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ABSTRACT: Flavor is an essential component in the develop-
ment of numerous products in the market. The increasing
consumption of processed and fast food and healthy packaged
food has upraised the investment in new flavoring agents and
consequently in molecules with flavoring properties. In this
context, this work brings up a scientific machine learning
(SciML) approach to address this product engineering need.
SciML in computational chemistry has opened paths in the
compound’s property prediction without requiring synthesis. This
work proposes a novel framework of deep generative models within
this context to design new flavor molecules. Through the analysis
and study of the molecules obtained from the generative model
training, it was possible to conclude that even though the generative model designs the molecules through random sampling of
actions, it can find molecules that are already used in the food industry, not necessarily as a flavoring agent, or in other industrial
sectors. Hence, this corroborates the potential of the proposed methodology for the prospecting of molecules to be applied in the
flavor industry.

1. INTRODUCTION
The understanding and development of flavor result from two
disparate but intertwined subjects, chemistry and sensory
science, applied by the flavorists to develop new products.1

The chemical development of flavor depends on the
understanding of how the chemical compounds convey flavor
to the product. This is carried out by aiming to replicate their
effect on the biological response. So, the underline hypothesis
behind this is that there is a correlation between the chemical
properties of a given compound and the provoked flavor
sensation. However, the creation and replication of flavor (the
engineering behind it) are complex, as it must evoke the smell
and taste simultaneously, a multisensory experience.2 In this
scenario, flavor engineering has emerged as a field of product
engineering that aims to fulfill the needs of the market and
consumers through the development of new flavors and flavor-
based products.3 This is a new field that needs more profound
development to supply new tools to this industry. Flavor
engineering can help this sector develop new products to deal
with the modern society’s healthy style while addressing several
other concerns found in the industry nowadays.
Experimental studies in flavor engineering were performed

by Monteiro et al. (2018).4 The sensory quality of flavor-based
products was analyzed, alongside their psychophysical models,
through chromatographic techniques. The applied method-
ology allowed us to evaluate dominant features of aromas and,
also, a sensorial evaluation. In the same context, the work of
Rodrigues et al. (2021)3 brings on a review of the

developments in performance, classification, and the design
of mixtures of fragrances and perfumes. In this review, an
approach for flavor engineering is proposed, being an extension
of the one for perfume engineering.
Nature has approximately 2500 flavor chemicals that can be

replicated by other synthetic molecules. The recreation and
analysis of these chemicals allow the discovery of synthetic
flavors that are stable, cost-effectively produced, purer, and
more potent. Even though the possibilities are vast, the
complexity of combining the molecules that can translate the
right sensation as a nerve signal is a trial-and-error process.2

Moreover, the flavor and flavor-based product development
must consider the applicable law and regulations, the
associated health issues, and the environmental damage that
the synthetic chemicals process can cause.5 Hence, flavor
development is costly and can be considerably reduced by
employing new technologies. Therefore, scientific machine
learning (SciML) can bring a new perspective to this process.
SciML is another emergent field that aims to adapt machine

learning (ML) tools to a given application domain. It has been
applied as an efficient and resource-saving method in general
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game playing, data mining, bioinformatics, and computational
chemistry.6 Another important development in SciML is the
implementation of this technique in mathematical physics to
solve computational mechanics problems. Samaniego et al.
(2020)7 proposed the application of SciML techniques to solve
partial differential equations as an approach to solve engineer-
ing problems. The application of machine learning and
computer science in chemistry has increased significantly. It
is promising in designing, synthesizing, and generating
molecules and materials.8 More specifically, a shy but
increasing trend in applying ML tools can be seen in flavors.
Park et al. (2021)9 proposed a methodology to innovate the

food industry focused on food pairing. FlavorGraph is
presented as a graph embedding method to recommend food
pairings based on food representations. Although it presents
limitations on the food-related information available and the
lack of scientific evaluation of the results obtained, the
FlavorGraph presents an innovative application of deep
learning in the flavor industry. Xu (2019)10 developed a
bachelor’s thesis that combined a generative adversarial
network (GAN) with a variational autoencoder (VAE) to
analyze a recipe database and discover the missing ingredient
of recipes. The referred work presented remarkable results in
clustering recipes of the same geo-ethnic cuisine group and
searching for the ingredients. Nevertheless, the presented
technology cannot extract or manipulate structures since the
model collapses.
Even though there are applications of SciML in the flavor

