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Background: Enzalutamide, as a second-generation endocrine therapy drug for

prostate cancer (PCa), is prominent representative among the synthetic

androgen receptor antagonists. Currently, there is lack of enzalutamide-

induced signature (ENZ-sig) for predicting progression and relapse-free

survival (RFS) in PCa.

Methods: Enzalutamide-induced candidate markers were derived from single-

cell RNA sequencing analysis integrating three enzalutamide-stimulated models

(0-, 48-, and 168-h enzalutamide stimulation). ENZ-sig was constructed on the

basis of candidate genes that were associated with RFS in The Cancer Genome

Atlas leveraging least absolute shrinkage and selection operator method. The

ENZ-sig was further validated in GSE70768, GSE94767, E-MTAB-6128, DFKZ,

GSE21034, and GSE70769 datasets. Biological enrichment analysis was used to

discover the underlying mechanism between high ENZ-sig and low ENZ-sig in

single-cell RNA sequencing and bulk RNA sequencing.

Results: We identified a heterogenous subgroup that induced by enzalutamide

stimulation and found 53 enzalutamide-induced candidate markers that are

related to trajectory progression and enzalutamide-stimulated. The candidate

genes were further narrowed down into 10 genes that are related to RFS in PCa. A

10-gene prognostic model (ENZ-sig)—IFRD1, COL5A2, TUBA1A, CFAP69,

TMEM388, ACPP, MANEA, FOSB, SH3BGRL, and ST7—was constructed for the

prediction of RFS in PCa. The effective and robust predictability of ENZ-sig was

verified in six independent datasets. Biological enrichment analysis revealed that

differentially expressed genes in high ENZ-sig were more activated in cell cycle–

related pathway. High–ENZ-sig patients were more sensitive to cell cycle–

targeted drugs (MK-1775, AZD7762, and MK-8776) than low–ENZ-sig patients

in PCa.
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Conclusions:Our results provided evidence and insight on the potential utility of

ENZ-sig in PCa prognosis and combination therapy strategy of enzalutamide and

cell cycle–targeted compounds in treating PCa.
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1 Introduction

Prostate cancer (PCa), which represents 27% of all new cancer

cases every year, is among the most common cancer in men (1). It

has been reported that approximately 268,490 cancer cases were

diagnosed as PCa and 34,500 deaths were estimated as PCa in the

United States in 2022 (1). Despite that diverse treatments including

radical prostatectomy, radiotherapy, chemotherapy, and endocrine

therapy were leveraging to counter PCa, prognosis and treatment

are still poor, especially for the patients who possess high-grade

disease (2). As an androgen-dependent disease, endocrine therapy

that targets androgens or androgen receptors (AR) had been the

first-line therapy for those patients with PCa who did not benefit

from surgery or radiation (3). However, whether the endocrine

therapy targets the hypothalamic-pituitary negative feedback

pathway, inhibits androgen synthesis, or blocks androgen

receptors, long-term hormone deficiency would cause a series of

side effects, such as hyperlipidemia, osteoporosis, insulin resistance,

anemia, and sexual dysfunction (4). More importantly, in response

to androgen deprivation, most PCa progresses to castrate-resistant

PCa (CRPC), which is inevitable in endocrine treatment for PCa

(2). Thus, it is highlighted that how to effectively address the

limitations of endocrine therapy is essential to increase the

therapeutic efficiency and improve prognosis of patients with PCa.

Enzalutamide, a prominent representative among synthetic AR

antagonists, is a second-generation AR antagonist displaying

effective antineoplastic by binding directly to the AR. However,

sustained medicine with enzalutamide would inevitably progress to

enzalutamide resistance and treatment failure (3). Therefore, it is

especially significant to improve the therapeutic efficiency of

enzalutamide treatment for shortening duration of enzalutamide

treatment and prolonging survival. However, the underlying

mechanism induced by enzalutamide is still unclear. It is reported

that enzalutamide plays the part of agonist in transcriptional

activity, inducing the expression of cancer-related genes in PCa

cells (5). Moreover, it is noticed that PCa was reported as a

heterogeneity tumor that result in distinct cellular phenotypes,

and such inter-tumoral heterogeneity would generate different

treatment response phenotypes (6, 7). Thus, exploring the

enzalutamide-mediated transcription in single-cell resolution may

contribute to understand the molecular mechanisms of

enzalutamide, even the mechanisms of enzalutamide resistance,

which could improve prognosis, and provide potentially strategy of

combination treatment for PCa.
02
In this work, we explored the cell heterogeneity and

transcriptional alteration that induced by enzalutamide and

identified a heterogeneous cluster that resists enzalutamide-

treatment by using single-cell RNA sequencing (scRNA-seq)

analysis. Following the time trajectory analysis in 0-, 48-, and

168-h enzalutamide-stimulated models, time-dependent

enzalutamide-induced gene sets were further discovered. Then, a

prognostic model, named ENZ-sig, was built on the basis of 10

prognostic enzalutamide-induced markers for the prediction of

relapse-free survival (RFS) in PCa. We examined the predicting

ability and clinical significance of ENZ-sig in PCa from The Cancer

Genome Atlas (TCGA-PRAD) and further validated in six

independent cohorts (i.e., GSE70768, GSE94767, E-MTAB-6128,

DFKZ, GSE21034, and GSE70769). Finally, pathway enrichment

analysis revealed that patients in the high-risk group were more

activated in cell cycle pathway, giving insight on the combination

treatment strategy related to enzalutamide and cell cycle–targeted

compounds for patients with PCa.
2 Materials and methods

2.1 Data sources and processes

The raw count data of scRNA-seq underlying enzalutamide-

stimulated LNCap after 0, 48, and 168 h, respectively, were obtained

from Taavitsainen et al. (8). The RNA sequencing data and clinical

features from TCGA were downloaded and processed by

GDCRNAtools (9). The clinical information and mRNA

expression data from GSE70768, GSE94767, DFKZ, GSE21034,

and GSE70769 datasets were acquired from Gene Expression

Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/ ), and data

from E-MTAB-6128 were derived from ArrayExpress (https://

www.ebi.ac.uk/arrayexpress/ ). The detailed information of above

datasets is summarized in Table S1.
2.2 Single-cell RNA sequencing data
processing and analysis

