA expression. Therefore,
mRNA update 1 and miRNA update 2 are used for predicting the
test samples and the corresponding results are reported in this study.

1.00

0.95 _~
0.90 { TT===s__ S T
0.85 -
0.80 -

0.75 A

0.70 A

—e— Best MRNAAUC
-4-- Best miRNAAUC
0.60 - " . . .

1 4 5

2 3
Update (k)

0.65 A

AUC score (validation data)

Fig. 2. Prediction results of triple negative (TN) status on TCGA breast cancer
patients using validation samples. AUC of the prediction results using validation
samples of synthetic mRNA and miRNA for k = [1,2,3,4,5]. Update k* with the
best validation AUC is selected as the final synthetic data for each omics profile

One synthetic data is generated for breast cancer ER and TN status
prediction based on the average validation AUC of the two clinical
variables.

3.3 Integration of mMRNA and miRNA expression
We generate the synthetic mRNA and miRNA datasets by integrat-
ing the two omcis profiles and their interaction network and assess
the quality of the synthetic data through three experiments.

3.3.1 omicsGAN improved cancer outcome prediction

To evaluate the quality of the synthetic datasets generated by
omicsGAN, we designed cancer outcome prediction and significant
predictive signature identification tasks on the TCGA breast cancer,
lung cancer and ovarian cancer datasets under the assumptions: (i)
The synthetic datasets learned in omicsGAN consider the expres-
sions in both mRNA and miRNA profiles and the biological interac-
tions between them. So they will provide better predictive signatures
compared to mRNA and miRNA expressions. (ii) The better predict-
ive signatures will improve the disease phenotype prediction.

We ran the classifier with above mentioned five-fold splitting 50
times to select the best synthetic data among the 5 updates based on
validation samples and classify the test samples using the selected
synthetic data. The average AUC scores of 50 splittings are reported
in Table 3. There are 185 Estrogen Receptor positive (ER+) and 54
ER negative (ER-) samples, 46 triple negative positive (TN+) and
193 TN negative (TN-) samples in the breast cancer dataset, 95 can-
cer patients below the survival time cutoff (<25 months) and 64
above the cutoff (>50 months) in the lung cancer dataset as well as
61 cancer patients below the survival time cutoff (<25 months) and
77 above the cutoff (>50 months) in the ovarian cancer dataset.
Table 3 illustrates that the synthetic mRNA and miRNA expression
generated by omicsGAN achieved better average classification
results than original mRNA and miRNA expression for phenotype
predictions across all three cancer types. We also add the baseline
where we perform the classification with concatenated miRNA and
mRNA expression to see whether addition of more omics data is the
reason for the improvement. We can see that concatenated data has
similar or better prediction ability compared to the original mRNA
and miRNA expression dataset; however, synthetic dataset from
omicsGAN always outperforms the concatenated data by a signifi-
cant margin. This signifies that even though the addition of more
omics data improves the outcome prediction performance,
omicsGAN relies on the interaction network to generate synthetic
data with better predictive signal.

We also evaluated the quality of the original and synthetic data-
sets by comparing the number of significant features identified in
each of them. We performed Student’s #-test on the expression data-
sets with different clinical variables. The number of features with a
P-value smaller than 0.001 in each dataset except miRNA

Table 3. The classification performance on TCGA breast cancer,
lung cancer and ovarian cancer datasets

Input data Breast cancer Lung cancer Ovarian cancer
ER TN  Survival time Survival time

mRNA 0.913 0.91 0.675 0.651

synthetic nRNA 0.948* 0.949*  0.733* 0.708?
(omicsGAN)

miRNA 0.878 0.904 0.595 0.627

synthetic miRNA 0.945* 0.938*  0.733* 0.7217
(omicsGAN)

mRNA+miNRA 0.905 0.921 0.67 0.658

Note: Average AUC scores of classify cancer patients clinical variables on
the synthetic mRNA, miRNA datasets generated from omicsGAN and the ori-
ginal mMRNA, miRNA expression datasets.

