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Abstract

Introduction: Chondrocytes perceive and respond to mechanical loading as a signal to regulate 

their metabolic activity. Joint loading exposes chondrocytes to multiple modes of mechanical 

stress, including hydrostatic pressure; however, the mechanisms by which chondrocytes sense 

physiologically-relevant levels of hydrostatic pressure are not well understood. We hypothesized 

that hydrostatic pressure is transduced to an intracellular signal through mechanosensitive ion 

channels on the membrane of chondrocytes. The goals of this study were to examine the effect 

of hydrostatic loading on the development of engineered cartilage tissue and the contribution of 

mechanosensitive ion channels on these hydrostatic loading effects.

Methods: Using a 3D model of porcine chondrocytes in agarose, we applied specific chemical 

inhibitors to determine the role of transient receptor potential (TRP) ion channels TRPV1, TRPV4, 

TRPC3, and TRPC1 in transducing hydrostatic pressure.

Results: Hydrostatic loading caused a frequency and magnitude-dependent decrease in sulfated 

glycosaminoglycans (S-GAG), without changes in DNA content. Inhibiting TRPC3 and TRPV4 

decreased S-GAG content; however, only the inhibition of TRPV1 partially attenuated the 

hydrostatic loading-induced reduction in S-GAG content.

Conclusions: Our findings indicate that TRPV1 may serve as a transducer of hydrostatic 

pressure in chondrocytes, and provide further support the role of TRPV4 in regulating chondrocyte 

anabolism, as well as initial evidence of a role for TRPC3 in chondrogenesis. These findings add 

to our further understanding of the chondrocyte “channelome” and suggests that a range of ion 
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channels are responsible for mediating the transduction of different biophysical stimuli such as 

hydrostatic pressure, membrane stretch, or osmotic stress.
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Introduction

Osteoarthritis (OA) is a multifactorial chronic disease of multiple origins, characterized 

by the irreversible degradation of the articular cartilage, as well as pathologic changes 

in other joint tissues. The precise etiology of OA initiation and progression are not well 

understood, but the role of excessive and traumatic mechanical forces are implicated in 

OA pathogenesis due to the early onset of OA upon traumatic joint injuries1,2. Under 

homeostatic conditions, articular cartilage undergoes millions of cycles of deformational 

mechanical loading every year. This tissue-scale deformational loading is transduced into 

distinct mechanical signals that are perceived by the chondrocytes residing within the 

cartilage, including direct compressive, tensile, and shear strains, as well as osmotic, 

electrostatic, and hydrostatic pressures that result from the mechanical deformation of the 

charged and hydrated cartilage tissue. While these different loading conditions are believed 

to be essential for tissue maintenance3, the specific mechanotransduction mechanisms 

regulating each of these stimuli, and their roles in chondrocyte homeostasis remain to be 

determined.

Hydrostatic pressure is one of the critical mechanisms involved in the ability of articular 

cartilage to withstand high magnitudes of joint loading while allowing for extremely low 

coefficients of friction and limited tissue deformation4–6. During loading, the low hydraulic 

permeability of the cartilage tissue prevents the rapid loss of water from the tissue, resulting 

in the great majority of the applied load to be supported by the high water content present in 

the tissue, rather than being supported by the solid extracellular matrix5–7. This phenomenon 

increases in the hydrostatic pressure throughout the tissue, including the chondrocytes8. This 

pressure is subsequently lost upon the removal of the load, in effect creating a dynamic 

hydrostatic loading environment present during normal locomotion9,10. Importantly, the 

role of hydrostatic pressure as a physical factor in modulating chondrocyte physiology can 

be isolated for study, because physiological levels of hydrostatic pressure can be applied 

in a uniform manner without inducing confounding physical factors such as fluid flow, 

electrokinetic effects, or cyclic cell deformation, due to the incompressibility of interstitial 

water and the extracellular matrix11.