By using Seurat package (10), the raw count data were initialized

and created as a Seurat object with the criteria of min.cells = 3 and

min.features = 200. Then, quality control was performed to ensure

that mitochondrial counts were less than 20% and that unique feature
frontiersin.org

https://www.ncbi.nlm.nih.gov/geo/
https://www.ebi.ac.uk/arrayexpress/
https://www.ebi.ac.uk/arrayexpress/
https://doi.org/10.3389/fendo.2023.1148898
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Feng et al. 10.3389/fendo.2023.1148898
counts were less than 5,000 and more than 200 in each cell.

Furthermore, standard pre-processing workflow, including data

normalization and scaling, and the detection of highly variable

features were conducted in the three enzalutamide-induced models,

separately. The joint analysis of these three models was further

performed by FindIntegrationAnchors() and IntegrateData() with

parameters of anchor.features = 2,000 and dims = 1:50. Selecting the

top 50 principal components and a resolution of 0.2, the integrated

object was clustered into different cell subgroup. Non-linear

dimensional reduction was using to visualize and explore the

integrated clusters. Differentially up-expressed markers in each cell

subgroup were defined using FindAllMarkers() function with log

[fold change (FC)] > 0.25 and adjusted p-value < 0.05. Differentially

expressed genes (DEGs) in C7 were identified by FindMarkers()

function with the cutoff criteria of log|FC|>0.25 and adjusted

p-value < 0.05.
2.3 Cell trajectory analysis

Monocle R package (v2.24.0) was performed to explore the time

trajectory of enzalutamide-induced cell in three stimulated models

(DMSO, 48-h stimulation, and 168-h stimulation). The DEGs that

derived from three stimulated models were defined as time

trajectory features to ordering cells in pseudo-time. The time

trajectory markers was obtained from the function of differential

GeneTest() in Monocle (11).
2.4 Pathway enrichment analysis

To detect the biological changes in cell cluster, pathway score

was measured by gene set variation analysis (GSVA) on the basis of

the gene sets of “Hallmark” and “KEGG” obtained from MSigDB

(12). Differential expression analysis was carried out to explore the

DEGs between C7 and other clusters. The statistically significant

DEGs with the threefold were identified and further fitted into

“enrichR” package. Gene set enrichment analysis (GSEA) was

conducted on the basis of the pre-ranking gene set that ordered

by the FC from differentially expressed analysis.
2.5 Construction and validation of
enzalutamide-induced signature

Candidate enzalutamide-induced genes were identified from

the gene set that intersected with DEGs in C7 and markers in cell

trajectory analysis. To select the key prognostic enzalutamide-

induced features, least absolute shrinkage and selection operator

(LASSO) method with 10-fold cross-validation was further

performed to narrow down the significant enzalutamide-induced

genes. Enzalutamide-induced signature (ENZ-sig) was calculated as

follows: b(feature1) × expr (feature1) + b(feature2) × expr

(feature2) + ··· + b (feature n) × expr (feature n), where b is the

LASSO Cox coefficient of each feature in the regression model and

expr is the expression value of the corresponding feature. This
Frontiers in Endocrinology 03
strategy was further utilized in six independent datasets to validated

the efficiency and robustness of ENZ-sig in PCa.
2.6 Development and validation
of nomogram

A predicting nomogram leverages the vital prognostic

characteristics for predicting 3-, 5-, and 7-year RFS of patients

with PCa in the TCGA-PRAD dataset. To determine the capability

of the nomogram to predict 3-, 5-, and 7-year RFS outcomes, the

calibration curves were developed by “rms” R package.
2.7 Scoring the activity of ENZ-sig in
single cell

To estimate the activity of ENZ-sig for individual cells, R

package AUCell was performed on the basis of the expression of

10 ENZ-sig genes (13). The area under the curve (AUC) that

generated by AUCell represented the score activity of ENZ-sig in

single cell. Cells were divided into two groups on the basis of

optimal cutoff value evaluated by AUCell.
2.8 Statistical analysis

All statistical analyses in our study were performed in R (version

4.0.5). Kaplan–Meier survival analysis was performed using

“survival” R package, and the optimal cutoff value was defined by

“survminer”. Wilcoxon signed-rank test, with two-tailed P < 0.05

being considered as statistical significance level. P-value adjustment

was applied when multiple comparisons were necessary.
3 Results

3.1 Landscape of enzalutamide-
induced cell heterogeneity and
transcriptional alteration

After quality control and normalization, the dimension reduction

on the three types of enzalutamide-derived models is shown in

Figures 1A–C. The joint analysis of these three models was further

performed to explore the characteristics of enzalutamide-induced cell

heterogeneity or transcriptional alteration in PCa cell line. Eight

clusters were obtained after scRNA-seq integration (Figure 1D).