engineering field, works that explore the potential of SciML in
the development of new flavors and flavory molecules were not
yet found. The use of SciML in this potential field can be a
useful tool in the solution of the challenges already described.
These tools can be used as a simple and reliable way to identify
new chemical molecules that can be synthesized and
considered natural. These are two specific goals that SciML
can address much faster than the usual routes. It is possible to
find some works in other fields that make use of SciML to
prospect new elements for a given application. For example,
Mercado et al. (2021)11 developed a platform to design
molecules using deep neural network architectures, the
GraphINVENT. However, in the field of flavor engineering,
these tools need to be reshaped to meet this domain’s specific
demands. Furthermore, new strategies need to be developed to
efficiently apply these ideas in flavor engineering. For instance,
the limited information regarding the flavor of chemical
compounds is a challenge to consider.
The work of Zhang et al. (2021)12 compared numerous

deep molecular generative models, including CharRNN,
REINVENT, AAE, VAE, ORGAN, LatentGAN and Graph-
INVENT. For this study, the authors trained all the mentioned
models using the GDB-13 database, a database of drug-like
compounds. In terms of overall compound coverage,
REINVENT was the best model, and ORGAN presented the
lowest performance. The GraphINVENT method performed
better than all the other deep generative models (DGMs)
studied when considering the ring system and functional group
coverage. This result is explained through the probabilistic
sampling of actions for graph generation of this model.
Meanwhile, the GAN-based models presented the worst
performance in all three metrics analyzed, the ring system,
functional group, and molecular coverage. This result is
explained by the fact that the generator in those models is
supposed to copy the true data in the adversarial training,

which decreases the generalization capability. Furthermore, it
is important to highlight that the alternative in the flavor field
is to find new molecules by trial-and-error; therefore,
developing a generative approach for this purpose is already
improving the state of the art.
This work aims to develop a new standpoint in flavor

engineering based on SciML. It is proposed to build a new
approach to develop flavors and flavor-based products based
on generative neural network models.

2. METHODOLOGY AND RESULTS
2.1. Database. The database used in the development of

this work was extracted from FlavorDB’s website13 through a
web scraper code developed for this purpose. The extracted
information consisted of the PubChem ID, chemical name,
flavor descriptors of the molecule, and the SMILES
representation for 921 valid molecules. Moreover, a data
curation step was automatically performed to ensure the
quality of the database and that it only had canonical SMILES,
which is described as follows.
An analysis of this database was performed. A total of 417

flavor descriptors were found. The five most common were
sweet, bitter, fruity, green, and floral, following this order,
which altogether occurred 1512 times. Figure 1 presents the
database’s 20 most common descriptors’ frequencies.

A co-occurrence heat map was made, Figure 2, to
understand the relation between the descriptors. This is an
important tool since the same molecule can have more than
one flavor descriptor associated. As shown in Figure 2, it is
possible to visualize the frequency of the co-occurrence
between the 20 most common descriptors. Also, it is possible
to analyze how the descriptors are correlated to each other. For
example, fruity co-occurs more with sweet and green. This
analysis is an important tool for flavor engineering, as it
provides insights into the flavor’s relationship.
With the database ready, the next step is to define the inputs

of the proposed methodology. As its purpose is to create
molecules, the framework input should be chemical properties,
such as types of atoms, formal charge, and the maximum
number of atoms present in the database. Table 1 presents the
required information, which is defined following the overall
chemical properties found in the database built.
2.2. Generative Model. DGMs are a resourceful approach

to identify patterns of likelihood between samples and learn a

Figure 1. Bar plot of the 20 most common flavor’s descriptors’
frequency in the database.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c07176
ACS Omega 2023, 8, 10875−10887