A number of in vitro studies have examined the effects of hydrostatic loading to 

cartilage tissue explants, isolated chondrocytes, and engineered cartilage tissue systems 

on cartilage biology as well as stem cell chondrogenesis12–16. In efforts to mimic the 

dynamic hydrostatic pressure conditions which might be experienced by chondrocytes, 

numerous studies have evaluated the effect of static or dynamic pressures at a range 

of amplitudes and frequencies. For primary chondrocytes, a wide range of catabolic and 

anabolic responses (or no response) have been observed under different hydrostatic pressure 
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loading regimens17. Dynamic hydrostatic pressure was shown to increase the expression of 

cartilage matrix genes COL2A1 (type II collagen) and ACAN (aggrecan), and the critical 

chondrogenesis transcription factor SOX9 but had no effect on the expression of type I 

collagen, suggesting the application of hydrostatic loading specifically alters matrix gene 

programs18,19. Interestingly, the amplitude of hydrostatic pressure plays an important role 

in chondrocyte matrix production in the physiologic to supraphysiologic ranges of 2.5 MPa 

to 50 MPa20. These studies demonstrate the complex role that hydrostatic pressure may 

exert on chondrocyte physiology, while underscoring lack of detailed knowledge on the 

mechanisms of chondrocyte mechano-signaling.

Chondrocytes respond to mechanical loading through an array of mechanically-sensitive 

ion channels and receptors but understanding the contexts and activation modes for many 

of these mechanosensitive constituents at the molecular scale remain unresolved. Our 

overarching goal is to understand how mechanical loading of cartilage is deconstructed 

into distinct mechanical mechanisms which then act on particular mechanically-sensitive 

ion channels to enact and provoke unique mechano-signaling pathways that influence 

cartilage development, homeostasis, and disease. Chondrocytes possess a number of 

mechanically-sensitive ion channels include the Transient Receptor Potential (TRP) family 

including members TRPV1, TRPV4, TRPC1, TRPC3, TRPC6, and TRPM7 as well as 

the recently discovered Piezo ion channel family members PEIZO1 and PIEZO221-35. 

To date, however, the mechanisms by which chondrocytes transduce dynamic hydrostatic 

pressure to an intracellular signal remain to be determined. Elucidating the role of these 

mechanosensitive proteins and/or organelles in the role of hydrostatic pressure-induced 

chondrocyte mechanotransduction is an important step towards gaining a mechanistic 

understanding of cartilage physiology and pathology.

The aim of this study was to investigate the role of several of the TRP family 

of mechanically-sensitive ion channels in hydrostatic pressure-induced chondrocyte 

mechanobiology. Using engineered cartilage tissue constructs we first identified the role 

of dynamic hydrostatic pressure frequency and amplitude on the biosynthesis of sulfated 

glycosaminoglycans (S-GAG), an important structural molecule synthesized in high levels 

and throughout life in native cartilage. Engineered cartilage constructs were cultured under 

hydrostatic loading in the presence or absence of inhibitors of the ion channels TRPV1, 

TRPV4, TRPC3, and TRPC1 using pharmacologic inhibitors to establish the role of these 

mechanosensitive factors in hydrostatic pressure-induced S-GAG biosynthesis (Fig. 1).

Materials and Methods

This study was performed in two sequential experiments. In experiment 1 we characterized 

the response to tissue engineered cartilage cast using porcine chondrocytes to different 

amplitudes and frequencies of hydrostatic pressure loading to identify loading regimens that 

alter chondrocyte metabolic activity and S-GAG accumulation in our engineered cartilage 

system. In experiment 2 we use the loading regimen identified from experiment 1 to test 

the role of several putative mechanosensitive ion channels in mediating the hydrostatic 

loading response using specific chemical inhibitors. For each experiment, a single batch of 

constructs was tested.
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Porcine chondrocyte isolation, tissue-construct casting, and culture

