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Abstract

Purpose: Optical coherence tomography (OCT) is a noninvasive, high-resolution imaging
modality capable of providing both cross-sectional and three-dimensional images of tissue
microstructures. Owing to its low-coherence interferometry nature, however, OCT inevitably
suffers from speckles, which diminish image quality and mitigate the precise disease diagnoses,
and therefore, despeckling mechanisms are highly desired to alleviate the influences of speckles
on OCT images.

Approach: We propose a multiscale denoising generative adversarial network (MDGAN) for
speckle reductions in OCT images. A cascade multiscale module is adopted as MDGAN basic
block first to raise the network learning capability and take advantage of the multiscale context,
and then a spatial attention mechanism is proposed to refine the denoised images. For enormous
feature learning in OCT images, a deep back-projection layer is finally introduced to alterna-
tively upscale and downscale the features map of MDGAN.

Results: Experiments with two different OCT image datasets are conducted to verify the effec-
tiveness of the proposed MDGAN scheme. Results compared those of the state-of-the-art
existing methods show that MDGAN is able to improve both peak-single-to-noise ratio and
signal-to-noise ratio by 3 dB at most, with its structural similarity index measurement and con-
trast-to-noise ratio being 1.4% and 1.3% lower than those of the best existing methods.

Conclusions: Results demonstrate that MDGAN is effective and robust for OCT image speckle
reductions and outperforms the best state-of-the-art denoising methods in different cases. It
could help alleviate the influence of speckles in OCT images and improve OCT imaging-based
diagnosis.

© 2023 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.10.2.024006]

Keywords: optical coherence tomography; medical and biological imaging; image despeckling;
generative adversarial network.

Paper 22204GRR received Aug. 4, 2022; accepted for publication Mar. 13, 2023; published
online Mar. 30, 2023.

1 Introduction

Optical coherence tomography (OCT) is a low-coherence interferometry-based imaging modal-
ity capable of providing depth-resolved microstructure images of biological tissues.1 Owing to
its noninvasive and high-resolution properties, OCT has widely been adopted for various disease
diagnoses, especially in ophthalmology.2 Due to its low-coherence process resulting from the
coherent addition of photons scattered back with random phase and amplitude, however, OCT
inevitably suffers from speckle noise. Speckle largely reduces the image quality and degrades the
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accuracy of OCT imaging-based disease diagnoses.3 Therefore, speckle reduction in OCT
images is highly desired to improve the clinic utility of OCT.

Over the past years, OCT speckle reduction has attracted extensive research interest, and
numerous despeckling methods have been proposed.4 Typically, OCT image despeckling meth-
ods can be categorized into hardware-based and software-based ones according to the different
types of techniques adopted.5 Specifically, the hardware-based methods usually include angular
compounding,6,7 frequency compounding,8 polarization-,9 and spatial-diversity-based10 system
designs. Although such methods are effective and robust, they are not readily to be implemented
for existing commercial OCT systems. For example, for those angular compounding and polari-
zation-diversity-based methods, extensive modifications must be made to the OCT systems, and
some special materials or/and designs are typically required. Such requirements increase both
system complexity and costs, making such schemes backward incompatible and could not be
extended to the existing commercial OCT systems. While for both frequency compounding and
spatial-diversity-based methods, although extensive hardware changes are not necessarily
needed, their system spatial resolutions are typically sacrificed during the imaging process,
which thus degrades the system performance.

Contrarily, the software-based denoising methods can be easily implemented onto the com-
mercial systems since no special requirements are needed on the system design. Typically, the
software-based techniques could be further categorized into model-based and deep learning-
based ones. The model-based methods usually try to restore details of the potential clean images
using optimization schemes, such as nonlocal filter,11,12 sparse coding,13 effective prior,14 wave-
let transform,15 and low rank.16 The nonlocal weighted sparse representation (NWSR),17 as well
as the block-matching and 3D filtering (BM3D)18 schemes are typical model-based despeckling
methods. Although BM3D employs a block level estimation for denoising based on image self-
similarity, NWSR utilizes the sparse representation of multiple similar noisy and denoised
patches to improve patch estimation. However, it is worth noting that BM3D usually suffers
from the edge ringing effect when processing those images with high complexity and low con-
trast, and NWSR vectorized patches may disrupt the structures of the reconstructed images in
certain cases. Both methods suffer from deficiency in preserving detailed structures in OCT
images.

In recent years, as artificial intelligence is receiving increasing research interest, various deep
learning-based denoising methods have also been proposed in the literature. Tajmirriahi et al.
implemented a lightweight convolution network as deep autoencoders (AEs) to simulate the
latest state-of-the-art method in OCT image denoising. Results show that the AE has good per-
formance in speckle OCT denoising.19 Anoop et al.20 proposed a cascaded convolutional neural
network (CNN) architecture for OCT image despeckling and also adopted it eliminates the
impacts of noises on OCT datasets obtained with different devices.

