Skip to main content
. 2023 Mar 30:1–30. Online ahead of print. doi: 10.1007/s10506-023-09353-y

Table 4.

Prediction accuracy of supervised models. Accuracy is evaluated by the average of a ten-fold cross validation, for various combinations of training/test sets

Model Can/Can Cali/Cali Can/Cali Cali/Can All/Can All/Cali
Logistic regression 0.927 0.883 0.811 0.914 0.915 0.811
Random forest classifier 0.896 0.860 0.816 0.898 0.909 0.802
K-Neighbors classifier 0.852 0.827 0.788 0.884 0.885 0.788
SVC 0.904 0.813 0.805 0.909 0.909 0.806
Gaussian process classifier 0.919 0.810 0.792 0.911 0.911 0.792
AdaBoost classifier 0.860 0.770 0.810 0.911 0.911 0.811
XGB classifier 0.880 0.847 0.778 0.904 0.904 0.778

Note: Can for Canada, Cali for California, and All for the combined dataset