The articular cartilage of porcine stifle joints was harvested on the day of the slaughter and 

kept in complete media at 37 °C and 5% CO2 for 2 days. Complete media was formulated 

with high-glucose Dulbecco’s Modified Eagle Media (Gibco), 10% fetal bovine serum 

(Atlas), 1.5% HEPES (Gibco), 1% penicillin-streptomycin (Gibco), and 1% non-essential 

amino acid (Gibco). Articular cartilage was digested for 16 h with collagenase (type IV, 

Sigma) at 37 °C. Cells were isolated by straining through 70 μm filters, followed by 

counting, centrifuging and washing, and resuspending to achieve a concentration of 60 × 

106 cells/ml or 120 × 106 cells/ml before encapsulating in molten agarose (4%, type VIIA, 

Sigma) and casting to a thickness of 2.34 mm. Cylindrical constructs were punched to create 

⊘3 mm × 2.34 mm constructs with a nominal final concentration of 30 or 60 × 106 cells/ml 

in 2% agarose. Constructs were cultured in complete media supplemented with 50 μg/mL 

L-ascorbic acid 2-phosphate sesquimagnesium salt and 40 μg/mL L-proline (Sigma) for the 

duration of the study.

Hydrostatic pressure loading

Hydrostatic pressure loading was performed using a Barozyme HT48 (Pressure Biosciences, 

South Easton, MA). Samples were loaded into individual tubes and placed in the hydrostatic 

pressure loading chamber for daily loading per manufacturer’s protocols. Each tube 

contained 1.5 mL media and was loaded with 6 samples for a daily media supply of ~0.3 

mL/million cells/day36. Samples were maintained at 37 °C and loaded for 3 h daily, 5 

times per week. In experiment 1, the effects of seeding density (30 or 60 × 106 cells/ml) 

in engineered cartilage constructs were studied using the following hydrostatic pressure 

regimens: (a) 0 MPa (control), (b) 5 MPa amplitude, 0.25 Hz, (c) 5 MPa amplitude, 0.5 Hz, 

(d) 5 MPa amplitude, 1 Hz, and (e) 10 MPa amplitude, 0.25 Hz. Based on the results of 

experiment 1, the inhibitor studies of experiment 2 were treated with either 0 MPa as an 

unloaded control regime and 5 MPa at 0.5 Hz as a hydrostatic loading regime. For both sets 

of experiments (1 and 2), unloaded controls were treated in the same manner as the loaded 

groups but were not subjected to hydrostatic pressure.

Ion channels inhibitor treatments

To test the role of mechanically-sensitive ion channels to the hydrostatic pressure, we 

inhibited TRPV4, TRPV1, TRPC3 and TRPC1 cation channels using the selective inhibitors 

GSK205 (synthesized at the Duke Chemical Synthesis Facility, 10 μM), A 784168 (Tocris 

Bioscience, 25 nM), Pyr3 (Tocris Bioscience, 3 μM), and MRS 1845 (Tocris Bioscience, 

10 μM)29,37–40. Inhibitors were added 15 minutes prior to loading, and constructs were 

returned to base media after loading. Vehicle controls for each inhibitor were made using 

either deionized water or dimethyl sulfoxide (DMSO), based on the solvent necessary for 

inhibitor reconstitution. Exposure to neither the inhibitors nor vehicle induced cell death 

(Supplemental Fig. 1). Due to the small size of the inhibitors (< 500 Da) and small tissue 

construct size, we supplemented inhibitors 15 minutes prior to loading which we anticipate 

is sufficient time for inhibitor transport within the construct.
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Biochemical analysis

The wet weight of each construct was recorded for normalizing biochemical content 

measures and constructs were frozen at −20 °C until digestion. To perform biochemical 

assays on the engineered cartilage tissues, samples were digested in proteinase K for 16 

h at 56 °C. After digestion, the remaining, undigested, agarose scaffold was pulverized 

and vortexed. To quantify the total amount of S-GAGs, the dimethyl methylene blue 

assay was performed with standards prepared from shark chondroitin sulfate (Sigma)41. 