More recently, various methods with either unsupervised or semisupervised training schemes
have also been proposed.21,22 By utilizing up and downsampling networks to generate denoising
and super-resolution OCT images concurrently, Qiu et al.23 proposed a semisupervised learning
method called N2NSR-OCT for both denoising and image super-resolution. In addition, Ni
et al.24 proposed a speckle-modulating mechanism, namely, Sm-Net OCT, to extract speckle
properties for OCT image speckle removing with generative adversarial network (GAN).
Although it demonstrated that Sm-Net OCT helps improve both image quality and imaging
depth, it suffers from heavy training loads, especially for those large-scale images. Such is
because for Sm-Net OCT, the speckle patterns play a key role in model training, yet they are
typically difficult to extract and characterize. Recently, we also proposed a generative adversarial
network with multiscale convolution and dilated convolution res-network (MDR-GAN) for OCT
despeckling.25 By utilizing the convolution and dilated convolution res-network blocks to
improve the network learning ability, MDR-GAN achieved satisfactory despeckling effects.
It is worth noting that the generator of MDR-GAN consists of three parts, namely, feature extrac-
tion, feature mapping, and feature reconstruction, which would impose complexity onto the sys-
tem design. Huang et al.26 used an unsupervised method, namely, DRGAN-OCT, for speckle
reduction without employing matched image pairs. By decomposing the noisy images into con-
tent and noise spaces with an encoder first, and then adopting a generator to predict the denoised
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image contents with the extracted features, DRGAN-OCT saves the number of clean images
required for network model training.

More recently, various methods with either unsupervised or semisupervised training schemes
have also been proposed.21,22 However, it is worth noting that, although such semisupervised or
unsupervised deep-learning schemes could help alleviate the requirement for the large number of
clean images utilized by the supervised training schemes, their overall despeckling effects are
typically less satisfactory. Furthermore, due to the complicated deep-learning schemes employed
for training, those semisupervised and unsupervised methods are usually complicated and com-
putationally extensive. Therefore, in clinical practice, network architectures with both relatively
simpler training strategies and stronger learning abilities are highly desired to achieve satisfac-
tory denoising effects with a limited number of training datasets.

This paper proposes a multiscale denoising generative adversarial network (MDGAN) for
OCT speckle reductions. Specifically, a cascade multiscale module (CMSM) is proposed to re-
cover the multiscale image features and increase the network learning capacity first, and then a
deep back-projection (DBP) layer is employed to upscale and downscale the feature maps alter-
natively. After that, a loss function is finally devised to regenerate the high-frequency image
information. The main contributions of this paper are as follows.

• MDGAN, which requires only a limited number of clean and noisy image pairs, is pro-
posed for OCT image despeckling.

• A CMSM is proposed to recover the multiscale OCT image features while increasing the
network learning capability.

• The spatial attention mechanism (SAM) combining with different loss functions is pre-
sented in the training scheme for regeneration of the most common details in OCT images.

• Experiments are conducted to compare MDGAN with state-of-the-art OCT despeckling
methods in different cases for performance verifications.

The remainder of this paper is organized as follows. Section 2 introduces the MDGAN
network architecture and the proposed training scheme in detail. Section 3 describes the exper-
imental setup and the performance metrics. Section 4 presents the experimental results. Section 5
concludes this paper.

2 Method

2.1 Generative Adversarial Network Architecture

GANs have widely been used for denoising, super-resolution, classification, and other related
image processing areas. For a denoising GAN, the image sets are typically expressed as with xi
and yi being an image pair. Assuming that x is a noisy image and y is the corresponding noise-
free image, and the objective of denoising GAN is to find the mapping between the input image x
and its corresponding noise-free image y.

In the proposed GAN model, we define the generator and the discriminator as G and D,
respectively. The discriminator D inputs a high-dimension vector, such as a picture, and outputs
a scalar. The more realistic the input picture is, the larger the scalar. Initially, the clean image is
fed to the discriminator, which results in a higher scalar, while the generated denoised image gets
a lower scalar. After several training epochs, the scalar value of the generated denoised image
input into the discriminator will increase. Once the quality of the denoised imageGðxÞ generated
by G is high enough, the discriminatorD will regard it as realistic, and the training process tends
to balance. The principle of the GAN model can be expressed with the following min–max
optimization to optimize the generator G and the discriminator D:

EQ-TARGET;temp:intralink-;e001;116;129min
G

max
D

VðG;DÞ ¼ Ey∼Py
½logðDðyÞÞ� þ Ex∼Px

½logð1 −DðxÞÞ�; (1)

where E½•� denotes the expectation function, whereas Py and Px denote the real and the noisy
data distributions, respectively. When the GAN model reaches the maximum and minimum
optimization, both generator and discriminator reach an equilibrium state.
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Figure 1 shows the schematic of the proposed generator of network architecture in MDGAN.
As seen, the network is based upon a U-Net27 with skip connections. Specifically, in such an
architecture, the SAM and the element-wise addition function are employed, while the DBP
layer is placed between the encoder and decoder. Element Conv is the convolutional layer, while
BN and LReLU represent the batch normalization28 and leaky rectified linear unit,29 respectively.
In MDGAN, the CMSMs are employed to capture the multiscale features, whereas SAMs are
used to refine the denoised image, and the DBP layer alternatively upscales and downscales the
feature maps to capture image information. Furthermore, the k, n, and s denote the kernel size,
filter number, and stride, respectively. To further balance the network performances and com-
putation cost, appropriate parameters k or n are selected, and the discriminator D in MDGAN
adopts a 70 × 70 PatchGAN as shown in Fig. 2 to distinguish between the real clean and the
denoised images.30 The residual learning method is also introduced to link the input and output
feature maps.31

