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An immunosuppressive state is regulated by various factors in the tumor

microenvironment (TME), including, but not limited to, metabolic plasticity of

immunosuppressive cells and cytokines secreted by these cells. We used single-cell

RNA-sequencing (scRNA-seq) data and applied single-cell flux estimation analy-

sis to characterize the link between metabolism and cellular function within the

hypoxic TME of colorectal (CRC) and lung cancer. In terms of metabolic hetero-

geneity, we found myeloid cells potentially inclined to accumulate glutamine but

tumor cells inclined to accumulate glutamate. In particular, we uncovered a

tumor-associated macrophage (TAM) subpopulation, APOE+CTSZ+TAM, that

was present in high proportions in tumor samples and exhibited immunosuppres-

sive characteristics through upregulating the expression of anti-inflammatory

genes. The proportion of APOE+CTSZ+TAM and regulatory T cells (Treg) were

positively correlated across CRC scRNA-seq samples. APOE+CTSZ+TAM
potentially interacted with Treg via CXCL16–CCR6 signals, as seen by ligand–
receptor interactions analysis. Notably, glutamate-to-glutamine metabolic flux

score and glutamine synthetase (GLUL) expression were uniquely higher in

APOE+CTSZ+TAM, compared with other cell types within the TME. GLUL

expression in macrophages was positively correlated with anti-inflammatory

score and was higher in high-grade and invasive tumor samples. Moreover, spa-

tial transcriptome and multiplex immunofluorescence staining of samples showed

that APOE+CTSZ+TAM and Treg potentially colocalized in the tissue sections

from CRC clinical samples. These results highlight the specific role and metabolic

characteristic of the APOE+CTSZ+TAM subpopulation and provide a new per-

spective for macrophage subcluster-targeted therapeutic interventions or meta-

bolic checkpoint-based cancer therapies.
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1. Introduction

Forming the immunosuppressive microenvironment is

key to tumor immune escape and malignant tumor pro-

gression, which is triggered by various factors, including

hypoxia and the metabolic composition in the tumor

microenvironment (TME). For example, methionine

depletion in the TME causes T cell persistently express-

ing inhibitory receptors and further promotes tumor

progression in hepatic carcinoma [1] and colon cancer

[2]. Besides, hypoxia, a common characteristic in solid

tumors and associated with poor prognosis in several

cancer types [3,4], negatively affects antitumor immune

responses by reducing activity of effector cells and by

increasing the recruitment of immunosuppressive cells

and supporting their activity [5]. Thus, it is critical to

understand the metabolic signals on exacerbating the

immunosuppressive microenvironment and destroying

the antitumor immune response, as the activation and

differentiation of immune cells occur in metabolically

reprogrammed TME in cancers [6].

Additionally, myeloid-derived suppressor cell (MDSC)

[7], tumor-associated macrophage (TAM) [8], and regula-

tory T cell (Treg) [9] within the TME harbor a highly

immunosuppressive phenotype, inducing repressed func-

tion of effector T cells and influencing antitumor immu-

nity. Importantly, these immunosuppressive cells are

metabolically flexible, can use alternative metabolites in the

TME to maintain their suppressive identity and help can-

cer cells evade the immune system. For example, TAM

could adopt phenotypes to immunosuppressive and main-

tain cell vitality by using lactic acid released by tumor cells

[10], thereby directly inhibiting the cytotoxicity of T cells.

TAM could destroy antitumor immunity through releasing

arginase-1 and depletion of L-arginine which is essential for

the re-expression of the T-cell receptor after antigen

engagement on T cells [11]. The exploitation of targeted

therapies against TAM and the strategies including deple-

tion and reprogramming macrophages have been imple-

mented in preclinical and clinical trials [12]. Despite these

advances, the strategy needs further investigation for its

limitations. For example, the general depletion of macro-

phages exerted by CSF1R inhibitors is not TAM specific

and thus has substantial toxicity over time [13]. Identifica-

tion of metabolic checkpoints of macrophages’ function

might represent a promising strategy to induce selective

reprogramming of abundant protumoral macrophages

toward an antitumoral phenotype [14]. Although different

functional macrophages are known to localize in different

metabolic environments of the tumor, how the specific

metabolic features regulating TAM subgroups behavior

in vivo of clinical samples and affecting their corresponding

impact on disease outcome has not been well studied.

In the current study, as single-cell RNA-sequencing

(scRNA-seq) data has been instrumental in under-

standing heterogeneity and identifying novel metabolic

regulators of cells [15], we took advantage of scRNA-

seq to reveal the characteristics and function of indi-

vidual cell and depict the metabolic profile in the

hypoxia landscape across cell types. We applied

scRNA-seq data from colon cancer (CRC) and lung

cancer (LC) which were the cancer types to harbor

hypoxia characteristics [3,16]. To analyze these data,

we utilized a novel computational method, single-cell

flux estimation analysis (scFEA), to assess metabolic

profile from scRNA-seq data. The results showed that

APOE+CTSZ+TAM, with significant anti-

inflammatory phenotype and specifically expressing

GLUL, was associated with malignant progression in

colon cancer patients. This study highlights that

GLUL may be a macrophagic metabolic checkpoint as

a promising alternative to tackle immunosuppressive

and tumor progression.

2. Materials and methods

2.1. Data collection and human specimens

The single-cell gene expression matrices in the present

study were retrieved from the following databases: CRC

Single Cell Portal (https://singlecell.broadinstitute.org/

single_cell/study/SCP1162) [17], LC1 (GSE131907) [18],

and LC2 (http://blueprint.lambrechtslab.org) [19]. CRC

single-cell data were divided into two groups according

to the samples from mismatch repair-deficient (MMRd)

and mismatch repair-proficient (MMRp) patients, named

CRC-MMRd and CRC-MMRp respectively. Spatial

transcriptome (ST) data were available from CNGB

Nucleotide Sequence Archive (CNSA: http://db.cngb.

org, accession number CNP0002432).