The same assay was used to measure the amount of S-GAG release into the medium 

after applying the hydrostatic pressure loading. To measure cellularity of each construct, 

the PicoGreen fluorescent double-stranded DNA assay was used based on manufacturer’s 

directions (Invitrogen).

Data analysis

Biochemical contents were normalized to tissue wet weight (converted to DNA content 

in μg/g tissue or S-GAG content as a mass per wet weight as a percentage, %ww) 

or normalized for a S-GAG content per cell (μg S-GAG per μg DNA, μg/μg) prior to 

analysis. For statistical analysis of the influence of different hydrostatic pressure regimens in 

experiment 1, a one-way ANOVA was used (α=0.05) with each loading regimen constituting 

an independent factor. For analyzing the effect of hydrostatic loading and inhibitors in 

experiment 2, a two-way ANOVA (α=0.05) was used where the effect of hydrostatic loading 

was one independent factor and each inhibitor was a separate independent factor. For 

S-GAG release, as all the constructs of each group shared the same media, we performed our 

calculations using standard uncertainty analysis to derive the S-GAG synthesis rate in units 

of μg S-GAG/d/construct. To determine this rate, regression curves were fit to cumulative 

μg S-GAG/sample over the time of the study. The regression of each groups provides a 

slope (representing the rate of S-GAG media loss in units of μg/d /construct), error (standard 

deviation of this rate), and degrees of freedom. Similarly, the S-GAG content within the 

constructs at the final time point can be used to estimate an S-GAG accumulation rate also 

in units of μg/d/construct. Here, we assumed a linear increase in S-GAG accumulation for 

each construct from day 0 to day 28 and similarly calculated a mean accumulation rate, 

uncertainty, and degrees of freedom. Summing the S-GAG loss rate (as measured in the 

media) and S-GAG accumulation rate (as measured in the construct) provides an estimate 

of total S-GAG synthesis. Uncertainty propagation analysis provides an estimate of the 

variability of the total synthesis rate. A retention ratio was further computed as the S-GAG 

accumulation rate divided by the total S-GAG synthesis rate. t-test comparison between each 

loaded group to the control (0 MPa) and a Bonferroni p-value correction was used to assess 

groups significantly different than the control. For experimental reasons, select inhibitor 

treatments were run alongside a single vehicle control group. As our overall objective 

focused on detecting the effect of hydrostatic loading, the effect the select inhibitor, and the 

effect of their interaction, our analyses only compared an individual inhibitor treatment and 

its appropriate vehicle control. Therefore, several comparisons made herein share the same 

vehicle data.
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Results

Experiment 1: Mechanical loading regimens influence S-GAG production

None of hydrostatic pressure regimens significantly influenced the DNA content of tissue 

constructs (p=0.751) over a long-term, 28-day culture duration (Fig. 2a). The hydrostatic 

loading regimen did alter S-GAG biosynthesis and accumulation in tissue engineered 

constructs as measured by the S-GAG content within the tissue constructs (p<0.0001, Fig. 

2b) and S-GAG content normalized to the DNA content of each construct (p<0.0001, Fig. 

2c). In particular, applying 5 MPa amplitude of hydrostatic loading induced a significant 

reduction of S-GAG content at frequencies of 0.5 and 1 Hz, but no difference in S-GAG 

content at 0.25 Hz when compared to unloaded, 0 MPa applied, constructs. These trends 

were also evident with Safrinin-O staining of histological sections of constructs after 28 

days of loading (Supplemental Fig. 2). Also, the lowest amount of total S-GAG (amount 

released into the medium + construct) and retention fraction was observed in the constructs 

that were loaded with 5MPa amplitude and the frequencies of 0.5 and 1 Hz (Fig. 2d, 2e). 