2.2 Cascade Multiscale Module

Based upon a multiscale cross-work, the proposed CMSMmodule is employed to improve infor-
mation flow and capture feature.32 This study applies a series of 3 × 3 convolutional layers to
capture the multiscale image features. Figure 3(a) shows that a CMSM contains three single
multiscale modules (MSMs). The input feature maps flow into those MSMs continuously,
whereas the output feature maps are concatenated together and directed into a 1 × 1 convolu-
tional layer. The MSM is shown in Fig. 3(b), wherein the input feature map is uniformly split into
four subsets, with xi being the i’th subset input. Compared with the original feature map, the
channel number in each subset xi is reduced to 1/4th of its original. The four subset outputs are
concatenated into a 3 × 3 convolutional layer denoted as Kið·Þ, and therefore, the MSM can be
defined as

EQ-TARGET;temp:intralink-;e002;116;106yi ¼
( xi; i ¼ 1

KiðxiÞ; i ¼ 2

Kiðxi þ yi−1Þ; 2 < i ≤ 4

; (2)

Fig. 1 The generator architecture of the proposed MDGAN, wherein k represents the kernel size
of the convolution layers, n is the filter number, and s represents the stride.

Fig. 2 The discriminator architecture of the proposed MDGAN, namely, PatchGAN used to deter-
mine whether an input image is a real clean image or a denoised image.
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where yi is the output of Kið·Þ. Owing to the balanced connection, MSM gradually decreases the
gap between the input and the output feature maps, which helps gain a large receptive field for
the output feature map. Finally, the four splits with different scales are concatenated into a 1 × 1

convolutional layer.

2.3 Spatial Attention Mechanism

Figure 4 presents the spatial attention module (SAM).33 The main objective of utilizing SAM
module is to refine the denoising results with enhanced computational speed. Assume a feature
map F ∈ RC×H×W is input into SAM, where C,H, andW denote the channels, height, and width
of F, respectively, then the average and max-pooling functions are adopted to perform down-
sampling onto F to generate double one-channel maps. Finally, such maps are concatenated
and fed into a 7 × 7 convolutional layer to generate a new 2D spatial attention map
M ∈ R1×H×W . The operation process of SAM could be mathematically expressed as follows:

EQ-TARGET;temp:intralink-;e003;116;338MsðFÞ ¼ σðf7×7ð½AvgPoolðFÞ;MaxPoolðFÞ�ÞÞ; (3)

where σ is the sigmoid function, and f7×7 represents a 7 × 7 convolutional layer. Finally, the
output feature map of SAM can be given as follows:

EQ-TARGET;temp:intralink-;e004;116;282F 0 ¼ MsðFÞ ⊗ F: (4)

Fig. 3 The network architecture of the (a) CMSM and (b) an MSM.

Fig. 4 The spatial attention module with average pooling and max pooling to refine the denoising
results.

Yu et al.: Multiscale denoising generative adversarial network for speckle reduction in optical coherence. . .

Journal of Medical Imaging 024006-5 Mar∕Apr 2023 • Vol. 10(2)



2.4 Deep Back-Projection Layer

A DBP layer is adopted in MDGAN to exploit the upsampling and downsampling layers, which
helps identify the mutual relation of noisy and clean image pairs.34 As shown in Fig. 5(a), the
upsampling and downsampling layers are utilized to alternatively upscale and downscale the
feature maps. Specifically, in the downsampling layer, the kernel size, filter number, and stride
number are 3, 256, and 2, respectively. The upsampling layer with an upsampling block presents
a transposed convolutional layer with the same configuration as that of the downsampling layer.
Moreover, the connection between two layers employs an SAM model to better capture the
visual structures, whereas the CMSM module again is utilized to find sufficient information
for high-frequency detail refinements in Fig. 5(b).

2.5 Object Function

The MDGAN discriminator D determines whether a real clean or denoised image is more
realistic.35 In this study, the least square GAN, which adopts the least square loss to minimize
the divergence of Pearson, χ2 is used to estimate the distribution between the denoised images
and the real clean images. Generally, the adversarial loss is used to restore the high-frequency
image information and reduce the blurring effects caused by L2 loss. Therefore, the objective
functions of D and G are described, respectively, as follows:

EQ-TARGET;temp:intralink-;e005;116;248

min
D

VLSGANðDÞ ¼ 0.5Ey∼Py
½ðDðyÞ − 1Þ�2 þ 0.5Ex∼Px

½ðDðGðxÞÞÞ�2

max
G

VLSGANðGÞ ¼ 0.5Ex∼Px
½ðDðGðxÞÞ − 1Þ�2; (5)

where y and x denote a real clean image and its corresponding noisy image, respectively, whereas
DðyÞ and GðxÞ represent the discriminator and generator accordingly.