Interestingly, by comparing the proportion of originating cells and

the number of cells in each cluster, we found that cluster 7 (C7) was

mostly enriched in ENZ168model (Figure 1E). Moreover, the top five

differentially expressed markers of each cluster were displayed as a

heatmap plot (Figure 1F). Biological pathway analysis indicates that

the enrichment pathway in C7 was more activated in 39 of the 50

Hallmark gene sets compared with other clusters, such as fatty acid

metabolism, TGF-b signaling, androgen response, epithelial–

mesenchymal transition, and PI3K-AKT-MTOR signaling
frontiersin.org
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(Figure 1G). The differentially expressed analysis between C7 and

other clusters was highlighted that 109 upregulated genes and 53

downregulated genes were significantly differentially expressed in C7

(Figure 1H). The upregulated genes were enriched in TNF-a
signaling via NF-kB, hypoxia, androgen response, and mTORC1

signaling, indicating that C7 displayed strongly tumor-promoting

progression under treating with enzalutamide (Figure 1I).
3.2 Identifying enzalutamide-induced
pseudo-time trajectory

For exploring the enzalutamide-induced gene sets, we further

conducted the pseudo-time trajectory analysis to construct a linear

trajectory from 0-, 48-, to 168-h enzalutamide-stimulated models

(Figures 2A, B). As shown in Figure 2C, we found that C7 was
Frontiers in Endocrinology 04
specifically located at the end of time-trajectory, indicating that C7

was heterogeneous cluster induced by enzalutamide-stimulated

alone with trajectory-evolved. Next, 53 dysregulated genes based

on the trajectory progression and enzalutamide-stimulated models

were detected (Figure 2D). Five representative trajectory-related

markers (IFRD1, COL5A2, TUB1A1, and CFAP69) show the

upregulated expression tendency alone with enzalutamide-

stimulated models and transferred cluster (Figure 2E).
3.3 Construction of enzalutamide-induced
signature for predicting RFS in
prostate cancer

Thirty-one enzalutamide-induced candidate genes were

further generated by intersecting with DEGs in C7 and
DA B

E

F

G

IH

C

FIGURE 1

The landscape of integrated profiling induced by enzalutamide. The t-distributed stochastic neighbor embedding (tsne) diagram of cells stimulated:
DMSO (A), 48-h enzalutamide (B), and 168-h enzalutamide (C). (D) The tsne diagram of integrated analysis induced by enzalutamide in 0, 48, and 168
(H, E) The proportion and number of cells in each cluster. (F) Heatmap for the top five markers in each cluster. (G) Gene set variation analysis in each
cluster using Hallmark gene set. (H) volcano plot for the differentially expressed genes (DEGs) between cluster 7 and other clusters. Red dots indicate
upregulated genes with log2(fold change) > 0.25 and adjusted p-value < 0.05. Blue dots represent downregulated genes with log2(fold change) < −0.25
and adjusted p-value < 0.05. (I) Biological enrichment using the statistically significant genes from DEGs in cluster 7. Gray vertical dotted line indicates
the threshold of adjusted p-value less than 0.05.
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trajectory-related markers. Lasso algorithm was performed to

screen the significantly prognostic genes that induced by

enzalutamide in these candidate genes (Figure 3A). With the

optimal lambda value of 0.025 based on minimal mean square

error (Figure 3B), 10 genes [i.e., IFRD1, COL5A2, TUBA1A,

CFAP69, TMEM38B, ACPP, MANEA, FOSB, SH3BGRL, and

suppressor of tumorigenicity (ST7)] were identified as

significantly enzalutamide-induced genes that are related to the

prognosis of PCa RFS. Meanwhile, IFRD1, COL5A2, TUBA1A,

and CFAP69 served as the risk factors (coefficient > 0), and

TMEM388, ACPP, MANEA, FOSB, SH3BGRL, and ST7 served as

protective factors (coefficient < 0) in PCa (Figure 3C). Then,

an enzalutamide-related signature was constructed for the

prediction of PCa RFS on the basis of 10 genes expression

abundances and lasso Cox coefficient. The calculation formula

is as follows: 0.316 × expression of IFRD1 + 0.211 × expression of

COL5A2 +0.081 × expression of TUBA1A + 0.071 × expression of

CFAP69 + (−0.020 × expression of TMEM38B) + (−0.076 ×

expression of APCC) + (−0.088 × expression of MANEA) +

(−0.095 × expression of FOSB) + (−0.113× expression of

SH3BGRL) + (−0.237 × expression of ST7). We divided the

patients into high- and low-risk groups on the basis of the

ENZ-sig and found that patients with higher ENZ-sig presented

worse RFS than those with lower ENZ-sig (p < 0.0001, Figure 3D).

Moreover, the distribution of the risk score and the RFS status are

displayed in Figure 3E. It is clear that the higher the risk score, the

more inclined to relapse. The ROC analysis indicated that the

prognostic accuracy values for 3-, 5-, and 7-year RFS were 0.761,

0.706, and 0.742, respectively, for ENZ-sig (Figure 3F).
Frontiers in Endocrinology 05
3.4 Evaluating the clinical relevance of
ENZ-sig in prostate cancer

To explore the clinical relevance of ENZ-sig, we further

investigated the relationship between ENZ-sig and clinicopathological

features, including Gleason score, tumor stage, N stage, and metastasis.