Moreover, the trend of S-GAG release into the medium at different time points showed 

that by increasing the culture duration, the amount of S-GAG diffusion into the medium 

will increase (Fig. 2f). Applying a higher loading amplitude, 10 MPa, at 0.25 Hz, also 

demonstrated a decrease in tissue construct S-GAG content compared to control, unloaded 

tissue constructs. Similar trends were observed in constructs seeded with 30 or 60 million 

cells per mL (Fig. 3). Importantly, we did not observe cell death due to hydrostatic loading 

(Supplemental Fig. 3). Therefore, based on our results from experiment 1, we chose a 

hydrostatic pressure regimen of 5 MPa at 0.5 Hz in constructs seeded with 30 million cells 

per mL to proceed with the inhibitor screening of experiment 2.

Experiment 2: Role of mechanosensitive ion channels in transducing hydrostatic pressure

MRS1845 inhibition of TRPC1—We inhibited TRPC1 activity with the inhibitor MRS 

1845 (Fig. 4). After 14 days of daily hydrostatic loading, DNA content was not significantly 

different due to pharmacologic treatment (p=0.055) or loading (p=0.92) while S-GAG 

content was only significantly lower with the application of hydrostatic loading (p=0.004). 

Similarly, when S-GAG content is normalized to DNA content as a measure of S-GAG 

production on a cellularity basis, only the influence of hydrostatic loading was significant 

(p=0.0097).

Pyr3 inhibition of TRPC3—We inhibited TRPC3 using the inhibitor Pyr3 (Fig. 5). After 

14 days of daily hydrostatic loading, DNA content was similar between all groups. S-GAG 

content was significantly lower with the application of hydrostatic loading (p<0.0001) and 

was lower with the Pyr3 inhibitor (p=0.028). When normalized to DNA content, S-GAG 

content was similarly reduced with the application of hydrostatic loading (p<0.0001) and 

Pyr3 inhibitor (p=0.035), but the interaction was not significantly altered.

GSK205 inhibition of TRPV4—We inhibited TRPV4 using the inhibitor GSK205 (Fig. 

6). After 14 days of daily hydrostatic loading, DNA was lower with the treatment of 

GSK205. S-GAG content was significantly lower with the application of hydrostatic loading 

(p<0.0001) and with the GSK205 inhibitor treatment (p<0.0001). Notably, while both the 
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non-loaded and hydrostatic pressure treated samples supplemented with GSK205 were 

statistically similar (p=0.99), non-loaded and hydrostatic pressure loaded samples were 

statistically different (p<0.0001), consistent with the characterization from experiment 1. 

S-GAG content normalized to DNA content was reduced with the application of hydrostatic 

loading (p=0.0005) and GSK205 inhibitor (p<0.0001).

A 784168 inhibition of TRPV1—We used the inhibitor A 784168 to inhibit activity 

of TRPV1 (Fig. 7). After 14 days of daily hydrostatic loading, DNA was higher with the 

A 784168 treatment (p=0.036) but unaffected by loading (p=0.397). S-GAG content in 

engineered cartilage samples was significantly reduced by hydrostatic loading (p<0.0001) 

but was partially recovered by A 784168 treatment (p=0.136). When normalized to DNA 

content, engineered cartilage S-GAG content was reduced with the application of hydrostatic 

loading (p<0.0001) but not by A 784168 (p=0.864). By either measure of S-GAG content, 

the A 784168 treated group was significantly higher than the untreated group in response to 

hydrostatic pressure.