For generator G, the mean-square-error (MSE) loss, also named L2 loss, is used to maintain
the image details and structure contents. The mean error loss could realize a pixel-wise error
minimization between the denoised image GðxÞ and its real clean image y. The L2 loss function
is described as follows:

EQ-TARGET;temp:intralink-;e006;116;114LMSE ¼ 1

N

XN
i¼1

ky − GðxÞk2: (6)

Fig. 5 (a) Simplified network architecture of the deep back-projection layer. (b) Architecture of the
down and the up blocks. The parameters k , n, and s represent the convolution layer kernel size,
the filter number, and the stride number, respectively.
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For image denoising in this study, since L2 loss does not usually match the image quality
perceived by human eyes, the restored images suffer from the loss in image details. Since L2 loss
does not usually match the image quality perceived by human eyes, the restored images usually
suffer from the loss of image details. In addition, although the L2 loss could help reduce the pixel
content gap between the denoised and the clean images, it is expected that the feature repre-
sentation of the denoised and the clean images can be reduced. In this study, such an objective
is obtained by employing a pretraining network like VGG-16,31 a low-weight auxiliary VGG
loss function is encapsulated into the generator loss for image despeckling. The VGG loss
changes the computational space from the image into the feature domain, and thus it helps
address the above issues. The VGG loss is defined as follows in this study:

EQ-TARGET;temp:intralink-;e007;116;616Lvgg ¼
1

N

XN
i¼1

kVGG16ðyÞ − VGG16ðGðxÞÞk; (7)

whereVGG16 presents the VGG-16 network. In addition, the edge loss is also adopted to retrieve
sharp edge information, and it is described as follows:

EQ-TARGET;temp:intralink-;e008;116;542Ledge ¼
P

i

P
j jTxðiþ 1; jÞ − Txði; jÞjP

i

P
j
jTyðiþ 1; jÞ − Tyði; jÞj

; (8)

where Tx and Ty are two-dimensional matrices representing the denoised image and its
corresponding real clean counterpart, whereas i and j represent the i’th row and j’th column
of a two-dimensional image matrix.

In summary, the overall generator loss function combined with Ledge, Lvgg, LMSE, and LGAN

is formulated:

EQ-TARGET;temp:intralink-;e009;116;426LG ¼ αLMSE þ βLGAN þ γLvgg þ λLedge; (9)

where α, β, γ, and λ are the coefficients of corresponding losses. In this study, they are
hyperparameters with fixed values chosen empirically in the experiments. The values of each
part will be shown in Sec. 3.2

It is worth noting that, when GAN is employed for image-to-image transformation, halluci-
nations typically occur when those images are of different domains. To address such an issue, a
loss function, e.g., L1-loss, is usually employed in literature during the image conversion process
to eliminate their influences. In this study, however, since only retinal images are employed for
verifying the effectiveness of MDGAN, and those retinal images are only transformed from the
noisy ones to the clean ones within the same domain, the generated hallucination will not seri-
ously impact on the denoising results. The features of the noise images and the ground-truth
images correspond to each other, and thus the hallucination problem will not change the structure
of the denoised images. The VGG loss is utilized with a small weight for MDGAN, whereas the
MSE loss is mainly used to maintain strong similarity between image pairs in this study.

3 Experiments

3.1 Dataset

Experiments with two different publicly available OCT datasets were conducted to verify the
effectiveness of MDGAN. Both datasets are comprised of central foveal images, which are col-
lected by the same SD-OCT imaging systems from Bioptigen, Inc. (Durham, North Carolina,
United States) with an axial resolution of ∼4.5 μm per pixel in tissue.36 The first one is named as
dataset CF, and the second one is called dataset SS in this study. Specifically, the first dataset CF
contains 17 retinal OCT image pairs acquired from normal and abnormal subjects, and each
image pair includes a noisy SD-OCT image and a corresponding ground-truth image obtained
by registering and averaging several B-scans acquired at the same position. As the size of each
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image was different, all images are cropped with an anchor point of geometric image center at a
resolution of 500 × 950 (height × width) to facilitate the network training and testing process.

In the experiments, there are 17 image pairs within dataset CF: seven pairs were removed for
their limited qualities, leaving only 10 pairs remaining for experiments, of which eight image
pairs were randomly chosen for network training, while the remaining two pairs were used for
testing. Specifically, by traversing each of the eight image pairs with a 256 × 256 window and a
stride of 50, a total number of 2552 patch pairs were generated for training, and such obtained
noisy patches were directed to the generator for training to realize extracted feature mapping
between the noisy images and the real clean ones. Finally, the remaining two image pairs in
dataset CF were processed by the network for comparisons. For fair comparisons, the existing
mechanisms were implemented following exactly the way that they were reported, and all the
parameters were tuned to achieve their respective best performances. The same 2552 patch pairs
and the two noisy images were also adopted for their training and testing, respectively, and those
noisy images processed by those existing methods were compared with those by MDGAN quan-
titatively and qualitatively in the testing phase.

The dataset SS contains five OCT image pairs with a size of 448 × 800 (height × width).
Similarly, after removing one mismatched image pair, only four were left and employed for
experiments. In the experiments, since both datasets CF and SS are collected by the same
OCT device, it is assumed that the speckle distribution patterns of the two datasets are the same,
even though image sizes are different for the two datasets. Therefore, the MDGANmodel trained
by dataset CF is employed for processing those images in dataset SS in the testing phase. All
performance metrics and those images used for comparisons are shown in the following sections.