10876

https://pubs.acs.org/doi/10.1021/acsomega.2c07176?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c07176?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c07176?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c07176?fig=fig1&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c07176?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


concealed or complex probability distribution from uncon-
strained and evenly distributed samples. The structure of the
neural networks with numerous hidden layers in the DGM, if
successfully trained, enables the generation of new samples
with similar properties to the original ones. Originally the
DGM was presented as a contestant to the traditional
quantum-mechanical computation to predict properties. This
deep learning technique is a cost-effective computational
resource to approximate complex high-dimensional probabil-
ities. This clears the way for new developments in
cheminformatics regarding molecular science, such as the
prospect of generating desired molecules.14−16

The following figure, Figure 3, describes the methodology
step that involves the generative model. The selection of the

types of neural networks used in the methodology’s
construction is based on the conclusions of the work of
Mercado et al. (2021).11

The molecule is in the canonical SMILES form in the
database, so it is necessary to convert from SMILES to
molecules and from molecules to graph. In this way, the graphs
can be used as the generative input. For this purpose, the
RDKit functions were used, Open-Source Cheminformatics
Software accessible in Python. The conversion from molecules
to graphs consists of transforming atoms into nodes and bonds
into edges. These nodes and edges have embeddings, in which
the chemical information associated with them is stored. The
embeddings make it possible to understand the relationship
between the components of the graph. Hence, the generative
system receives as input one molecule at a time in the form of
graph. Then, the generation will proceed one bond at a time.
Additionally, the graph structure has additional features, for

instance, the adjacency matrix and edge attributes. The
adjacency matrix represents how the nodes are related to
each other in a squared matrix with dimensions defined by the
number of nodes in the graph. The edge attributes translate the
distance between the edges in the graph.
The molecule in the graph form, alongside its associated

features, is preprocessed so that the model can learn how to
construct and deconstruct it properly. For this instance, the
canonical deconstruction path is followed, similar to the one
followed in the work of Mercado et al. (2021).11 Weininger et
al. (1988)17 defined the canonical method that gives a unique
chemical structure. In the graph form, each node (atoms) and
edges (bonds) are labeled numerically according to their type.
Then, the starting node is selected, and the sequential nodes’
order is defined according to the canonical labels given. The
canonical deconstruction path follows the mentioned labeling
and order to learn how to construct and deconstruct the
molecules, aiming to learn how to generate new ones.
In the training step, the molecular graph, the adjacency

tensor (E), and the node feature matrix (X) are given as the
input to the gated-graph neural network (GGNN).18,19

The GGNN provides as the output the graph embedding (g)
and the final transformed node feature matrix (HL). These
outputs are the required input to the global readout block,
using a multi-layer perceptron (MLP) architecture as a unique
feedforward artificial neural network. The global readout block

Figure 2. Co-occurrence heat map for the 20 most common flavor’s
descriptors in the database.

Table 1. Chemical Property Inputa

types of atoms C, N, O, F, P, S, Cl, Br, I

formal charge 0
maximum number of atoms 69

aIt should be pointed out that, in order to avoid the overfitting in the
model, the database acquired was split into train, test, and validation
sets. 60% of the database was allocated to train, following 20% for test
and 20% for validation.

Figure 3. DGM methodology scheme.
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is applied to predict each graph’s action probability
distribution (APD) to guide the model in the construction
of the new graph.
The functioning of the data flow in the MLP is in the

forward direction, from the input to the output. In this case,
two hidden layers are used in the structure, and the prediction
of the APD is performed by the output layer.20,21

The property of interest to be predicted by the MLP, the
APD, consists of a vector comprising the expected probability
for all the possible actions that can be sampled to generate the
new graph. It also embraces invalid actions, so the model must
learn to set zero probability for this. The APD is calculated for
all graphs present in the training set in the preprocessing phase.
There are three probable actions, the probability of adding a
new node ( fadd), the probability of connecting the last node in
the graph to another existing one ( fconn), and the probability of
finishing the graph ( f fin). All these probabilities must sum to
one for each graph and are the target vectors to be learned by
the model in the training phase. The APD is the output of the
model.
The combination of the GGNN, the message passing phase,

with the global readout block is translated through the
equations presented below, the calculus structure behind the
system. The GGNN is defined by eqs 1−5 and is represented
in the system by the functional form, eqs 6−10.11,22
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where hv0 is the node feature vector for the initial node v at the
GGNN layer and is equal to its node feature vector in the
graph; rvt is a GRU’s gate in the specific MLP layer, t, and
relative to the node v; σ is the sigmoid function; cv = cvz = cvr =
| |v