The result revealed that ENZ-sig was significantly positively correlated

with Gleason score (Figure 3G), tumor stage (Figure 3H), N stage

(Figure 3I), and metastasis (Figure 3J), indicating that the levels of

ENZ-sig were significantly related to the progression of PCa. The

univariate (Figure 3K) and multivariate (Figure 3L) Cox regression

model were further performed to discover the prognostic value of

ENZ-sig in PCa.We found that tumor stage (HR = 4.863; 95%CI 2.656

to 8.902; p < 0.001), Gleason score (HR = 4.299; 95% CI, 2.774 to 6.661;

p < 0.001), and ENZ-sig (HR = 4.911; 95%CI, 3.303 to 7.303; p < 0.001)

were significantly associated with PCa RFS. Moreover, tumor stage

(HR = 2.621; 95% CI, 1.380 to 4.979; p = 0.003), Gleason score (HR =

2.079; 95% CI, 1.252 to 3.451; p = 0.005), and ENZ-sig (HR = 2.909;

95% CI, 1.805 to 4.688; p < 0.001) were the independent prognostic

factors for predicting RFS in Pca, and its predicting abilities were

unrestricted with the existing clinical variables, demonstrating the

clinical utility of ENZ-sig for predicting RFS in PCa.
3.5 Validation of the enzalutamide-induced
signature in independent datasets

Following the same calculation formula, we leveraged six

independent datasets (GSE70768, GSE94767, E-MTAB-6128,
D

A B

E

C

FIGURE 2

The progression trajectory of enzalutamide-induced and pseudo-time gene expression pattern. Pseudo-trajectory (A), cell type (B), and cell clusters
(C) of enzalutamide-induced cells. (D) Heatmap for expression pattern of genes that induced by enzalutamide-stimulated alone with trajectory-
evolved. (E) Expression tendency of representative genes in enzalutamide-induced model and cell clusters.
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DFKZ, GSE21034, and GSE70769) to verify the robustly predicting

performance of ENZ-sig for PCa RFS (Figures 4A–F). As expected,

PCa RFS was correlated with ENZ-sig, and patients with higher risk

scores presented significantly worse RFS compared with those with

lower risk scores in the six PCa datasets (GSE70768: HR = 3.77, p =

0.002; GSE94767: HR = 2.6, p = 0.00304; E-MTAB-6128: HR = 3.93,

p = 0.0229; DKFZ: HR = 6.22, p = 2.25e-07; GSE21034: HR = 5.19, p

= 8.37e-08; and GSE70769: HR = 5.15, p = 2.91e-07). Moreover, the

multivariate Cox regression analysis revealed that ENZ-sig was a

significantly independent prognostic factor in GSE70768 (HR =

2.84, p = 0.04), DKFZ (HR = 3.21, p = 0.01), GSE21034 (HR = 7.72,
Frontiers in Endocrinology 06
p = 0.02), and GSE70769 (HR = 2.80, p = 0.02) cohorts.

Importantly, the ROC analysis showed a stable predicting ability

of ENZ-sig for PCa RFS in these six cohorts, highlighting that ENZ-

sig was a reliable and effective predictor for PCa RFS.
3.6 Development of the nomogram and
evaluation of its clinical utility

On the basis of our findings that the ENZ-sig calculated by

ENZ-sig as well as Gleason score and tumor stage are predictive of
D
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G IH J

K L

C

FIGURE 3

Construction of enzalutamide-induced signature and its clinical relevance. (A) Lasso cox regression coefficients of 31 candidate genes. (B) Partial
likelihood deviance of candidate genes derived from lasso Cox regression analysis with 10-fold cross-validation. Two vertical dotted lines represent
minimum mean cross-validation error and one standard error of the minimum, respectively. (C) The coefficients of 10 genes selected from lasso
Cox regression model. (D) Kaplan–Meier curve in terms of RFS for high-risk and low-risk patients divided by enzalutamide-induced signature.
(E) The risk score and recurrence-free survival status based on TCGA-PRAD cohort. (F) The receiver operating characteristics curve for the
prediction of 3-, 5-, and 7-year RFS based on the risk score derived from enzalutamide-induced signature. The abundance of risk score calculated
by enzalutamide-induced signature in different clinicopathological characteristics, including Gleason score (G), tumor stage (H), N stage (I), and
metastasis status (J). Univariate Cox regression analysis (K) and multivariate Cox regression analysis (L) for enzalutamide-induced signature and
clinical variables, including age, stage, Gleason score, and metastasis status.
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PCa RFS, we constructed nomograms for predicting patients’ 3-, 5-,

and 7-year RFS, respectively (Figure 5A). Figure 5B shows that the

AUC values of the nomograms were 0.791, 0.794, and 0.83 for 3-, 5-,

and 7-year RFS, respectively. Nomogram showed higher AUC

values than Gleason score, tumor stage, and ENZ-sig, indicating

that the predictability of RFS was improved by integrating these

prognostic features. In Figure 5C, the calibration curves suggested

that the nomogram-predicted probability is relatively close to the

actual RFS outcome (diagonal line).
Frontiers in Endocrinology 07
3.7 Functional characteristics related to
enzalutamide-induced signature

To discover the biological mechanisms involving the ENZ-sig,

we first evaluated the ENZ-sig levels of each cell according to the

expression of 10 ENZ-sig genes by AUCell method. It is noticed that

AUCell, a scoring system, uses the AUC to measure the score of

gene set. The histogram presented the distribution of ENZ-sig levels

and cellular frequency (Figure 6A). With the optimal threshold
D
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C