3.2 Parameter Setting

The generator and discriminator of MDGAN are optimized using the adaptive momentum esti-
mation (Adam) optimizer, with β1 ¼ 0.5 and β2 ¼ 0.999. All the other network parameters are
also marked in Figs. 1 and 2. Specifically, in the training part, the learning rate was set to be first,
and then it was gradually decreased to with a decaying factor of 0.1 in every 50 epochs. Such a
training process terminates until the losses of both the generator and the discriminator reach a
balanced state that is set for the model. In this study, the total number of steps for the whole
training is set to be 200, whereas the coefficients of the generator loss were empirically chosen to
be α ¼ 1, β ¼ 0.001, γ ¼ 0.006, and λ ¼ 0.0005 to achieve better performance. The networks
were implemented in Python with PyTorch framework, and all experiments were conducted on a
workstation (Intel Xeon W-2145 CPU at 3.70 GHz) and were accelerated by an NVIDIAQuadro
GPU with 5 GB memory.

3.3 Evaluation Metrics

The MDGAN performance is assessed with six indicators, including peak-single-to-noise ratio
(PSNR), edge preservation index (EPI), the equivalent number of looks (ENL), contrast-to-noise
ratio (CNR), structural similarity index measurement (SSIM), and signal-to-noise ratio (SNR).
PSNR, EPI, and SSIM are computed for the entire image, whereas ENL, SNR, and CNR are
measured within several regions of interest (ROIs). The denoising efficacy of MDGAN is vali-
dated by comparing MDGAN with the other state-of-the-art denoising methods. A brief over-
view of those performance metrics is as follows.

3.3.1 Peak signal-to-noise ratio

The PSNR is the main metric that measures the similarity between the denoised image and the
reference image, and it can be expressed as follows:

EQ-TARGET;temp:intralink-;e010;116;121PSNRðr; gÞ ¼ 10 log10ð2552∕MSEðr; gÞÞ; (10)

EQ-TARGET;temp:intralink-;e011;116;81MSEðr; gÞ ¼ 1

MN

XM
i¼1

XN
j¼1

ðrij − gijÞ2; (11)
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where ri;j and gi;j represent the pixel values at the corresponding coordinates of clean region and
denoise region, respectively, whereas M and N are the height and width of the image.

3.3.2 Edge preservation index

The EPI indicates the extent of image edge detail preservations after processing, and it is defined
as follows:

EQ-TARGET;temp:intralink-;e012;116;650EPI ¼
P

i

P
j jIdðiþ 1; jÞ − Idði; jÞjP

i

P
j
jInðiþ 1; jÞ − Inði; jÞj

; (12)

where Id denotes the denoised image, In denotes the noisy image, and i, j represent the i’th row
and j’th column of an image. Generally, a higher EPI value implies better edge preservations.

3.3.3 Equivalent number of looks

ENL is a typical parameter used for evaluating OCT image speckle reductions, and it measures
the smoothness of the homogeneous region of the denoised image. ENL is calculated over the
background ROI of each test image as follows:

EQ-TARGET;temp:intralink-;e013;116;498ENL ¼ μ2b
σ2b

; (13)

where μb and σb represent the mean and standard deviation of selected background ROI in each
image, respectively.

3.3.4 Contrast-to-noise ratio

CNR measures the contrast between the signal and the background regions, and it is defined as
follows:

EQ-TARGET;temp:intralink-;e014;116;367CNR ¼ 1

m

Xm
i¼1

�
10 log10

�
μi − μbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2i þ σ2b

p ��
; (14)

wherem is the number of all selected signal ROIs; μi and σi are the mean and standard deviation
of the i’th selected ROI, whereas μb and σb are the mean and standard deviation of the select
background ROI.

3.3.5 Structural similarity index measurement

SSIM is a full reference metric being widely used for image quality evaluation. For an image
x and an image y, SSIM between them could be calculated as follows:

EQ-TARGET;temp:intralink-;e015;116;222SSIMði; bÞ ¼ ð2μiμb þ C1Þð2σib þ C2Þ
ðμ2i þ μ2b þ C1Þðσ2i þ σ2b þ C2Þ

; (15)

where μb∕μi and σb∕σi are the mean and standard deviation of a clean/denoised region, respec-
tively, whereas σib denotes the cross correlation between the clean and denoised regions. C1 and
C2 are the positive stabilizing constants.
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3.3.6 Signal-to-noise ratio

SNR is the ratio of signal mean to background standard deviation, which is defined as

EQ-TARGET;temp:intralink-;e016;116;704SNR ¼ μsig
σbg

; (16)

where μsig and σbg are the mean of signal region and the standard deviation background region,
respectively. Note that the SNR here is not the same as the definition for OCT signals,37 instead,
it is defined for image analysis only with an arbitrary unit.38

4 Results and Discussion

Experiments with two publicly available OCT retinal image datasets, namely, dataset CF and
dataset SS, are conducted to verify the effectiveness of MDGAN in this study.36 The images from
different datasets are also processed by the state-of-the-art existing denoising methods, including
BM3D,18 Sm-Net OCT,24 MDR-GAN,25 DRGAN-OCT,26 and DnCNN,31 for comparisons in
different cases. In this study, two OCT retinal images from dataset CF and four from dataset
SS were processed for comparison.