1 are normalization constants; v is the set of neighbor
nodes for v; u is a specific node in the graph; W e

r is a trainable
weight tensor in r regarding the edge label, e; b is a learnable
parameter; z is also a GRU’s gate; ρ is a non-linear function;
and ⊙ is an element-wise multiplication.
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where mil+1 and hil+1 are the incoming messages and hidden
states of node vi, respectively; eij is the edge feature vector for

the edge connecting vi and vj; l is a GNN layer index; and L is
the final GNN layer index.

= [ ]g h h h(MLP ( )) tanh((MLP ( , ))
v
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i
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where g is the final graph embedding.
The global readout block is translated by eqs 11−16,

presented below.11 The activation function of the block is the
SoftMax function, which converts a vector of numbers into a
vector of probabilities. As a generalization of the sigmoid
function, this function is largely applied in SciML to normalize
weighted sum value outputs, so the probabilities sum to one.23

=f HMLP ( )L
add

add,1
(11)

=f HMLP ( )L
conn

conn,1
(12)

= [ ]f f gMLP ( , )add
add,2

add (13)

= [ ]f f gMLP ( , )conn
conn,2

conn (14)

=f gMLP ( )add
fin,2

(15)

= [ ]f f fAPD SOFTMAX( , , )add conn fin (16)

The training phase of this system, GGNN and global
readout block, is executed in mini batches. The activation
function of the model is the scaled exponential linear unit
(SELU), presented in eqs 17 and 18, which is applied after
every linear layer in the MLP.24 The model training loss is
given by the Kullback−Leibler divergence between the target
APD and predicted APD. Kullback and Leibler (1951)25

introduced the Kullback−Leibler divergence as a measure of
discrepancy between probabilities based on information.26

= >f x x x( ) , if 0 (17)

= <f x x x( ) (exp( ) 1), if 0 (18)

where α = 1.6733 and λ = 1.0507.
Moreover, all the models use the Adam optimizer.

Introduced by Kingma and Ba (2017),27 the Adam optimizer
is a straightforward first-order gradient-based optimization
algorithm. This optimization function carries out the sparse
gradients and non-stationary objectives. The Adam-defined
parameters are presented in Supporting Information, Table
S1.28

The training models are evaluated by sampling graphs in
established intervals of epochs. During this step, the evaluation
metrics are calculated using the generated graphs of this phase,
Table 2. The uniformity-completeness Jensen-Shannon
divergence (UC-JSD) is one of the evaluation metrics

Table 2. Evaluation Metrics

metrics description

PV percentage of valid molecules in the set
PU percentage of unique molecules in the set
PPT percentage of molecules that were finished through sampling of

finish action
PVPT percentage of valid molecules in the set of PPT molecules
νav average number of nodes per graph in the set
εav average number of edges per node
UC-JSD uniformity-completeness Jensen−Shannon divergence
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presented. This metric is related to the Kullback−Leibler
divergence and its application to an average distribution.29 In
this work, the UC-JSD calculates the distribution of negative
log-likelihood per sampled action in each set.
A molecule is considered valid if the total count of

hydrogens to be added is according to the type of atoms,
explicit bonds, and formal charges of the molecule. After the
addition of the hydrogens, if they are incompatible, the
molecule can still be edited to solve this problem. The edition
is through the RDKit function rdkit.Chem.SanitizeMol().30

The function verifies valences, set aromaticity, hybridization,
and molecule conjugation. If one of the analyses fails, the
molecule is modified to solve the problem. If the sanitizing
fails, an error is raised, and the molecule is considered invalid.
If the invalid molecule is one of the output constituents, it is
represented as “[Xe]”.
The final phase is the generation. The graphs and the output