Discussion

In this study, we analyze the influence of hydrostatic loading on tissue engineered cartilage 

growth and matrix production and the role of mechanically-sensitive TRP ion channels 

on this response. We found that increased amplitudes (5–10 MPa) and frequencies (0.5–1 

Hz) of dynamic hydrostatic loading induced a consistent response by inhibiting matrix 

production in our tissue engineered constructs. As mechanically-sensitive ion channels 

have been shown to play important roles in chondrocyte mechanobiology, we targeted 

several mechanically-sensitive TRP ion channels to determine if they are responsible for 

transduction of the signals incurred during hydrostatic pressure loading. Of the various 

inhibitors we used to target different ion channels, only the inhibition of TRPV1 altered the 

response to hydrostatic pressure. Together our results suggest that the growth modulating 

effect caused by hydrostatic loading may be transduced via this channel in the chondrocyte 

and support the notion that different ion channels are responsible for transducing different 

biophysical stimuli such as hydrostatic pressure, membrane stretch, or osmotic stress.

Our results on differential HP loading regimes highlighted an interesting synthesis and 

retention behavior, where constructs exhibited similar S-GAG accumulation, total S-GAG 

synthesis, and S-GAG retention fraction characteristics. While we believe the mechanism 

governing differential matrix synthesis rates to be dependent on HP mechanotransduction to 

the cell, the finding that retention fractions are also differentially regulated by HP suggests 

other factors could be differentially regulated: (1) HP may also alter the synthesis of binding 

proteins or other molecules critical for S-GAG retention within the extracellular matrix 

of engineered cartilage, and/or (2) HP load may be modulating the cellular release of 

extracellular proteases or other molecules implicated in the loss of the extracellular matrix, 

and/or (3) HP load may be modulating a cellular-independent effect resulting in the loss 

of S-GAG, although this cellular-independent mechanism is less clear. Nims et al reported 

a similar level of S-GAG retention to our measurements here and speculated that S-GAG 

binding density may be a function of hyaluronan production into the extracellular matrix 42.
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We found consistently that dynamic hydrostatic pressure inhibited S-GAG accumulation by 

chondrocytes in agarose; however, other studies found mixed results by applying the same 

loading magnitude that was used in this research depending on the duration. Parkkinen et 

al. also showed that in monolayer culture of bovine chondrocytes, applying the dynamic 

hydrostatic loading regimen that was used in our study (5MPa, 0.5Hz) for 1.5 h inhibits 

the S-GAG production as well, however, applying the same load to cartilage explant had 

the opposite effect43. Moreover, Jortikka et al. found that applying the aforementioned 

dynamic hydrostatic pressure for 20 h would significantly increase the S-GAG production 

in bovine chondrocytes in monolayer culture 44. Therefore, it appears that the duration of 

hydrostatic pressure loading and the culture system of chondrocytes (monolayer (2D) or 

hydrogel (3D, scaffolds, gels and pellet), and cartilage explants (3D)) have significant effects 

on the chondrocytes biosynthesis, biochemical properties and differentiation in response to 

hydrostatic pressure and the results can be completely different by changing any of these 

conditions18–20,43–60. For instance, collagen type II production seems to be more affected by 

the pressure magnitude. Dynamic hydrostatic pressure of 10 MPa at 1 Hz has the most effect 

on its synthesis in 2D culture47,52,53, while lower levels of pressure can increase aggrecan 

production47,54. On the other hand, in 3D culture, the constructs and the environment are 

more complicated, therefore, the magnitude, frequency and duration of loading could play 

an important role in matrix production. Even though physiological levels of hydrostatic 

pressure with specific durations improved matrix production, high magnitudes of it had 

negative effects. Increasing the magnitude of static pressure to 20 MPa - 50 MPa in resulted 

in a significant decrease in S-GAG and collagen production and increased cell apoptosis and 

the stress response gene heat shock protein 7020,48,49,51,61. Interestingly, in general the cell 

content of our tissue constructs, as inferred by construct DNA content, did not vary with 

the application of hydrostatic pressure loading, suggesting the biosynthetic results at high 

loading pressures (10 MPa) did not induce cell death but just altered cellular metabolism. 