FIGURE 4

Validation of enzalutamide-induced signature in independent cohort. The plot of risk score and RFS status, Kaplan–Meier curve, multivariate Cox
regression analysis, and receiver operating characteristics curve for evaluating the predicting ability of enzalutamide-induced signature in GSE70768
(A), GSE94767 (B), E-MTAB-6128 (C), DFKZ (D), GSE21034 (E), and GSE70769 (F) cohorts, respectively.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1148898
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Feng et al. 10.3389/fendo.2023.1148898
estimated by AUCell, cells were divided into high–ENZ-sig and

low–ENZ-sig groups. The distribution of the cells with AUC > 0.19

(Figure 6B) and ENZ-sig activity (Figure 6C) was shown on the t-

distributed stochastic neighbor embedding diagram. As expected,

the proportion of high–ENZ-sig group was higher in EN168 model

and C7 than that in the other models or clusters (Figure 6D). Then,

biological enrichment analysis was performed on the basis of the

DEGs between high ENZ-sig and low ENZ-sig. As shown in

Figure 6E, cell cycle–related pathways, i.e., E2F targets, G2M

checkpoint, mitotic spindle, and Myc targets, were significantly

enriched in the high–ENZ-sig group, demonstrating the strong

relationship between ENZ-sig and cell cycle. We further conducted

the GSVA analysis and compared the differential pathway score

between the high-risk and low-risk patients in TCGA-PRAD. The

result showed that patients with higher score of ENZ-sig were more

activated in the cell cycle pathway than patients with lower score of

ENZ-sig (Figure 6F). The GSEA was further verified the relation

between ENZ-sig and cell cycle pathway. As shown in Figure 6G,

cell cycle–related pathways, i.e., E2F targets (NES = 1.96, FDR =
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8.33e-10), G2M checkpoint (NES = 1.77, FDR = 2.80e-06), and

mitotic spindle (NES = 1.39, FDR = 0.014), were significantly

enriched in the high-risk group. The correlation analysis revealed

the significantly positive relation between ENZ-sig and cell cycle

score in PCa [correlation coefficient (corr) = 0.256, p = 7.62e-09;

Figure 6H], indicating that ENZ-sig mediated the activation of cell

cycle pathway that contributed to increasing risk of progression and

poor outcome for PCa. Moreover, cell cycle–related genes, e.g.,

CDC20, PLK1, CDC45, CDK1, CDKN2C, MCM2, E2F5, and E2F3,

were significantly upregulated in high–ENZ-sig group (Figure 6I).
3.8 Ability of model in predicting
drug sensitivity

Given the significantly prognostic value of ENZ-sig in the

prediction of PCa RFS, we further explore the relationship

between ENZ-sig and drug sensitivity. First, we measured the

half-maximal inhibitory concentration (IC50) of each drug/
A

B

C

FIGURE 5

Clinical utilization of enzalutamide-induced signature. Nomograms (A), including the ROC curves (B) and the calibration plots (C) for the prediction
of relapse-free survival for patients with PCa at 3, 5, and 7 years, respectively.
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compound in TCGA-PRAD dataset by “oncoPredict” package.

Then, correlation analysis was performed between IC50 and

ENZ-sig. The overview result is displayed in Figure 7A. We

noticed that four cell cycle–targeted drugs, i.e., dinaciclib, MK-

1775, AZD7762, and MK-8776, were significantly related to ENZ-

sig. In detail, the sensitivity of dinaciclib was positively correlated

with ENZ-sig (corr = 0.274, p = 5.30e-10; Figure 7B). The IC50 of
Frontiers in Endocrinology 09
dinaciclib was higher in high–ENZ-sig group than that in low–

ENZ-sig group (p = 8.8e-06; Figure 7B). Moreover, in Figures 7C–E,

MK-1775 (corr = −0.202, p = 5.62e-06), AZD7762 (corr = −0.339, p

= 9.15e15), and MK-8776 (corr = −0.195, p = 1.19e-05) presented a

significantly negative correlation with ENZ-sig. Furthermore,

patients in the high–ENZ-sig group have lower IC50 of MK-1775

(p = 8.8e-05), AZD7762 (p = 2.8e-12), and MK-8776 (p = 0.00052)
D

A B

E

F G

IH

C

FIGURE 6

Biological pathway enrichment related to enzalutamide-induced signature. (A) The distribution of AUC and cell frequency. (B) AUC and cell
frequency. (B) T-distributed stochastic neighbor embedding (Tsne) diagram for cells with AUC higher than selected threshold. Blue dots indicate
cells with higher than 0.19, and gray dots indicates cells with less than 0.19. (C) Tsne diagram for ENZ-sig activity that colored by AUC. The deeper
color represents a larger AUC. (D) The distribution of high ENZ-sig cells and low ENZ-sig cells in enzalutamide-stimulated models and clusters.
(E) Bar plot for enrichment analysis based on the differentially expressed genes between high ENZ-sig and low ENZ-sig group. Red dotted line
represents adjusted p-value less than 0.05. (F) Gene set variation analysis between high-risk and low-risk group stratified by enzalutamide-induced
signature. Dotted line indicates p-value less than 0.05. (G) Gene set enrichment analysis in the high-risk group and the low-risk group.
(H) Correlation between ENZ-sig and cell cycle score in PCa. (I) Box plot shows the statistically significant genes related to cell cycle pathway
between the high-risk and low-risk groups. Statistical significance: *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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than those in the low–ENZ-sig group, indicating that patients with