Nine CRC tumor specimens from Nanfang Hospital,

Guangzhou, China, were included in this study for multi-

plex immunofluorescence (mIF). The clinical characteris-

tics of patients for mIF are shown in Table S1. This

study was approved by the Ethics Committee of Nanfang

Hospital of Southern Medical University (Approval No.

NFEC-2021-110) and complied with the Declaration of

Helsinki. The experiments were undertaken with the

understanding and written consent of each subject.

2.2. Single-cell RNA-seq data processing

The raw gene expression matrices were processed using

SEURAT (v4.1.0) R package. In the quality control steps,

the following genes or cells were filtered out: (a) genes

expressed by < 50 cells; (b) cells < 800 or cells > 6000
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expressed genes; and (c) cells > 20% of mitochondrial

genes.

We constructed principal components (PCs) using

highly variable genes, then selected the first 30 PCs for

graph-based clustering with functions FindNeighbors

and FindClusters in SEURAT. We performed harmony

algorithm in HARMONY R package [20] to remove batch

correction before subclustering analysis of epithelial

cells. For visualization of clustering analysis, we per-

formed uniform manifold approximation and projec-

tion (UMAP) using RunUMAP function in SEURAT.

2.3. Cell-type annotation and differential

expression analysis

We discriminated differentially expressed genes (DEGs)

based onWilcoxon rank-sum test using the ‘FindAllMark-

ers’ function in the SEURAT by comparing the difference in

each cluster to the union of the rest of the clusters. Genes

with P value < 0.05 were considered as DEGs based on

Bonferroni correction. We used heatmap to visualize

DEGs of subcluster based on gene expression after the

log-transformed and scaling.

The clusters and subclusters were annotated based

on the top-ranking DEGs among the canonical marker

genes known from previous studies. Detailed informa-

tion on cluster including major cluster, subcluster, cor-

responding marker genes, and cell numbers were

addressed in Tables S2 and S3.

2.4. Definition of gene signature scores involved

in cell-specific function and cancer hallmarks

To compare the transcriptional signatures between

cells, we used the gene sets from MsigDB (http://www.

gsea-msigdb.org/gsea/msigdb/) to define the epithelial–
mesenchymal transition (EMT) by calculating single-

sample gene set enrichment analysis (ssGSEA) score.

The gene sets of metabolism pathway were obtained

from a previous study [21]. The gene signatures (CD8

T-cell activation, cytotoxicity, exhaustion activity, M1/

M2 macrophages, proinflammatory, and anti-

inflammatory) were obtained from previous research

to distinguish the features of each cluster in T/NK

cells and myeloid cells, respectively [22,23]. Hypoxia

score was calculated by ssGSEA method using gene

signatures referring to our previous study [16]. For

each dataset, the cells were divided into hypoxia-high

(top 50%) and hypoxia-low (bottom 50%) groups

according to the hypoxia score. As for the gene signa-

ture of specific cell types identified by the current

study, we also adopted ssGSEA method to calculate

the scores of specific cell type. The signature scores

were calculated across all cells in each cancer dataset

separately. All gene signatures were listed in Table S4.

2.5. Cell–cell interaction analysis

In order to reveal the molecular mechanism of cross-

talk between cells in the TME, Cellphone DB [24] was

used to infer the ligand–receptor interaction between

cell clusters. The ligands and receptors pairs are shown

in a bubble chart for showing the average genes’

expression in pairs and the P value.

2.6. Survival analysis

The samples were grouped into high and low groups

according to the specific gene expression. For APOE

and CTSZ as well as GLUL gene expression, we per-

formed survival analysis using the top and bottom

50% expression as high and low groups in the online

website, using a standard professing pipeline (http://

gepia2.cancer-pku.cn/) [25].

2.7. Detecting metabolic modules and

metabolomic changes in each cell type

We applied scFEA method [26] to infer the cell-wise

metabolic flux from scRNA-seq data and to identify

context- and cell types-specific metabolic diversities.

Tissue-level metabolic stress was computed as the total

imbalance throughout the cells. A neural network in

scFEA includes three hidden layers and each layer with

eight hidden nodes. Hyperbolic tangent served as activa-

tion function and the neural network defines the loss

function considered from four parts, including flux bal-

ance loss, non-negative loss, inconsistency with gene

expression, and flux scale.

In the data processing step, the neural network

returned a row with the module score in each cell. We

accumulated the sum of consumption score and sub-

tracted the sum of production score of each module in

a cell, thus obtaining the metabolism score of each

compound corresponding to the cell. We used the

average score among all cells in this cluster for the

metabolic score of specific cell cluster.

2.8. Processing and analysis of spatial

transcriptome data

The ST data used in this study were obtained from a

previous study, which was sequenced in the Stereo-seq

platform [27]. We summarized the unique molecular

identifiers (UMI) in each of the bin100-defined

(50 lm 9 50 lm) spots, and then analyzed and
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visualized the results. For determining colocalization

of Macro_APOE/CTSZ and Treg, the signature score

was calculated by ssGSEA method across all spots in

the tissue section. The correlation between signature

score of APOE+CTSZ+TAM and Treg was calculated

using Spearman correlation method. Scanpy [28] was

used for spatial visualization of cell types and gene

expression.