“The difference between the results on the original expression data and the
synthetic data is statistically significant (P-value < 0.001).
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Table 4. Number of significant features
H=0675 1=0.733 1= 0622
) median= 0.688 median= 0.726 median= 0.616
Input data Breast cancer Lung cancer Ovarian cancer 1.0 0=0.104 [a: 0.081 0=10.104
ER TN  Survival time Survival time L
D ost Cofe o
mRNA 4144 3893 227 133 8 )
synthetic nRNA 4566 4241 372 142 n -
(omicsGAN) Q) 061 AR
miRNA 91 91 23 20 D T
synthetic miRNA 136 127 58 12 < -+
(omicsGAN) 041 :
Note: Number of significant features between synthetic mRNA, miRNA .
generated by omicsGAN and the original mRNA, miRNA expression on 0-21
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expression for lung cancer patients are presented in Table 4. P-value
cutoff of 0.05 is set for miRNA expression for lung cancer patients
as no feature had a P-value smaller than 0.001 in either the real
miRNA expression or the synthetic one. We can see an increased
number of significant features in synthetic mRNA compared to the
original one for all three cancer types. Synthetic miRNA on the other
hand has more significant features for breast cancer and lung cancer,
but less for ovarian cancer compared to the original miRNA expres-
sion datasets. Therefore, omicsGAN enriches the features of synthet-
ic datasets with better predictive signatures that results into
improved cancer outcome prediction.

3.3.2 Impact of interaction network on cancer outcome prediction
miRNA expression provides additional predictive signals for cancer
outcome prediction on top of the mRNA expression; therefore, inte-
grating them into a new feature set will contain more information
compared to mRNA and miRNA expression individually. Tables 3
and 4 already illustrates the ability of omicsGAN to improve the
cancer outcome prediction performance. However, we hypothesized
that omicsGAN harnesses the information of biological interaction
between two omics layers from multi-omics interaction network to
generate the synthetic datasets with better predictive signals. Hence,
we want to investigate whether the improvement in performance is
because of the additional omics data or the model can exploit the
interaction network for data integration. We design an experiment
to explore the effects of the interaction network on synthetic omics
data and their predictive performance where we ran the framework
10 times with same settings and input X (mRNA expression), Y
(miRNA expression) as before but a different interaction network on
TCGA lung cancer datasets. We replaced the true network with 10
different randomized networks with same density as the true one.
The prediction results for synthetic mRNA and miRNA expression
using true and random networks are shown as boxplots in Figures 3
and 4, respectively. Prediction results using original mRNA/miRNA
expression, synthetic mMRNA/miRNA expression generated using the
true network, and synthetic mRNA/miRNA expression generated
using random network are plotted in each figure. The first two box-
plots display the same results for lung cancer outcome prediction as
shown in Table 3. Fifty dots in each of these two boxplots represent
the AUC corresponding to 50 random splittings. The third boxplot
illustrates the results using 10 random networks, each with 50 split-
tings. The statistics (mean, median and standard deviation) of the
prediction performance of the splittings are shown above each box-
plot. In Figures 3 and 4, we see a reduction in performance of syn-
thetic  mRNA/miRNA expression generated using a random
interaction network compared to the one generated using the true
interaction network. This signifies the importance of the interaction
network in phenotype prediction and the capability of our frame-
work to capture the information within the network.

3.3.3 omicsGAN improved survival prediction
To further investigate the quality of the synthetic mRNA and
miRNA expression data produced by omicsGAN, the patient’s