higher ENZ-sig were more sensitive with cell cycle–targeted drug/

compound in PCa.
4 Discussions

The extensive application of scRNA-seq technologies facilitates

the comprehension of cell heterogeneity and genomic

characteristics that mediated by drug treatment (14). However,

enzalutamide-mediated transcriptional activity in scRNA-seq

resolution has not been obtained. Leveraging scRNA-seq analysis,

we integrated the three enzalutamide-simulated models (i.e.,

DMSO, ENZ-48, and ENZ-168) and distinguished eight sub-

clusters. Notably, unlike other clusters, the proportion of cells in

C7 was largely derived from ENZ-168 model. Furthermore, the

underlying biological pathway in C7 was more activated in

androgen response, epithelial–mesenchymal transition, fatty acid

metabolism, and PI3K/AKT/MTOR signaling than those in the

other cell clusters, indicating that C7 was a tumor-promoting

cluster evoking by enzalutamide. For further exploring the related

genes that induced by enzalutamide, time trajectory analysis was

performed following the enzalutamide-stimulated timeline (0, 48,

and 168 h). We identified several cancer-related genes that

presented marked dynamic expression pattern corresponding to

enzalutamide-stimulated timeline.
Frontiers in Endocrinology 10
The intersected gene set between differentially expressed

markers in C7 and dynamically changed genes in time trajectory

analysis was further leveraged to constructed risk model. Thirty-one

candidate genes were screened and selected by lasso Cox regression

model, and 10 significant enzalutamide-induced genes (IFRD1,

COL5A2, TUBA1A, CFAP69, TMEM388, ACPP, MANEA,

FOSB, SH3BGRL, and ST7) related to PCa RFS were remained. It

is reported that IFRD1 (known as interferon-related developmental

regulator 1) encoded a protein related to interferon-g and was

significantly correlated with survival outcome in colon cancer (15).

COL5A2 promotes proliferation and invasion in PCa and is related

to the prediction of RFS for patients with PCa (16). Moreover,

COL5A2 was identified as enzalutamide-resistant genes in CRPC

cells in vitro (17). Wang et al. showed that TUBA1A, known as

tubulin a 1a, was a potential prognostic marker and therapeutic

target in gastric cancer (18). CFAP69 has been demonstrated to be a

prognostic marker that is related to the survival of breast cancer

patients (19). TMEM38B, as regulators of endoplasmic reticulum

(ER) calcium storage, was induced by KLF9, contributing to the

release of calcium from ER, aggravation of ER stress, and molecular

death (20). ACPP (prostate acid phosphate) has shown to be a

prognostic factor for predicting the RFS in PCa and to be correlated

with CRPC bone metastases (21). MANEA is the sole endo-acting

glucoside hydrolase related to N-glycan trimming and disrupting

N-linked glycosylation as therapeutic agents for cancer (22). Barrett

et al. reported that FOSB is required for migration and invasion in
D
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E

C

FIGURE 7

Ability of model in predicting drug sensitivity. (A) Heatmap plot indicates the correlation between drugs/compounds, ENZ-sig, and 10 ENZ-signature
genes. Scatter diagram and box plot show the relationship between the sensitivity of dinaciclib (B), MK-1775 (C), AZD7762 (D), MK-8776 (E), and
ENZ-sig.
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PCa cells (23). Kwon et al. indicated that the declining expression of

SH3BGRL was related to the aggressiveness of PCa (24). ST7 was

demonstrated to function as tumor suppressor in PCa by

remodeling tumor microenvironment (25). Collectively, except for

the five genes (COL5A2, ACPP, FOSB, SH3BGRL, and ST7) that

function as important biomarkers in PCa, the significant role of

another five genes (IFRD1, TUBA1A, CFAP69, TMEM38B, and

MANEA) in PCa is still not demonstrated, which needs further

investigation. Whereas, all these 10 enzalutamide-induce genes

likely play a significant role in PCa and may serve as biomarkers

for prognosis of the disease. Interestingly, we noticed that IFRD1

presented the highest lasso Cox coefficient among these 10 genes,

suggesting that IFRD1 was making the most vital contribution

compared with other nine genes.

Given the vitally prognostic role of these 10 enzalutamide-

induced genes, we constructed a predicting model, ENZ-sig, based

on transcriptional expression and lasso Cox coefficient of each gene.

ENZ-sig presented robust ability to classify patients into high-risk

group and low-risk group with significantly different RFSs.

Although several risk stratification signatures have been

developed for predicting RFS of PCa. Hu et al. reported an overall

survival (OS)–related signature for predicting PCa OS based on the

expression levels of five autophagy-related genes (ARGs) and a

disease-free survival (DFS)–related signature for the prediction of

PCa DFS based on the expression of 22 ARGs (26). Mei et al.

developed an m7G-related prognostic signature for the prediction

of PCa RFS leveraging the data from TCGA and GEO (27). Feng

et al. screened and selected 10 genes for establishing circadian clock

related signature as a promising tool for the prediction of PCa RFS

(28). However, the predicting accuracy and robustness of validation

limited their clinical utilization, and, more importantly,

enzalutamide-related signature for predicting PCa RFS has not

been described yet. In our study, the ENZ-sig was effectively

validated in six independent datasets (i.e., GSE70768, GSE94767,

E-MTAB-6128, DFKZ, GSE21034, and GSE70769). In these

datasets, ENZ-sig has successfully stratified patients into two

groups, and the statistical significance in RFS between these two

groups was found, strongly indicating the effective and robust

prognostic ability of ENZ-sig for predicting PCa RFS.