2.9. Multiplex immunofluorescence imaging and

image analysis

Formalin-fixed and paraffin-embedded (FFPE) tissue

blocks were chosen from nine CRC patients in Nanfang

Hospital for subsequent analysis. Immunostaining was

processed with OpalTM 7-Color IHC Kits (Akoya Bio-

sciences, Marlborough, MA, USA; NEL821001KT),

according to the manufacturer’s instructions using anti-

bodies (anti-human CD68 (Proteintech, Chicago, IL,

USA; Cat# 66231-2-Ig, RRID: AB_2881622); anti-

human APOE (Proteintech; Cat# 66830-1-Ig, RRID:

AB_2882173); anti-human CTSZ (Affinity Biosciences,

Melbourne, VIC, Australia; Cat# DF14386, RRID:

AB_2923130); anti-human GLUL (Affinity Biosciences;

Cat# DF7607, RRID: AB_2841098), and anti-human

FOXP3 (Affinity Biosciences; Cat# AF6544, RRID:

AB_2847268)). Images were obtained and analyzed with

the Zeiss LSM 880 confocal laser-scanning microscope

(LSM 880; Carl Zeiss, Oberkochen, Germany) and

ZEN image analysis software (ZEN; Carl Zeiss). IMAGEJ

was used to perform the fluorescence quantitative colo-

calization analysis [29].

2.10. Statistical analysis

All statistical analyses and graphical representations of

data were performed in the R and PYTHON computa-

tional environment. The correlation analysis including

gene expression, gene signature score, and cell propor-

tion between two groups used in this study was based

on Spearman correlation. For the cell subtype

abundance correlation matrix, we defined the number

ratio of cell subtype to the belonging major cell type

as the relative abundance of each cell subtype, then

computed the Spearman correlation coefficient

between the relative abundance of all cell subtypes

across CRC patients and considered r > 0.3 and

FDR < 0.05 as significant correlation. For the differ-

ence analysis between groups, we used the Kruskal–
Wallis test to compare multiple groups, and a two-

sided Wilcoxon rank-sum test to perform pairwise

comparisons. For the pseudo-bulk analyses [30], we

grouped cells in one patient as a pseudo-bulk, and

then compared the variance in the value of gene

expression, gene signature score, metabolism model

score, and cell proportion between pseudo-bulks. In all

cases, statistical significance was defined as an adjusted

P value < 0.05. Details of all statistical tests used can

be found in the corresponding figure legends.

3. Results

3.1. Cell types and subtypes within hypoxia TME

across CRC and LC

Using gene expression of canonical marker, the cell

types and subtypes were identified across CRC-

MMRd, CRC-MMRp, LC1, and LC2 datasets, respec-

tively (Fig. S1a–c, Tables S2 and S3). All cells were

divided into hypoxia-high or hypoxia-low group in

each dataset by using hypoxia gene signature score to

characterize hypoxia level. Notably, T/NK cells were

mainly in hypoxia-low group while myeloid and

epithelial cells were in hypoxia-high group (Fig. 1A,B;

Fig. S1d–f). After comparing the hypoxia level

between subtypes, we found that Mono and Macro_A-

POE/CTSZ subclusters were highly enriched in

hypoxia-high group, while Macro_FTL subcluster was

mainly in hypoxia-low group in both CRC-MMRp

and CRC-MMRd datasets (Fig. 1C,D). As hypoxia-

inducible factor-1 (HIF-1A) was one of the indicators

of hypoxia, we further calculated the gene expression

Fig. 1. Single-cell atlas of human CRC tissues. (A) UMAP plots of cells from normal and tumor tissue of 28 CRC-MMRp patients, showing

seven clusters indicating cell type, three clusters indicating tumor staging information, and two clusters indicating hypoxia-high and -low

group cells. Each cluster was shown in different colors. (B) The same as shown in A but in 34 CRC-MMRd patients. (C, D) Cell proportion in

hypoxia-high and -low groups of each cell type in CRC-MMRp (C) and CRC-MMRd (D). **P < 0.01, ***P < 0.001, paired two-sided Wilcoxon

test. The mean cell proportion is marked in the bar graph and vertical lines indicate the maximum and minimum values of the cell proportion.

(E–G) Heatmap showing different expression patterns of cell function-associated gene signatures among myeloid cell subsets (E), in T/NK

cells (F), and in epithelial cells (G). (H, I) Correlation map showing the correlation between cellular proportion with positive (Spearman corre-

lation; correlation coefficient r > 0.3 and FDR < 0.05, in red), negative (r < �0.3 and FDR < 0.05, in blue), or nonsignificant (blank) correlation

for the infiltration of pairwise 22 cell types in 28 independent CRC-MMRp samples (H) and 24 CRC-MMRd samples (I). MMRd, mismatch

repair deficient; MMRp, mismatch repair proficient; Mono, monocyte; DC, dendritic cell; NK, natural killer; Tfh, follicular helper T cell; Mye,

myeloid cells; Epi, epithelial cells.
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between HIF1A, APOE, and CTSZ. The results

showed that there was a significant correlation between

them in both CRC and LC, except no correlation

between APOE and HIF1A in CRC-MMRd samples

(Fig. S1g).