Input data

Fig. 3. Prediction results of the survival time on TCGA lung cancer patients using
original and synthetic mRNA expression. Prediction results using original mRNA
expression, synthetic mRNA expression generated using true interaction network,
and synthetic mRNA expression generated using random interaction network are
plotted, respectively. Each dot represents the AUC score from one splitting. The sta-
tistics (mean, median and standard deviation) of the prediction performance of the
50 splittings are shown above each boxplot
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Fig. 4. Prediction results of the survival time on TCGA lung cancer patients using
original and synthetic miRNA expression. Prediction results using original miRNA
expression, synthetic miRNA expression generated using true interaction network,
and synthetic miRNA expression generated using random interaction network are
plotted, respectively. Each dot represents the AUC score from one splitting. The sta-
tistics (mean, median and standard deviation) of the prediction performance of the
50 splittings are shown above each boxplot

overall survival was predicted on breast cancer, lung cancer and
ovarian cancer datasets. The Cox proportional hazards model with
elastic net penalty as described in Section 2.3 evaluates the correl-
ation between patient’s overall survival and genomic features, i.e.
the original mRNA, miRNA expressions and the synthetic mRNA,
miRNA expressions in this study. The relative weight » in Equation
9 was set to be 0.5 to combine the subset selection property of the
Lqi-norm with the regularization strength of the Ly-norm. 80% of
the patient samples were applied to train the model and the perform-
ance was tested on 20% test samples. The low and high risk groups
on the independent test set were generated based on the prognostic
index (PI) as mentioned in Section 2.3. The survival predictions
were visualized by Kaplan-Meier plots and compared by the log-
rank test P-values. The Kaplan—Meier plots in Figures 5 and 6 exem-
plify the improved patient survival predictions on lung cancer using
the synthetic mRNA, miRNA expressions generated by omicsGAN
compared to the original mRNA, miRNA expressions. The log-rank
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Fig. 5. Survival prediction on lung cancer patients with mRNA profiles. Kaplan—
Meier survival plots for high (solid line) and low (dashed line) risk groups generated
by (a) original mRNA, (b) synthetic mRNA expression data on lung cancer patients.
The number in the parenthesis indicates the number of samples in low or high risk
group. The P-value is calculated by the log-rank test to compare the overall survival
of two groups of cancer patients
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Fig. 6. Survival prediction on lung cancer patients with miRNA profiles. Kaplan—
Meier survival plots for high (solid line) and low (dashed line) risk groups generated
by (a) original miRNA, (b) synthetic miRNA expression data on lung cancer
patients. The number in the parenthesis indicates the number of samples in low or
high risk group. The P-value is calculated by the log-rank test to compare the overall
survival of two groups of cancer patients

test P-values clearly demonstrate a strong additional prognostic
power of the synthetic omics profiles beyond the original signatures.
Similar observations are identified on breast and ovarian cancer pa-
tient samples (Supplementary Figs S1-54).

3.4 Integration of TF and gene expression

The experiments above show the ability of omicsGAN to generate
synthetic data with better predictive power by harnessing the infor-
mation from miRNA-mRNA interaction network. Here, we design
another experiment using TF—gene interaction network to evaluate
whether omicsGAN can show similar improvement in integrating
other omics data and their interaction network. We performed the
lung cancer phenotype prediction based on the same classification
setup as described in Section 3.3.1 on TFs and their target gene ex-
pression datasets. The average AUC scores of 50 splittings are
reported in Table 5. Both the synthetic TF and target gene expres-
sion performed better in classifying the lung cancer patients based
on their survival time than the original TF, gene expression and con-
catenated TF and gene expression. These findings signify that our
proposed framework can work with varying set multi-omics data.

4 Discussion

Disease phenotype prediction plays a key role in the fight against heteroge-
neous diseases like cancer. Multi-omics data powered by next generation
sequencing technologies has transformed the field of phenotype prediction
by providing a broader view of the molecular profiles. Non-redundant
predictive signals from multi-omics data make it crucial to develop an

Table 5. The classification performance on TCGA lung cancer
dataset

Input data Lung cancer
Gene 0.645
Synthetic gene 0.727%
TF 0.656
Synthetic TF 0.743*
Gene+TF 0.682

Note: Average AUC scores of classification performance between synthetic
gene, TF generated from omicsGAN and the original gene, TF expression on
lung cancer datasets.