4.1 Experiment with the Dataset CF

Two OCT images as shown in Figs. 6(a) and 7(a) from dataset CF are employed for experiments
to verify the effectiveness of MDGAN, and those images that are denoised with the different
methods are shown in Figs. 6 and 7.

Fig. 6 The OCT retinal image from dataset CF that is processed by different denoising methods:
(a) original noisy image, (b) ground-truth image, (c) BM3D, (d) DnCNN, (e) Sm-Net OCT, (f) MRD-
GAN, (g) DR-GAN OCT, and (h) MDGAN.
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Results in Fig. 6 demonstrate that all existing methods achieve satisfactory results in speckle
reductions, and the performances of different denoising effects are somewhat different.
Specifically, as shown in Figs. 6(c)–6(g), the speckles are largely suppressed as compared with
the original noisy image shown in Fig. 6(a), and the performances of Sm-Net OCTare better than
those of BM3D and DnCNN, with better visual effects achieved. Due to the complexity of the
image and the limited number of training image pairs, however, there still exist some speckles in
the obtained images, and therefore, the image is not smooth enough. Figure 6(f) shows that the
images processed by MDR-GAN are natural, and the background noises are also well sup-
pressed. By utilizing a small number of image pairs for training, DR-GAN OCT achieves certain
denoising results as shown in Fig. 6(g). However, due to the unsupervised learning scheme
adopted, such denoising effects are still relatively limited, especially for the background noises.
Figure 6(h) shows the image denoised by MDGAN. As seen, MDGAN achieves satisfactory
despeckling effects, wherein the speckles are largely suppressed, and therefore, the obtained
image in Fig. 6(h) is much smoother with clearer structural details as compared with those proc-
essed by the other schemes, as shown in Figs. 6(c)–6(g).

The typical ROIs in those figures are also selected and marked with green rectangles for
comparisons. As seen in the enlarged ROIs of Figs. 6(c)–6(g), although speckles are largely
suppressed, speckle residues still exist in the background, and the key structures are a bit blurred,
which thus deteriorates the image visual effects. In contrast, as shown in Fig. 6(h) by MDGAN,
speckles in the background regions are almost eliminated, and the structure details in those
images are well reserved, and thus the visual effects are much better.

The same results can also be observed in Figs. 7(c)–7(h). Such results convincingly dem-
onstrate that the proposed MDGAN scheme is capable of speckle reductions while reserving
image structure details.

Fig. 7 Another OCT retinal image selected from dataset CF that is processed with different meth-
ods: (a) original noisy image, (b) ground-truth image, (c) BM3D, (d) DnCNN, (e) Sm-Net OCT,
(f) MRD-GAN, (g) DR-GAN OCT, and (h) MDGAN.
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4.2 Experiment with the Dataset SS

To further verify the effectiveness and robustness of MDGAN, experiments are also conducted
with the other four image pairs from dataset SS, and those obtained images are compared with
those ones processed by the other existing denoising schemes in different cases. Since those
retinal images from datasets SS and CF are collected by the same OCT device, it is reasonably
assumed that the noise distribution patterns are the same for all images within those two datasets,
and therefore, the MDGAN network trained by dataset CF is also employed to process those
images from dataset SS.

Figure 8 presents a randomly selected image from dataset SS that is processed with different
denoising methods. As seen, similar results are obtained as those of the ones from dataset CF.
Again, it could be observed in Figs. 8(c)–8(s) that the images processed by BM3D, DnCNN, Sm-
Net OCT, MDR-GAN, DR-GAN OCT, and MDGAN, achieve better visual effects as compared
with the original noisy one. As can be seen, the images processed by those mechanisms look
much smoother, and those speckles are largely suppressed, or even eliminated, in background
regions. Among those existing methods, MDR-GAN achieves the best visual effects. Due to the
limited number of image pairs for training, however, there still exist speckle residues, especially
for BM3D and DnCNN, and thus, blurring effects are introduced, which hides the detailed image
microstructures. In contrast, for the image processed by MDGAN, it could be observed that
speckles are largely suppressed, and thus the image visual effects are comparable with those
of the ones processed by MDR-GAN, DnCNN, and Sm-Net OCT, i.e., Figs. 8(d)–8(f), respec-
tively. It could also be observed in enlarged ROIs shown in Fig. 8(h), the speckles in the
background are almost eliminated, while the image microstructures are well preserved.

Similar results could also be observed with the other image randomly chosen from dataset
SS, as shown in Fig. 9. As can be seen, the speckles in Fig. 9(f) are largely suppressed, and its

Fig. 8 Results of a OCT retinal image randomly selected from the dataset SS that is processed
different denoising methods: (a) original noisy image, (b) ground-truth image, (c) BM3D,
(d) DnCNN, (e) Sm-Net OCT, (f) MRD-GAN, (g) DR-GAN OCT, and (h) MDGAN.
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visual effects are better those in Figs. 9(c)–9(g) and are even comparable to the ground-truth
image as shown by Fig. 9(b). Meanwhile, the image structural details, as illustrated by the
ROIs shown in the green rectangles, are also well preserved and could be clearly seen. Such
results again convincingly demonstrate that MDGAN is not only capable of suppressing speck-
les in OCT images but also could preserve the image details in the image denoising process.