To obtain an in-depth understanding of the cellular

function of each cell subtype, we performed ssGSEA

analysis using gene signatures and compared the simi-

larities and differences between subclusters. In the

myeloid cells, Macro_APOE/CTSZ was observed to

have higher anti-inflammatory and M2-like scores in

CRC-MMRp (Fig. 1E). In the T/NK cells, hypoxia

and proliferation scores were higher in CD8Pro sub-

cluster, while exhaustion score was higher in CD8Tex

subcluster (Fig. 1F). In the epithelial cells, Cancer_-

Malig subcluster with a higher proliferation score was

observed in CRC-MMRp (Fig. 1G). Similar results

were observed in CRC-MMRd, LC1, and LC2 data-

sets (Fig. S2a–c).
To explore the potential synergistic effects of different

functional cells in promoting cancer, we next aimed to

calculate the infiltration proportion correlation between

these cells. Due to the limited number of LC samples,

only CRC was selected in the current analysis. In gen-

eral, the proportion of cell subclusters was correlated

between cells in the same major cell types. For example,

there was a positive correlation between epithelial

cell subclusters in both CRC-MMRp (Fig. 1H) and

CRC-MMRd (Fig. 1I). Notably, Macro_APOE/CTSZ

was observed to show a positive correlation with Treg,

but a negative correlation with CD8Teff subcluster in

CRC-MMRp (Fig. 1H).

3.2. Metabolic heterogeneity across cell

subclusters and association between metabolic

characteristics and cellular function

Owing to the lack of matched metabolomics informa-

tion, we focused on demonstrating the capability of

scFEA in inferring metabolic flux, metabolic stress,

and metabolic modules between cell subclusters. We

performed pseudo-bulk analyses and differential analy-

sis to reveal the differences between cell subclusters

and to reflect the variability between patients. The

results showed that there were notable differences

between cell types, for example, epithelial cells were

revealed to have the highest level in most metabolic

reactions compared to other cell types in CRC, fol-

lowed by myeloid cells (Fig. S3a). We then mainly

focused on the epithelial cells and myeloid cells and

compared the difference among subclusters belong to

these two cell types. The top accumulated metabolites

were lactate and top depleted metabolites were

methionine and dTMP in myeloid cells (Fig. 2A,B)

and epithelial cells (Fig. 2C,D). Notably, glutamine

and glutamate were one of the top accumulated

metabolites observed in myeloid cells and epithelial

cells, respectively, which was distinct between these

two cell types (Fig. 2A–D). The same results were also

observed in LC1 and LC2 samples (Fig. S3b,c).

In the subtypes, Macro_APOE/CTSZ was found to

have a higher value in glutamate-to-glutamine and glu-

tamate input transport metabolic flux (Fig. 2E,F), which

was then confirmed by the observation of accumulated

glutamine in Macro_APOE/CTSZ from CRC (Fig. 2G,

H) and LC (Fig. S3d). The value of pyruvate-to-

oxaloacetate and serine-to-methionine metabolic flux

was higher in Macro_CCL19 subcluster (Fig. S3e). The

value of glycolysis-related metabolic flux was higher in

Cancer_Pro subcluster (Fig. S3f). Pseudo-bulk analyses

by grouping cells from distinct patients also showed sig-

nificant differences between subclusters, in different

metabolic fluxes (Fig. S4a,b). These results reveal that

diverse cell populations might preferentially acquire dis-

tinct metabolites from a common pool of metabolites

available in the TME.

Since the metabolic characteristics differed between

cell subtypes with different functions, we further

analyzed the relationship between metabolic features

and cellular function across cell types. In macrophages,

ssGSEA score of amino acid metabolic pathway was

positively correlated with score of anti-inflammatory,

M2-like polarization and immune escape score signa-

tures (Fig. S5a), however, they were negatively corre-

lated with pro-inflammatory signature score (Fig. S5b).

Notably, glutamate-to-glutamine flux score was

positively correlated with anti-inflammatory score

across LC and CRC datasets (Fig. S5b). As the

Fig. 2. The metabolic characteristics across single cells. (A, B) Top accumulated and depleted metabolites predicted in the myeloid cells in

CRC-MMRp samples (A) and CRC-MMRd samples (B). The x-axis is metabolism stress level, where a positive value represents accumula-

tion and a negative value represents depletion. (C, D) Top accumulated and depleted metabolites predicted in the epithelial cells in CRC-

MMRp samples (C) and CRC-MMRd samples (D). (E, F) Distribution of predicted cell-wise flux of metabolism in the subtypes of myeloid

cells in CRC-MMRp samples (E) and CRC-MMRd samples (F). (G, H) Top accumulated and depleted metabolites predicted in the

APOE+CTSZ+TAM in CRC-MMRp samples (G) and CRC-MMRd samples (H). The dashed line in A–D, G, and H shows the value of accumu-

lated or depleted metabolites equaling 0.015. The values less than this value are gray bars.
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function of epithelial cells, we observed that score of

most metabolism pathways was significantly negatively

correlated with EMT score (Fig. S5c). In the T cells,

both glycolysis and oxidative phosphorylation score

were positively correlated with CD8T cell activation

score (Fig. S5d,e). Overall, these data suggest that

metabolic heterogeneity between cell types and the rele-

vance between particular metabolism with different cel-

lular functions.

3.3. APOE+CTSZ+TAM with an anti-

inflammatory phenotype and associated with

high-grade tumors

As Macro_APOE/CTSZ subcluster shows the higher

anti-inflammatory and M2-like score (Fig. 1E), we next

investigated the cellular function of Macro_APOE/

CTSZ in-depth. We found that the proportion of

Macro_APOE/CTSZ was significantly higher in tumor

than normal tissues (Fig. 3A,B) and accounted for more

than 20% of macrophages in most CRC patients

(Fig. 3C). We analyzed the expression of APOE and

CTSZ within the bulk transcriptomes of CRC and

found that the higher level of jointed APOE and CTSZ

expression was correlated with worse overall survival

(Fig. 3D) and disease-free survival in TCGA-

COADREAD (Fig. 3D,E). Analysis of DEGs revealed

that known immunosuppressive markers (such as

APOE, CTSZ, SEPP1, MRC1, and CD163) were highly

expressed in Macro_APOE/CTSZ compared with other

myeloid subclusters in CRC-MMRp (Fig. 3F), CRC-

MMRp, LC1, and LC2, respectively (Fig. S6a–c). To
assess whether Macro_APOE/CTSZ was associated

with histologic grade of the tumor, we found these

immunosuppressive markers were significantly upregu-

lated in high-grade tumors compared with low-grade in

CRC-MMRp and CRC-MMRp (Fig. 3G; Fig. S6d).