Furthermore, in our current work we have found TRPV4 and PIEZO1 mechano-sensitive 

channels provoke inflammatory signaling in chondrocytes62,63 and since high magnitudes of 

hydrostatic pressure inhibit growth and increase apoptosis, it is possible that these or other 

channels may be involved in regulating different magnitudes or frequencies of hydrostatic 

pressure.

We hypothesized that the response to hydrostatic pressure was mediated by one of the 

mechanically-sensitive TRP ion channels. Of note, only the inhibition of TRPV1 partially 

prevented the decrease in S-GAG accumulation caused by hydrostatic pressure. TRPV1, also 

known as the capsaicin receptor, was the first TRP channel to be identified and cloned and 

primarily serves as a sensor for heat and pain (nociception) in sensory neurons64. However, 

in other cell types, TRPV1 serves other sensing functions, alone or in combination with 

other mechanosensitive channels65–67. In particular, growing evidence suggests that TRPV1 

could function as a hydrostatic pressure sensor in the eye68, potentially through interactions 

with TRPV469. Further work is needed to identify the downstream pathways and potential 

synergistic interactions of these channels in chondrocytes21. Moreover, based on our results 

and the polymodal nature of the TRPV1 channel, future studies will be necessary to assess 

how mechanical versus thermal or pH activation of TRPV1 may induce different cellular 
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signaling pathways and potentially differentially regulate chondrogenesis through TRPV1 

modulation.

While we tested a number of TRP channels, it is important to note that other 

mechanosensitive channels such as TRPC6, TRPM7, and Piezo1/2 may be involved in a 

hydrostatic pressure response70. But there is currently a lack of commercially-available 

inhibitors that are selective and specific for these channels. For example, recent studies 

suggest that the hydrostatic response of immune cells is mediated through the Piezo-family 

of mechanically sensitive ion channels71. While the pressures they used were far below 

those examined in our study, and the mechanical environment used is not described (2D/

3D), future studies may wish to investigate the role of Piezo ion channels in transducing 

hydrostatic pressure effects22. Additionally, the inhibitor doses we supplemented were 

prescribed by established literature in alternative cell types. Future studies may focus on 

more complete inhibition of the hydrostatic response with inhibitor dosing-response studies 

and establishing how the channels are activated by a hydrostatic pressure stimuli.

In addition to the potential role of ion channels, several studies have evaluated other 

intracellular or downstream mechanisms in response to hydrostatic pressure. Nordberg et al. 

showed that LPR5 and LRP6 mRNA levels increased after applying a dynamic hydrostatic 

pressure of 7.5 MPa, 1 Hz, 4 hours/day for up to 14 days58. Furthermore, active β-catenin 

protein expression showed the same trend as LRP5 and increased by applying cyclic 

hydrostatic pressure. Knight et al. observed that both static (5 MPa) and dynamic (5 MPa, 

1 Hz) of hydrostatic loading alters the actin organization and these cytoskeletal changes can 

be recovered after 1h of applying the pressure72. In addition, another study investigated the 

changes in the intracellular calcium response of chondrocytes to hydrostatic pressure along 

with the influence of seeding duration and zonal differences73. Mizuno showed that applying 

0.5 MPa of pressure for 5 minutes increases the calcium levels in bovine chondrocytes, and 

this effect can be inhibited when the cells are treated with gadolinium, intracellular storage 

blocker (dantrolene), or calcium-free medium. Moreover, this study showed that the middle 

zone chondrocytes are more responsive to hydrostatic pressure and had the highest calcium 

influx. Lastly, it was observed that the chondrocytes that were seeded for 2 days did not have 

any response to hydrostatic pressure, but showed a response after 5 days of seeding.