“The difference between the results on the original expression data and the
synthetic data is statistically significant (P-value < 0.001).

efficient and effective framework for multi-omics data integration.
However, integrating them as an independent set of features is inadequate
as multi-omics data generated for the same set of samples often have an
interactive relation among them. Incorporating the interaction network
into the analysis will set a flow of information from one omics data to an-
other like the flow within different omics layers in a cell. In most studies,
these inter-omics relations are neglected and it is inefficient to predict
phenotype using integrated multi-omics data without considering the
interactions. Therefore, the integrating of the bipartite interaction network
with multi-omics data can result in improved disease phenotype prediction
and designing frameworks capable of such integration is gaining
importance.

Synthetic data generated from our proposed framework,
omicsGAN, shows improvement in prediction performance which
illustrates the capability of the model to successfully retain informa-
tion from multiple omics data and establish a link between them. All
synthetic datasets generated in this study with two interaction net-
works (i.e. miIRNA-mRNA and TF-gene) perform better in cancer
outcome prediction compared to the original expression datasets;
however, the same model using a random interaction network with
same density does not perform as good as the synthetic datasets
obtained through true network. It signifies that omicsGAN does not
fuse information from the two omics data directly; rather functional-
ly incorporate the interaction network into the integration. Synthetic
miRNA expression using random interaction network works better
than the original miRNA expression (Fig. 4) but synthetic mRNA
using random interaction network does not perform better than ori-
ginal mRNA expression (Fig. 3). The reason is, without the true
interaction network, omicsGAN can still integrate information from
the two omics data to generate synthetic datasets. In that case, the
performance of one synthetic data will depend on the additional in-
formation received from the other omics data. Synthetic miRNA
receives information from mRNA expression, which is significantly
better in lung cancer outcome prediction compared to miRNA and
thus improves the performance of synthetic miRNA. Synthetic
mRNA on the other hand receives information from miRNA that is
worse at prediction compared to mRNA and thus results in a
decreased performance. An L,-norm is added in Equation (8) to en-
sure the similarity between the updated and original omics data ex-
pression; thus allowing the synthetic data to retain feature space
properties of the original omics data.

The framework presents an innovative way for multi-omics data inte-
gration incorporating their biological interaction. A larger comprehensive
study involving more cancer types can draw a better picture of the
improvements in phenotype prediction. Although our study was focused
on miRNA-mRNA interaction and TF-gene interaction, the same tech-
nique can be extrapolated to any two omics data if their interaction net-
work is biologically meaningful. However, to integrate two omics data
with different range, distribution and format (e.g. mutation and gene ex-
pression), an extra pre-processing step is necessary to make them compat-
ible. In this study, all missing data is imputed by zero. The prediction
performance can be further improved using advanced data imputation
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frameworks (Nagpal et al., 2019; Song et al., 2020; Zhou et al., 2020)
and multi-omics pre-processing methods (Sharifi-Noghabi et al., 2019).

5 Conclusion

Thanks to the rapid evolution of high-throughput technologies,
abundant genotype data is accruing, which is expected to grow con-
tinuously in the era of precision medicine. Because of the complex
interactive nature of omics layers, integration of multi-omics data to
extract biologically meaningful information of clinical relevance is a
challenging task. The promise of multi-omics analysis will remain
unfulfilled unless we can functionally incorporate the inter-omics
interaction network into the analysis. In this study, we introduced
omicsGAN, a GAN model to effectively integrate the interaction
network and the omics datasets into new synthetic data with better
predictive signals. We observed that the synthetic data generated
from omicsGAN has better discriminative power on cancer outcome
classification and cancer patients survival prediction compared to
the original omics datasets. Synthetic datasets also contain more sig-
nificant features that result in better predictive performance.
Additionally, we analyzed the effect of interaction network on the
quality of synthetic data. Our results show that omicsGAN does not
only gather information from two omics datasets; rather functional-
ly incorporate their biological interaction into the integration. Using
a random interaction network does not create a flow of information
from one omics data to another as efficiently as the true network.
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