Besides, the expression of these makers also significantly

upregulated in myeloid cells derived from tumor com-

pared with normal samples (Fig. S6e,f).

As shown in Fig. 1H, the infiltration of Macro_A-

POE/CTSZ was positively correlated with Treg but neg-

atively correlated with CD8Teff cells in CRC-MMRp

samples (Fig. 3H). To gain further functional insight,

we conducted the receptor–ligand interactions analysis

and found there were chemokines and their receptors

between Macro_APOE/CTSZ and Treg cells, including

CXCL16–CXCR6, CCL4–CCR5, and CCL3–CCR5
pairs (Fig. 3I). We further found that CXCL16 was

highly expressed in Macro_APOE/CTSZ (Fig. 3J) and

CXCR6 was expressed in Treg (Fig. 3K), which might

indicate that Macro_APOE/CTSZ utilized CXCL16 sig-

nals to recruit Treg cells to the tumor site, further exac-

erbating the immunosuppressive TME. Altogether,

these results show that the Macro_APOE/CTSZ abun-

dance associates with high-grade tumor in patients with

CRC by contributing to immunosuppressive TME.

3.4. APOE+CTSZ+TAM specifically upregulated

GLUL expression and glutamate-to-glutamine

metabolic flux score

As glutamate-to-glutamine metabolic flux (M_48) score

was highest in Macro_APOE/CTSZ among all cell sub-

clusters (Fig. 2E,F; Fig. S4), we further explored the link

between glutamate-to-glutamine metabolic flux and cel-

lular function of Macro_APOE/CTSZ. We evaluated

the gene expression of solute carrier family 3 member 1

(SLC3A1) and glutamate–ammonia ligase (GLUL),

which were involved in glutamate transports and glu-

tamine synthase, respectively. The result showed that

the gene expression of SLC3A1 and GLUL were highly

expressed in Macro_APOE/CTSZ compared with other

cell types in CRC and LC, and were upregulated in

Fig. 3. The immunosuppressive function of APOE+CTSZ+TAM. (A, B) Comparison of APOE+CTSZ+TAM percentages in paired normal

(n = 12) and tumor (n = 12) tissue of CRC-MMRp (A) and CRC-MMRd samples (B). ***P < 0.001, paired two-sided Wilcoxon test. (C) Box-

plot showing the proportion of APOE+CTSZ+TAM divided by the total macrophage number across CRC and LC samples. The mean cell pro-

portion is marked in the bar graph and vertical lines indicate the maximum and minimum value of the cell proportion. (D) The Kaplan–Meier

curve shows overall survival of COADREAD patients with different APOE+CTSZ+TAM infiltration. (E) The Kaplan–Meier curve shows

disease-free survival of COADREAD patients with different APOE+CTSZ+TAM infiltration. (F) Boxplot showing the different expressions of

marker genes of APOE+CTSZ+TAM and M2 as well as anti-inflammatory score among myeloid cells in CRC-MMRp samples. ***P < 0.001,

Kruskal–Wallis test. (G) Violin plots showing the different expressions of marker genes of APOE+CTSZ+TAM between low- and high-grade

samples in CRC-MMRp samples. ***P < 0.001, paired two-sided Wilcoxon test. (H) Scatterplot showing the Spearman correlation of the

proportion of APOE+CTSZ+TAM (divided by the total macrophage number) and Treg cells or CD8+ Teff cells (divided by the total T/NK cell

number) in tumor tissues of CRC-MMRp samples. (I) Bubble chart showing the top predicated ligands expression in APOE+CTSZ+TAM that

modulate Tregs by CellPhoneDB. (J) Boxplot showing the different expressions of CXCL16 among myeloid cell subclusters in CRC-MMRp

samples. ***P < 0.001, Kruskal–Wallis test. (K) Boxplot showing the different expressions of CXCR6 among T-cell subclusters in CRC-

MMRp samples. ***P < 0.001, Kruskal–Wallis test. The mean gene expression is marked in the bar graph and vertical lines indicate the

maximum and minimum value of the gene expression.
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Fig. 4. APOE+CTSZ+TAM upregulated GLUL and glutamate-to-glutamine metabolic flux. (A, B) SLC1A3 and GLUL expression among cell

subtypes in CRC-MMRp samples (A) and CRC-MMRd samples (B). ***P < 0.001, Kruskal–Wallis test. The mean gene expression is marked

in the bar graph and vertical lines indicate the maximum and minimum values of the gene expression. (C, D) SLC1A3 and GLUL expression

in macrophage divided from tumor and normal samples in CRC-MMRp samples (n = 29 in tumor samples, n = 29 in normal samples) (C)

and CRC-MMRd samples (n = 35 in tumor samples, n = 35 in normal samples) (D). (E, F) GLUL expression among different histologic grade

samples and node status in CRC-MMRp samples (E) and CRC-MMRd samples (F). (G, H) M_48 score among different histologic grade sam-