In summary, we screened a number of TRP channels in an effort to identify the 

mechanism(s) by which chondrocytes respond to hydrostatic pressure. We targeted 

mechanosensitive TRP ion channels to evaluate their inhibition of matrix production while 

cultured under daily hydrostatic loading of 5 MPa at 0.5 Hz. This loading regimen was 

used because it robustly inhibited S-GAG production of chondrocytes seeded in agarose 

gel. We hypothesized that by inhibiting mechanosensitive TRP ion channels would recover 

the S-GAG production present in unloaded engineered cartilage. Interestingly, inhibition of 

neither TRPV1, TRPV4, TRPC3, and TRPC1 completely inhibited the hydrostatic loading 

effects on S-GAG production in chondrocytes. The modest influence of TRPV1 suggest 

future studies may be well targeted on the role of TRPV1 in hydrostatic-mediated effects. 

Consequently, our pilot study here on the role of mechanically-sensitive TRP channels in 

hydrostatic pressure-mediated mechanotransduction cascade suggest only a potentially small 

involvement of the channels and hint to a more complex mechanosensory is involved in 
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the hydrostatic pressure loading response on matrix production of articular cartilage. More 

studies are required to combine the potential mechanisms to find the actual process by which 

hydrostatic pressure alters the matrix synthesis in articular cartilage.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Schematic of the experimental set up.
Chondrocytes from porcine cartilage were digested and cast into an agarose scaffold to 

create engineered cartilage constructs. Constructs were loaded in the hydrostatic pressure 

chamber and tested under different loading regimens and specific TRP channel inhibitors.
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Figure 2. Effects of dynamic hydrostatic pressure on DNA and S-GAG content in chondrocyte-
seeded agarose constructs.
(a) DNA content of tissue engineered cartilage was unchanged by dynamic hydrostatic 

pressure, while (b) S-GAG content of tissue engineered cartilage and (c) S-GAG content 

normalized to DNA content were significantly reduced by hydrostatic pressure in a 

frequency and magnitude-dependent manner. (d) Amount of S-GAG release into the media 

as a function of culture duration (e) S-GAG retention fraction (f) Total S-GAG content 

synthesis. Groups not sharing a letter indicate statistically significant differences. n=5–6 per 

group. Groups with (*) are significantly different from the control (0 MPa).
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Figure 3. Effects of cell density and dynamic hydrostatic pressure on DNA and S-GAG content in 
chondrocyte-seeded agarose constructs.
(a and b) DNA content of tissue engineered cartilage was similar between loading groups 

for both cell densities, while (c and d) S-GAG content of tissue engineered cartilage and 

(e and f) S-GAG content normalized to DNA content consistently reduced by hydrostatic 

loading for both 30 million (n=3–5) and 60 million cell densities (n=2–3).
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Figure 4. Influence of hydrostatic loading and TRPC1 inhibition with MRS 1845 on DNA and 
S-GAG content.
(a) DNA content per tissue wet weight, (b) S-GAG content per tissue wet weight, and (c) 

S-GAG content per DNA content in tissue engineered cartilage. Control, no pressure; HP, 

hydrostatic pressure, n=5–6 per group.
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Figure 5. Influence of hydrostatic loading and TRPC3 inhibition with Pyr3 on DNA and S-GAG 
content.
(a) DNA content per tissue wet weight, (b) S-GAG content per tissue wet weight, and (c) 

S-GAG content per DNA content in tissue engineered cartilage. Control, no pressure; HP, 

hydrostatic pressure, n=3–5 per group.
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Figure 6. Influence of hydrostatic loading and TRPV4 inhibition with GSK205 on DNA and 
S-GAG content.
(a) DNA content per tissue wet weight, (b) S-GAG content per tissue wet weight, and (c) 

S-GAG content per DNA content in tissue engineered cartilage. Control, no pressure; HP, 

hydrostatic pressure, n=5 per group.
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Figure 7. Influence of hydrostatic loading and TRPV1 inhibition with A784168 on DNA and 
S-GAG content.
(a) DNA content per tissue wet weight, (b) S-GAG content per tissue wet weight, and (c) 

S-GAG content per DNA content in tissue engineered cartilage. Control, no pressure; HP, 

hydrostatic pressure, n=4 per group.
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