It is also worth noting, however, that at high zoom-in levels for those images obtained by
MDGAN, there still exist small artifacts in some areas, as shown in Figs. 8(h) and 9(h). The
reason for such artifacts is mainly because of the strong learning capability of MDGAN. As
shown in Figs. 8(b) and 9(b), there exist minimal speckles in the ground-truth image, and once
it is used for training, such speckles could be recognized as structural details, which thus produce
artifacts in some areas, although such artifacts would not impact on the overall denoising results.
Our next-step work is to eliminate such artifacts.

4.3 Other Metrics with the Two Datasets

To measure the performances of different mechanisms, the other performance metrics, e.g., EPI,
ENL, and CNR, are also calculated for those images processed with different denoising methods.
The ROIs in each figure are marked manually at a same position, wherein the green areas denote
the background and the signal ROIs, respectively, and all the metrics are averaged over those
images in each test dataset.

Table 1 compares the metrics of different methods with those images from dataset CF. As
seen in Table 1, MDGAN ranks first in PSNR and SSIM among all those despeckling methods.
Specifically, for PSNR, MDGAN outperforms BM3D, SM-Net OCT, and DnCNN by 0.70, 2.51,
and 0.94 dB, respectively, and it is also 0.08 dB higher than MDR-GAN, and 6.56 dB higher than

Fig. 9 Another OCT retinal image randomly selected from dataset SS that is denoised by the
different denoising methods: (a) original noisy image, (b) ground-truth image. (c) BM3D,
(d) DnCNN, (e) Sm-Net OCT, (f) MRD-GAN, (g) DR-GAN OCT, and (h) MDGAN.
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DR-GANOCT. And for SNR, MDGAN is 12.12% and 19.96% higher than BM3D and DnCNN,
respectively, and it is also 331% and 515% higher for ENL, respectively. Such results prove that
MDGAN is effective in speckle reductions in OCT images.

It is also worth noting that for EPI, although MDGAN is slightly lower than those of the other
methods, it is still quite similar to those of the existing methods. Such results indicate that all
those methods could effectively preserve the image edges in their denoising processes. However,
due to the different smoothing effects introduced by the different reference denoising region
selection strategies, ENL varies for each method in their despeckling processes. Specifically,
since MDGAN processes the selected background regions one by one and the loss functions
impose a constraint when processing the region edges, MDGAN ranks fifth among all methods
when processing the high-resolution images from dataset CF.

The same image processing procedure has also been applied onto images from dataset SS,
and the performance metrics are calculated. As shown in Table 2, MDGAN performs the best in
SSIM, SNR, and ENL, and it also achieves the second-highest PSNR among all denoising meth-
ods, demonstrating that MDGAN is effective and robust in speckle reductions for OCT images. It
is also worth noting that the other metrics in Table 2, except for PSNR, are a bit different from
those in Table 1. For example, MDGAN is almost 3.3 times that of BM3D for ENL. The reason
for such observations is that different methods may change the image signal intensities in their
despeckling process, and since the resolution of those images in dataset SS is relatively low, ENL
ranks first and CNR decreases slightly. In addition, the average processing time required by
different methods is also recorded as shown in Table 3. Results show that MDGAN takes about

Table 1 Quantitative results of the dataset CF with different methods.

PSNR (dB) SSIM (a.u.) EPI (a.u.) SNR (a.u.) CNR (a.u.) ENL (a.u.)

BM3D18 26.9797 0.5790 0.8311 31.4884 1.8031 122.1865

DnCNN31 26.7410 0.5258 0.9073 29.4314 1.7396 85.6478

Sm-Net OCT24 25.1684 0.6413 0.8005 34.2933 1.6645 280.4071

MDR-GAN25 27.5995 0.6776 0.7485 36.1875 1.4422 402.6848

DR-GAN OCT26 21.1168 0.6384 0.3980 35.4881 1.9773 530.6097

MDGAN 27.6790 0.6788 0.6969 35.3061 0.7699 526.9630

GT — 1 0.9001 32.6777 2.1387 180.5701

Note: The bold values denote the best values that were obtained for a certain metric among all those de-speck-
ling schemes been compared.

Table 2 Quantitative results of the dataset SS with different methods.

PSNR (dB) SSIM (a.u.) EPI (a.u.) SNR (a.u.) CNR (a.u.) ENL (a.u.)

BM3D18 29.3074 0.6785 0.6669 34.1420 1.9459 216.5167

DnCNN31 29.3784 0.7033 0.6419 36.5897 2.3019 425.7947

Sm-Net OCT24 26.4423 0.6178 0.8533 34.5856 2.0481 263.4014

MDR-GAN25 30.1599 0.7112 0.6060 38.0569 2.2734 611.8077

DR-GAN OCT26 24.9696 0.6581 0.8373 35.6786 2.1290 391.8944

MDGAN 29.5970 0.7205 0.4953 38.9112 1.5851 729.6187

GT — 1 0.8980 33.1317 1.9396 183.7867

Note: The bold values denote the best values that were obtained for a certain metric among all those de-speck-
ling schemes been compared.
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4.64 s on average to process an image with a size of 448 × 800 from dataset SS, which could be
expected to meet the time required for clinical diagnosis after certain optimizations.