We further extended the clinical utilization of ENZ-sig by

examining the correlation between ENZ-sig and FDA-approved

drugs for PCa. The result showed that ENZ-sig was significantly

negatively correlated with the IC50 of three cell cycle–targeted

drugs (i.e., MK-1775, AZD7762, and MK-8776), suggesting that

patients with high ENZ-sig are more sensitive to these cell cycle–

targeted drugs than those with low ENZ-sig. It is reported that the

combination of enzalutamide and Chk1/2 inhibitor AZD7762

presented additive and synergistic therapeutic effects in xenograft

and patient-derived tumor xenograft models in vivo (29). Moreover,

MU380, a more effective analog of Chk1 inhibitors MK-8776,

significantly enhances the sensitivity of human docetaxel-resistant

PCa cells to gemcitabine through inducing mitotic catastrophe (30).

Furthermore, Bridges et al. illustrated that MK-1775, a novel Wee1

kinase inhibitor, could promote the sensitivity of radiotherapy for

p53-defective human tumor cells (30). Given the impressive role of

these three cell cycle inhibitors in PCa treatment, ENZ-sig may
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serve as a clinical indicator not only for the prognosis in RFS but

also for supporting the clinical evaluation of cell cycle–targeted

drugs in combination therapy for PCa.

Our results provided evidence and insight on the potential

utility of ENZ-sig in PCa prognosis and clinical use. However, there

are some limitations in the current ENZ-sig model. More

enzalutamide-induced genes ought to be discovered to optimize

the ENZ-sig model. In addition, the 10 enzalutamide-induced

markers identified in the study warrant further experimental

investigation to unfold their vital functions in PCa and to explore

new therapies targeting these molecules.
5 Conclusions

By integrating scRNA-seq and bulk RNA sequencing analysis,

we demonstrated a heterogeneous sub-cluster that induced by

enzalutamide and identified ENZ-sig for the prediction of PCa

RFS in TCGA-PRAD. The effective and robust predictability of this

model was validated in six independent datasets. Moreover, ENZ-

sig showed a high correlation with cell cycle pathway, which may be

utilized in clinic to accurately predict RFS and provided

combination therapy strategies of patients with PCa.
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13. Aibar S, González-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H,
Hulselmans G, et al. Scenic: Single-cell regulatory network inference and clustering.
Nat Methods (2017) 14(11):1083–6. doi: 10.1038/nmeth.4463

14. Zhang Y, Wang D, Peng M, Tang L, Ouyang J, Xiong F, et al. Single-cell rna
sequencing in cancer research. J Exp Clin Cancer Res CR (2021) 40(1):81. doi: 10.1186/
s13046-021-01874-1

15. Lewis MA, Sharabash N, Miao ZF, Lyons LN, Piccirillo J, Kallogjeri D, et al.
Increased Ifrd1 expression in human colon cancers predicts reduced patient survival.
Digestive Dis Sci (2017) 62(12):3460–7. doi: 10.1007/s10620-017-4819-0

16. Ren X, Chen X, Fang K, Zhang X, Wei X, Zhang T, et al. Col5a2 promotes
proliferation and invasion in prostate cancer and is one of seven Gleason-related genes
that predict recurrence-free survival. Front Oncol (2021) 11:583083. doi: 10.3389/
fonc.2021.583083
17. Kohrt SE, Awadallah WN, Phillips RA3rd, Case TC, Jin R, Nanda JS, et al.
Identification of genes required for enzalutamide resistance in castration-resistant
prostate cancer cells in vitro. Mol Cancer Ther (2021) 20(2):398–409. doi: 10.1158/
1535-7163.Mct-20-0244

18. Wang D, Jiao Z, Ji Y, Zhang S. Elevated Tuba1a might indicate the clinical
outcomes of patients with gastric cancer, being associated with the infiltration of
macrophages in the tumor immune microenvironment. J gastrointestinal liver diseases:
JGLD (2020) 29(4):509–22. doi: 10.15403/jgld-2834

19. Tian Y, Wang J, Wen Q, Gao A, Huang A, Li R, et al. The significance of tumor
microenvironment score for breast cancer patients. BioMed Res Int (2022)
2022:5673810. doi: 10.1155/2022/5673810

20. Fink EE, Moparthy S, Bagati A, Bianchi-Smiraglia A, Lipchick BC, Wolff DW,
et al. Xbp1-Klf9 axis acts as a molecular rheostat to control the transition from adaptive
to cytotoxic unfolded protein response. Cell Rep (2018) 25(1):212–23.e4. doi: 10.1016/
j.celrep.2018.09.013

21. Larson SR, Chin J, Zhang X, Brown LG, Coleman IM, Lakely B, et al. Prostate
cancer derived prostatic acid phosphatase promotes an osteoblastic response in the
bone microenvironment. Clin Exp metastasis (2014) 31(2):247–56. doi: 10.1007/
s10585-013-9625-2

22. Sobala ŁF, Fernandes PZ, Hakki Z, Thompson AJ, Howe JD, Hill M, et al.
Structure of human endo-a-1,2-Mannosidase (Manea), an antiviral host-glycosylation
target. Proc Natl Acad Sci United States America (2020) 117(47):29595–601.
doi: 10.1073/pnas.2013620117

23. Barrett CS, Millena AC, Khan SA. Tgf-b effects on prostate cancer cell migration
and invasion require fosb. Prostate (2017) 77(1):72–81. doi: 10.1002/pros.23250