ples and node status in CRC-MMRp samples (G) and CRC-MMRd samples (H). (I, J) Glutamine accumulation value among different histo-

logic grade samples and node status in CRC-MMRp samples (I) and CRC-MMRd samples (J). ***P < 0.001, unpaired one-sided Wilcoxon

test. CRC-MMRp tumor sample (n = 29), CRC-MMRd sample (n = 35), high-grade CRC-MMRp tumor sample (n = 4), low-grade CRC-MMRp

tumor sample (n = 25), high-grade CRC-MMRd tumor sample (n = 9), low-grade CRC-MMRd tumor sample (n = 26), N0 CRC-MMRp tumor

sample (n = 12), N1&2&3-grade CRC-MMRp tumor sample (n = 17), N0 CRC-MMRd tumor sample (n = 23), and N1&2&3-grade CRC-MMRd

tumor sample (n = 12). Mono, monocyte; DC, dendritic cell; NK, natural killer; Tfh, follicular helper T cell; Fib, fibroblast; End, endothelial cell;

B, B cell; Mye, myeloid cells; Epi, epithelial cells.
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macrophage derived from tumor than normal tissues in

CRC (Fig. 4A–D; Fig. S7b,c). Besides, glutamine accu-

mulation value was observed higher in Macro_APOE/

CTSZ subcluster, and was also significantly positively

correlated with M_48 score and GLUL gene expression

in LC and CRC (Fig. S7d,e). Notably, GLUL expres-

sion (Fig. 4E,F), M_48 score (Fig. 4G,H), and glu-

tamine accumulation value (Fig. 4I,J) were higher in the

high-grade and invasive CRC samples. However, gene

expression of GLUL was not significantly associated

with the overall survival in TCGA CRC and LC cancer

patients (Table S5). These results indicate that GLUL

expression is remarkably higher in Macro_APOE/CTSZ

subcluster and associated with high-grade tumors.

In order to figure out the underlying causes that

Macro_APOE/CTSZ specifically upregulated glutamate

transport and glutamate-to-glutamine metabolic path-

way, we analyzed the glutamate-related metabolic genes

in tumor cells. The results showed that solute carrier

family 1 member 5 (SLC1A5) and solute carrier family

38 member 1 (SLC38A1), encoding enzymes involved in

glutamine transports, were specifically upregulated in

the tumor cells, while SLC1A3 and GLUL encoding

enzymes that were involved in glutamate transports and

glutamine synthetase were downregulated in tumor cells

compared with Macro_APOE/CTSZ, in LC and CRC

(Fig. S7f). Glutaminase (GLS), converting glutamine to

glutamate, was downregulated in tumor cells compared

with Macro_APOE/CTSZ, in CRC samples. However,

GLS was upregulated in tumor cells derived from cancer

compared with epithelial cells derived from normal sam-

ples (Fig. S8a,b).

As we observed 2-OG and succinyl-CoA were the top

metabolites accumulated in the myeloid cells (Fig. 2A–
C), we explored whether the accumulation of these

metabolites was linked to the overexpression of GLUL in

myeloid cells. These results showed that GLS, glutamate

dehydrogenase 1 (GLUD1) and oxoglutarate dehydroge-

nase (OGDH), involved in succinyl-CoA synthesis, were

highly expressed in myeloid cells compared with tumor

cells in CRC. On the contrary, succinyl-CoA synthetase

subunit alpha (SUCLG1), involved in hydrolysis of

succinyl-CoA, was less expressed in myeloid cells com-

pared with tumor cells (Fig. S8c). Besides, these genes

were upregulated in myeloid cells derived from tumor

compared with myeloid cells derived from normal tissues,

in CRC (Fig. S8d). These results indicate that the accu-

mulation of succinyl-CoA and 2-oxoglutarate may be

partially linked to the overexpression of GLUL, but fur-

ther experiments are needed to verify it in the future

work. The above results reveal that Macro_APOE/CTSZ

may take measures by upregulating glutamine synthesis

pathway in response to glutamine starvation in the TME

with glutamine-addiction tumor cells and to maintain

their cellular functions.

3.5. Association between glutamate-to-

glutamine metabolic pathway and anti-

inflammatory function of APOE+CTSZ+TAM

Based on the above observations and the immunosup-

pressive pattern of Macro_APOE/CTSZ, we reasoned

that continued glutamine anabolism through GLUL

might be responsible for the sustained immunosuppres-

sive phenotype of Macro_APOE/CTSZ. To further

explore this hypothesis, we calculated the correlation

among the metabolic flux score, anti-inflammatory score,

cell infiltration proportion, as well as the expression of

related genes. The results showed that GLUL expression,

M_48 score, and glutamine accumulated value were posi-

tively correlated with anti-inflammatory score, but nega-

tively or weakly correlated with pro-inflammatory score

across CRC (Fig. 5A–C) and LC (Fig. S9a–c). M_48

score and GLUL expression were also highly correlated

with anti-inflammatory-related genes but weakly or nega-

tively correlated with pro-inflammatory-related genes in

CRC (Fig. 5D) and LC (Fig. S9d–f). Besides, we found

GLUL expression was significantly associated with Treg

infiltration proportion in CRC-MMRp samples

(Fig. 5E).

In addition, we returned the key molecular charac-

teristics of the above results back to individual samples

to inspect their relationship and distribution and found

that most of the characteristics in the individuals were

consistent with the overall distribution across 28 CRC-

MMRp and 34 CRC-MMRd patients (Fig. 5F). For

example, the extensive association between GLUL and

anti-inflammatory score was observed at the individual

level along with the abundance change in Macro_A-

POE/CTSZ. Such findings suggest that glutamine

metabolism in the TME may have been shown to pro-

mote anti-inflammatory properties of macrophages

and impair the antitumor immunity through critically

exacerbated immunosuppression.