To better compare, the performances among different methods, the metrics of all those
methods are normalized to their respective best ones. Results presented in Figs. 10(a) and
10(b) demonstrate that MDGAN achieves the highest PSNR and SSIM for dataset CF, while
it ranks first in SSIM, SNR, and ENL for dataset SS among all those despeckling methods com-
pared. While for the other metrics, MDGAN performs similarly as compared with the other
methods. Such results demonstrate that MDGAN is effective and robust for speckle reductions
in OCT images.

Table 3 The average processing time required to process an image from dataset SS.

Method BM3D DnCNN Sm-Net OCT MDR-GAN DR-GAN MDGAN

Times (s) 15.54 2.02 1.06 2.59 2.26 4.64

Fig. 10 Performances of different methods obtainedwith different datasets: results with (a) dataset
CF and (b) dataset SS.
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4.4 Ablation Experiment

To verify the effectiveness of each network module and loss functions, ablation experiments are
also carried out with the network architecture designed. With different modules integrated,
Table 4 shows the different performance metrics of MDGAN for an image randomly chosen
from dataset SS. As seen, all those three modules, i.e., SAM, DBP, and CMSM, could improve
the performances of PSNR, SSIM, SNR, CNR, and ENL, whereas DBP helps improve PSNR
better, and SAM helps improve SSIM, SNR, and ENL. Among the three modules, DBP impacts
on PSNR the most, and without such a module, the PSNR could be reduced by 4.54%. On the
contrary, SAM module has the most influences on SSIM, SNR, and ENL. As seen, without such
a module, such metrics could be reduced by 11.49%, 9.80%, and 58.02%, respectively.

We also conducted ablation experiments on the design of loss function. We will set up three
different loss functions for ablation experiments. The specific ablation results are shown in
Table 5. From the numerical results, no matter which combination of losses is missing, it will
affect the balance of network training and produce poor quality denoising images. Among them,
the trained model without Lvgg and Ledg will perform worst in PSNR, SSIM, SNR, and ENL.
Introduction of loss function Lvgg could improves PSNR, SSIM, SNR, and ENL, which increases
1.33%, 0.79%, 0.52%, and 1.65% compared with the trained model without Lvgg and Ledg,
respectively. Similarly, loss function Ledg also increased on these indicators, which improves
2.27%, 3.47%, 5.01%, and 35.93%, respectively. Finally, combining all loss functions will lead
to greater growth, which raises 5.04%, 13.14%, 11.87%, 8.33%, and 158.81% on PSNR, SSIM,
SNR, CNR, and ENL compared with the trained model without Lvgg and Ledg, respectively.
Therefore, these data can show that the added loss function of Lvgg and Ledg is very effective
for network training.

Table 4 Quantitative results of ablation experiment on SS without different modules.

PSNR (dB) SSIM (a.u.) EPI (a.u.) SNR (a.u.) CNR (a.u.) ENL (a.u.)

MDGAN without SAM 28.1248 0.6148 0.8719 33.5411 2.2505 212.3067

MDGAN without DBP 27.8378 0.6327 0.8405 34.7992 2.1988 300.8238

MDGAN without CMSM 27.9035 0.6286 0.8542 34.4206 2.2893 267.0651

MDGAN 29.5970 0.7205 0.4953 38.9112 1.5851 729.6187

GT — 1 0.8980 33.1317 1.9396 183.7867

Note: The bold values denote the best values that were obtained for a certain metric among all those de-speck-
ling schemes been compared.

Table 5 Quantitative results of ablation experiment on SS with different loss functions.

PSNR (dB) SSIM (a.u.) EPI (a.u.) SNR (a.u.) CNR (a.u.) ENL (a.u.)

28.4245 0.6218 0.8681 33.4324 1.9630 198.6409

28.6881 0.6352 0.8421 34.9026 2.1903 265.6429

28.0498 0.6139 0.8636 33.2366 2.0955 195.4224

LMSE þ LGAN þ Ledg þ Lvgg 29.5970 0.7205 0.4953 38.9112 1.5851 729.6187

GT — 1 0.8980 33.1317 1.9396 183.7867

Note: The bold values denote the best values that were obtained for a certain metric among all those de-speck-
ling schemes been compared.
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5 Conclusion

In summary, MDGAN is proposed for speckle reduction in OCT images. With a CMSM being
employed to utilize the multiscale context and a SAM being utilized to refine the denoised
images, the proposed MDGAN scheme is effective and robust in OCT speckle reductions.
Extensive experiments with two different OCT image datasets are conducted to validate
the effectiveness of MDGAN. Results show that MDGAN is comparable to the best
existing state-of-the-art methods in terms of both visual effect and quantitative metrics.
However, as the fully supervised learning scheme is adopted in MDGAN, and a limited number
of clean images must be cropped to generate sufficient training images, the overall architecture of
MDGAN is a bit complex. In future work, our objective is to reduce the complexity of the net-
work architecture by employing self-supervised deep-learning schemes for OCT image speckle
reductions.
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