24. Kwon OK, Ha YS, Lee JN, Kim S, Lee H, Chun SY, et al. Comparative proteome
profiling and mutant protein identification in metastatic prostate cancer cells by
quantitative mass spectrometry-based proteogenomics. Cancer Genomics Proteomics
(2019) 16(4):273–86. doi: 10.21873/cgp.20132

25. Hooi CF, Blancher C, Qiu W, Revet IM, Williams LH, Ciavarella ML, et al. St7-
mediated suppression of tumorigenicity of prostate cancer cells is characterized by
remodeling of the extracellular matrix. Oncogene (2006) 25(28):3924–33. doi: 10.1038/
sj.onc.1209418

26. Hu D, Jiang L, Luo S, Zhao X, Hu H, Zhao G, et al. Development of an
autophagy-related gene expression signature for prognosis prediction in prostate
cancer patients. J Trans Med (2020) 18(1):160. doi: 10.1186/s12967-020-02323-x

27. Mei W, Jia X, Xin S, Liu X, Jin L, Sun X, et al. A N(7)-Methylguanine-Related
gene signature applicable for the prognosis and microenvironment of prostate cancer. J
Oncol (2022) 2022:8604216. doi: 10.1155/2022/8604216

28. Feng D, Xiong Q, Zhang F, Shi X, Xu H, Wei W, et al. Identification of a novel
nomogram to predict progression based on the circadian clock and insights into the
tumor immune microenvironment in prostate cancer. Front Immunol (2022)
13:777724. doi: 10.3389/fimmu.2022.777724

29. Karanika S, Karantanos T, Li L, Wang J, Park S, Yang G, et al. Targeting DNA
damage response in prostate cancer by inhibiting androgen receptor-CDC6-ATR-Chk1
signaling. Cell Rep (2017) 18(8):1970–81. doi: 10.1016/j.celrep.2017.01.072

30. Bridges KA, Hirai H, Buser CA, Brooks C, Liu H, Buchholz TA, et al. MK-1775,
a novel Wee1 kinase inhibitor, radiosensitizes p53-defective human tumor cells. Clin
Cancer Res (2011) 17(17):5638–48. doi: 10.1158/1078-0432.CCR-11-0650
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fendo.2023.1148898/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fendo.2023.1148898/full#supplementary-material
https://doi.org/10.3322/caac.21708
https://doi.org/10.1038/s41572-020-00243-0
https://doi.org/10.1210/endrev/bnab002
https://doi.org/10.1016/j.eururo.2014.07.010
https://doi.org/10.15252/embj.201490306
https://doi.org/10.1038/s41585-020-00400-w
https://doi.org/10.1186/s13045-019-0818-2
https://doi.org/10.1038/s41467-021-25624-1
https://doi.org/10.1038/s41467-021-25624-1
https://doi.org/10.1093/bioinformatics/bty124
https://doi.org/10.1016/j.cell.2021.04.048
https://doi.org/10.1038/nbt.2859
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1038/nmeth.4463
https://doi.org/10.1186/s13046-021-01874-1
https://doi.org/10.1186/s13046-021-01874-1
https://doi.org/10.1007/s10620-017-4819-0
https://doi.org/10.3389/fonc.2021.583083
https://doi.org/10.3389/fonc.2021.583083
https://doi.org/10.1158/1535-7163.Mct-20-0244
https://doi.org/10.1158/1535-7163.Mct-20-0244
https://doi.org/10.15403/jgld-2834
https://doi.org/10.1155/2022/5673810
https://doi.org/10.1016/j.celrep.2018.09.013
https://doi.org/10.1016/j.celrep.2018.09.013
https://doi.org/10.1007/s10585-013-9625-2
https://doi.org/10.1007/s10585-013-9625-2
https://doi.org/10.1073/pnas.2013620117
https://doi.org/10.1002/pros.23250
https://doi.org/10.21873/cgp.20132
https://doi.org/10.1038/sj.onc.1209418
https://doi.org/10.1038/sj.onc.1209418
https://doi.org/10.1186/s12967-020-02323-x
https://doi.org/10.1155/2022/8604216
https://doi.org/10.3389/fimmu.2022.777724
https://doi.org/10.1016/j.celrep.2017.01.072
https://doi.org/10.1158/1078-0432.CCR-11-0650
https://doi.org/10.3389/fendo.2023.1148898
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

	Prognostic implication of heterogeneity and trajectory progression induced by enzalutamide in prostate cancer
	1 Introduction
	2 Materials and methods
	2.1 Data sources and processes
	2.2 Single-cell RNA sequencing data processing and analysis
	2.3 Cell trajectory analysis
	2.4 Pathway enrichment analysis
	2.5 Construction and validation of enzalutamide-induced signature
	2.6 Development and validation of nomogram
	2.7 Scoring the activity of ENZ-sig in single cell
	2.8 Statistical analysis

	3 Results
	3.1 Landscape of enzalutamide-induced cell heterogeneity and transcriptional alteration
	3.2 Identifying enzalutamide-induced pseudo-time trajectory
	3.3 Construction of enzalutamide-induced signature for predicting RFS in prostate cancer
	3.4 Evaluating the clinical relevance of ENZ-sig in prostate cancer
	3.5 Validation of the enzalutamide-induced signature in independent datasets
	3.6 Development of the nomogram and evaluation of its clinical utility
	3.7 Functional characteristics related to enzalutamide-induced signature
	3.8 Ability of model in predicting drug sensitivity

	4 Discussions
	5 Conclusions
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Supplementary material
	References