APD are given as the input. During this step, the sampled
actions imply the growth of the new graph and choices, such as
the kind of atom to add. Moreover, the graph construction can
be finished if the sampled action is to finish or if an invalid
action occurs. The invalid actions are the addition of a new
node in a node that does not exist in the graph. Connecting
nodes that are already connected and adding a node in a graph
that already has the maximum number of nodes are also invalid
actions. Furthermore, the hydrogens are ignored during the
training and generation phases. They are added according to
the atoms’ valency in the generated graphs.
Each graph goes through the system one by one; the growth

is carried out node by node or edge by edge until it is finished
and given as an output. The model’s training stops, and the
number of defined molecules to be generated is given as an
output according to the convergence criteria of the training
loss, defined as three significant figures.
The structure of the model’s architecture is defined through

hyperparameters. These variables are set as a means to guide
and direct the training and performance of the SciML model.31

Also, they can be divided into two categories: algorithm and
model parameters. The algorithm parameters consist of tuning
parameters encircling the number of epochs, the learning rate
decays, momentum, and the learning rate. At the same time,
the model parameters are composed of variables such as the
number of layers, layer type, number of neurons, and activation
function.32

The definition of these hyperparameters has major
implications for the methodology’s accuracy. In this work,
they were defined through a sensitivity analysis and can be
found in the Supporting Information of this article, Table S2.

3. RESULTS
The DGM was trained for 1000 epochs. The training was
performed in a Linux environment, in a server, through a
VirtualBox installed in a Windows 10 system. The server has an
AMD Ryzen 9 5900X 12-Core Processor 3.79 GHz; 32.0 GB
of installed RAM; an operative system of 64 bits; and an
NVIDIA GeForce RTX 3060 GPU. The Oracle VM
VirtualBox has an Ubuntu 64-bit operative system. Within
these conditions, the time required to train the neural network
is presented in Figure 4, in which the logarithm of the time in
minutes is represented for each training epoch.
In Figure 4 it is possible to verify that the required time to

train the neural network is approximately 11,000 min, which
corresponds to 7 days and 15 h of training. Considering these
computational costs for training a model, the hyperparameters’
optimization was carried out through sensitivity analysis. In
this way, finding a good model within a reasonable
computational effort was possible.
The epoch that presented the best results was chosen based

on the minimization of the UC-JSD values and the average
likelihood of training, validation, and generation. Epoch 780
was defined as the generation epoch, as it presented the
minimal UC-JSD between all the epochs (UC-JSD of
−0.0216).
Furthermore, 200 newly designed molecules were generated

based on the epoch 780, and 197 of those were considered
valid by the network. The molecules are presented in Figures 5
and 6.
The data treatment and graphs presented in this work were

implemented in Google Colab notebook in Python. The
results for the learning rate are presented in Figure 7. It is
possible to visualize that the generation epoch presents a high
value for the learning rate, but it is not the highest value. This
notice is important because the higher the value of the learning
rate, the more biased is the neural network’s prediction.
However, the lower is the value, the more overfitted is the
neural network.
In order to analyze the convergence with respect to the

number of epochs, a graph to compare the average train loss
and average valid loss for each epoch is presented in Figure 8,

Figure 4. Logarithm of time in minutes for each training epoch.
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in which the data represented by the color blue denote the
average valid loss, the data represented by the color cyan
denote the average train loss, and the red line is the result for
the generative epoch chosen. The training loss is analyzed to
evaluate the data fitting of the model. It is calculated by the
sum of the errors in each graph in the training set. Meanwhile,
the validation loss is analyzed to evaluate the model’s
performance on the validation set. It is calculated in the
same way as the training loss, i.e., it sums the errors for each
graph in the validation set.
In Figure 8 it is possible to verify that from epoch 0 to 500,

the average train loss decreases quickly, then increases, and
starts slowing decreasing. In contrast, the average valid loss
increases slowly, implying a risk of overfitting. However, from
epoch 500 to 800, the average train loss and valid loss present a

good fitting. From epoch 900 to 1000, it is possible to visualize
an increase of the average valid loss relative to the average train
loss, while the average train loss starts decreasing. There is
another symptom of overfitting. In this case, the best solution
is to stop the training a previous epoch where a better
performance was observed. Based on this analysis, the
generation epoch should be chosen between the epochs 500
and 800.
Based on the convergence and on the percentage of valid

molecules in the set (PV), percentage of unique molecules in
the set (PU), percentage of molecules that were finished
through the sampling of finish action (PPT), and percentage of
valid molecules in the set of PPT molecule (PVPT) metrics,
the generation epoch chosen was the 780. The convergence