3.6. Spatial transcriptome and multiple

immunohistochemical validation

In order to validate the metabolic and immunosuppres-

sive properties of Macro_APOE/CTSZ in cancer tissues,

we used ST data from two CRC patients. In contrast to

other spots, APOE and CTSZ were mainly expressed

consistent with GLUL expression in the same spot

(Fig. 6A,B). Score of Macro_APOE/CTSZ and Treg

signatures in each spot highlighted Macro_APOE/

CTSZ and Treg may have colocalization in the same
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Fig. 5. The relevance between metabolism and cell function in macrophages. (A–C) The correlation among GLUL expression (A), M_48

score (B), and glutamine accumulation value (C) with anti-inflammatory, M2, and proinflammatory score in CRC-MMRp samples and CRC-

MMRd samples. (D) The expression correlation between GLUL with genes in anti-inflammatory in CRC-MMRp samples and CRC-MMRd

samples. (E) Scatterplot showing the Spearman correlation of the GLUL gene expression and infiltration proportion of Treg or CD8+ T effec-

tor cells (divided by the total T/NK cell number) in tumor tissues of CRC-MMRp samples. CRC-MMRp tumor sample (n = 29) and CRC-

MMRd sample (n = 35). (F) Molecular characteristics of different cell types across samples in CRC-MMRp (left) and CRC-MMRd patients

(right).
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Fig. 6. Colocalization of APOE+CTSZ+TAM with cells expressing GLUL as well as Treg revealed by spatial transcriptomics. (A, B) Spatial

feature plots of gene expression of APOE, CTSZ, and GLUL in patients 19 (A) and 36 (B). (C, D) Spatial feature plots of signature score of

APOE+CTSZ+TAM and Treg in tissue sections in patients 19 (C) and 36 (D). (E, F) Spearman correlation of signature score of

APOE+CTSZ+TAM (y-axis) and Treg (x-axis) in patients 19 (E) and 36 (F).
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spot (Fig. 6C,D). In addition, the signature score of

Macro_APOE/CTSZ and Treg showed a significantly

positive correlation in two clinical samples (r = 0.68,

r = 0.48, P < 2.2e-16) (Fig. 6E,F).

To query whether the expression of CD68, APOE,

and CTSZ was colocalized with GLUL expression and

examine potential spatial interactions between Macro_-

APOE/CTSZ and Treg within the TME, we performed

mIF on available clinical CRC tissue. Immunofluores-

cent labeling demonstrated CD68/APOE-positive and

CD68/CTSZ-positive cells localized and overlapped

with GLUL-positive cells (Fig. 7A,B; Fig. S10) and

colocalized with FOXP3-positive cells in nine CRC tis-

sues sections (Fig. 7C,D; Fig. S11). Fluorescence colo-

calization analysis showed that both Pearson’s

correlation coefficiency and overlap coefficiency were

over 0.80 between APOE/CTSZ and GLUL, and over

0.70 between APOE/CTSZ and FOXP3 (Fig. S10h,i,

Table S6), further supporting the potential crosstalk

between these two dysfunctional cell populations to

promote immunosuppression in malignant CRC.

4. Discussion

Through the analysis of myeloid cells, we observed a

macrophage subpopulation with the anti-inflammatory

and M2-like phenotype, which is mainly infiltrated in

tumor regions. In addition to the classical anti-

inflammatory markers (such as APOE, CD163, CCL18,

and MSR1), Macro_APOE/CTSZ is also revealed to

Fig. 7. Tissue and cellular distribution of APOE+CTSZ+TAM, GLUL+ cells, and Treg. (A, B) Multiplex immunofluorescence staining of CD68

(green), APOE (red), CTSZ (yellow), GLUL (purple), and DAPI (blue) on CRC tissue section of patient PA2203077 and patient PA2220884,

scale bar 20 lm. Left: merged and single-channel photo of the tissue section. Right: combined channel of CD68/APOE/GLUL and CD68/

CTSZ/GLUL on the tissue section. (C, D) Multiplex immunofluorescence staining of CD68 (green), APOE (red), CTSZ (yellow), FOXP3 (pur-

ple), and DAPI (blue) on CRC tissue section of patient PA2203077 and patient PA2220884, scale bar 20 lm. Left: Merged and single-

channel photo of the tissue section. Right: Combined channel of CD68/APOE/FOXP3 and CD68/CTSZ/FOXP3 on the tissue section. Arrows

indicate the representative regions with three immunofluorescence staining.

624 Molecular Oncology 17 (2023) 611–628 � 2023 The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

APOE+CTSZ+TAM with immunosuppressive phenotype J. Wei et al.



express high levels of multiple cysteine cathepsin genes

(such as CTSZ, CTSA, CTSB, CTSD, and CTSL), and

complement-related genes (C1QC and C1QA). Cysteine

cathepsins have been revealed to be associated with

extracellular matrix remodeling, antitumor immune

response, and protumor behaviors in the previous study

[31]. In the current results, Macro_APOE/CTSZ is

revealed to constitute the major source of cysteine

cathepsin expression in cancer, which may be important

for the functional differentiation and immunosuppres-

sive properties of TAM [32]. However, the specific

mechanism of cysteine cathepsin needs to be better con-

sidered in further studies.

To define the cell states of macrophages clearly, we

adopt the marker gene sets related to macrophage

function. It is found that Macro_APOE/CTSZ has the

highest score of anti-inflammatory and M2-like gene

signature, which may create the immunosuppressive

properties of this cell subtype. Studies have shown that

MMRd tumors have high mutation load and usually

contain high cytotoxic T-cell infiltration, while MMRp

tumors have low mutation load and less tumor-

associated antigen thus preventing the immune system

from activating or inducing less cytotoxic T-cell infil-

tration [17]. Combined with the results of the current

analysis that Macro_APOE/CTSZ interacts with Treg

and is mutually exclusive with T effector cells in CRC-

MMRp, which may indicate that immunosuppressive

microenvironment induced by interaction Macro_A-

POE/CTSZ and Treg may be linked to a low mutation

load and deactivating immune system in CRC-MMRp

but not in CRC-MMRd samples. We then computa-

tionally inferred cell–cell communication between

above co-occurred cell types in CRC-MMRp. The

result showed the multiple interactions between

Macro_APOE/CTSZ and Treg, including CD74–MIF,

CCL3–CCR5, and CXCL16–CXCR6. The chemokine

receptor CCR5 has been implicated in the recruitment

of Treg from blood into CRC in previous studies [33].

In the current study, CXCL16 was highly expressed in

Macro_APOE/CTSZ compared with other myeloid

cells. Previous studies showed that higher CXCL16

expression was associated with M2-macrophage infil-

tration and enhanced angiogenesis in thyroid cancer

[34], and TAM promoted cancer metastasis by enhanc-

ing CXCL16–CXCR6 pathway in ovarian carcinoma

[35]. However, CXCL16–CXCR6 signal has not been

studied extensively between TAM and Treg, more

exploration needs to reveal the specific mechanism.

CD74-MIF signaling plays an important role in

immunosuppression [36], indicating that Macro_A-

POE/CTSZ may recruit Treg to infiltrate tumor tissue

to inhibit antitumor immune responses. ST data and

mIF experiment support the inferred interactions

between Macro_APOE/CTSZ and Treg in independent

cohorts.

Immunosuppressive properties of macrophage are

not only controlled at the transcriptional and posttran-

scriptional level but also influenced by the characteris-

tic of TME, including hypoxia [37] and nutrient

availability [38]. As metabolic reprogramming is a hall-

mark cancer that is characterized by tumor cells alter-

ing the metabolic composition of the TME, the

recruitment and activation of macrophages can be

mediated by functionally metabolic plasticity.

Glutamate-to-glutamine metabolic pathway and GLUL

expression, specifically activated and overexpressed in

Macro_APOE/CTSZ, were higher in high-grade com-

pared with low-grade tumor samples. Glutamine is one

of the important and abundant amino acids, which

can be used as energy to enter the tricarboxylic acid

cycle through production of a-ketoglutarate [39]. How-

ever, how glutamine content impacts the TME are far

from being elucidated. It also remains unclear if the

underlying mechanisms regulated by glutamate and

glutamine metabolism in the TME to mobilize

immunosuppressive macrophage function at the single-

cell resolution. Proliferating cancer cells utilize glu-

tamine as an energy-generating substrate and macro-

phages also need glutamine metabolism to provide

synergistic support for cell activation [40,41]. Previous

studies have identified that GLUL as an enzyme plays

a fundamental role in obtaining the prometastatic

function of TAM [42] and there is a crosstalk mecha-

nism whereby cancer cells released N-acetylaspartate

to enhance GLUL expression in TAM and further

prompt M2-like phenotypes of TAM [43]. Besides, the

M2-like phenotype TAM could be rewired to antitu-

mor and further reduced cancer cell metastasis on

mice-bearing metastatic lung, skin, and breast cancer

by GLUL inhibitor [44]. As it is revealed that SLC1A3

and GLUL are highly expressed in Macro_APOE/

CTSZ while SLC1A5 and SLC38A1 are highly

expressed in tumor cells in the current analysis, it may

explain that excessive uptake of glutamine by tumor

cells creates a shortage of glutamine in the TME,

thereby triggering the acquisition of glutamate and

synthesis of glutamine by TAM and further facilitating

the immunosuppressive phenotype of TAM subpopula-

tion. Combining the previous studies and current anal-

ysis, regulating GLUL on macrophages for changing

their phenotype and further blocking interaction with

Treg to alleviate the immunosuppressive microenviron-

ment, maybe a potential combined treatment strategy

with immune checkpoint treatment for CRC and LC

patients with high Macro_APOE/CTSZ cell infiltration
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and who do not respond to immunotherapy, such as

MMRp samples [17].

The main limitation of the current study is that

additional experimental efforts are needed to establish

crosstalk between Macro_APOE/CTSZ and Treg, as

well as the connection between Macro_APOE/CTSZ

function and glutamate-to-glutamine pathway. To

determine whether regulating metabolism pathway of

glutamate to glutamine in Macro_APOE/CTSZ would

effectively abolish the immunosuppressive microenvi-

ronment and rehabilitate an antitumor immune

response, further research is needed.

5. Conclusion

Overall, this study provides probabilities to explore the

connection between cellular metabolic heterogeneity

and their cellular functions in the TME at single-cell

resolution. The results indicate that Macro_APOE/

CTSZ plays a substantial role in the immune dysfunc-

tion in higher-grade tumor, and also assume a meta-

bolic checkpoint of Macro_APOE/CTSZ, which may

allow cells to return to antitumor phenotype by target-

ing pathway of glutamate to glutamine. Ultimately,

the interactions we identified between the Macro_A-

POE/CTSZ and Treg represent potential therapeutic

targets, with the goal of further improving antitumor

immunity in advanced CRC.
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