Figure 5. New designed molecules from DGM part 1.
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and evaluation results for the generation epoch are presented
in Table 3.
In order to have a better visualization of the obtained results

from the DGM during training and validation, Figure 9
presents the average likelihood per molecule in training and
validation. In this case, the data represented by the color blue
denote the average likelihood per molecule in validation, the
data represented by the color green denote the average
likelihood per molecule in training, and the red line represents
the result for the generative epoch chosen. The average
likelihood metric is analyzed to verify the train and validation
performance, to obtain information on how likely it is to obtain
a data set as the original gave as input. Having that in mind, the

higher the value of likelihood is, the better the fit of the model
is. In Figure 9, it is possible to visualize that the chosen
generative epoch does not present the highest average
likelihood for the training and the validation. However, it is
one of the highest points of the average likelihood for both
training and validation. It was considered good enough
regarding all the selected metrics for the generative epoch, as
mentioned when discussing Figure 8 and Table 3.
The analyses of the generation results regarding the chemical

structure of the obtained molecules can be carried out through
the visualization of Figure 10. In this figure, the data
represented by the color blue denote the average number of
nodes in the resulting graphs, representing atoms in the

Figure 6. New designed molecules from DGM part 2.
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molecular structure; the data represented by the green color
denote the average number of edges in the resulting graphs,
representing the bonds per atom in the molecular structure;
and the vertical red line highlights the resulting average
number of nodes and edges per node in the resulting graphs of
the generative epoch chosen. It is possible to visualize that the
average number of nodes ranges between three and four nodes
per graph, while the average number of edges per node is
around two. For the generative epoch, the average number of
nodes and edges per node is between the common range for all
the epochs in the training, not presenting an outlier. However,
it is important to notice that the average is calculated counting

invalid molecules. So, this analysis is only performed to verify
the presence of outliers and if the epochs’ results are congruent
within themselves.
To evaluate the obtained results, the 200 molecules

generated were studied and analyzed. The general results
regarding the number of molecules that are valid, invalid,
existent, non-existent, already used in the flavor industry, and
not used in the flavor industry are presented in Table 4.
As already mentioned, the generation based on the training

epoch 780 obtained 197 valid molecules. Considering those
197 molecules, 2 of them, even though they are considered
valid and have canonical SMILES, are not recognized by the

Figure 7. Generative model’s learning rate.

Figure 8. Average train and valid loss for the 1000 training epochs.

Table 3. Convergence and Evaluation Results

epoch 780
average likelihood per molecule in validation 26.04
average likelihood per molecule in training 1.85
average likelihood per molecule in generation 0.32
UC-JSD −0.02
learning rate 9.90 × 10−5

average train loss 0.41
average valid loss 4.05
PV (0-1) 1.00
PVPT (0-1) 1.00
PPT (0-1) 1.00
run time/s 129228.44
νav 8.35
εav 1.96
PU (0-1) 0.95
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ChemSpider33 and PubChem34 online databases. The non-
existent molecules SMILES are shown in eqs 19 and 20.

= =CCCC( O)OCC(C)CCCC C(C)C (19)

= =CC1 CCCN C(C)CC1 (20)

It is important to notice that the generative model proposed
throughout this work has been implemented in order to obtain
and design molecules to be applied in the flavor industry.

However, it does not imply that the generated molecules do
not already exist or that they are not already employed in other
industrial sectors. Considering the 200 molecules obtained
through SciML, only 1% do not have a defined reaction path or
exist in the online databases. This result shows that the
generative model can be confidently applied to obtain
molecules to compose flavor-based products, not necessarily
requiring to be newly synthesized.

Figure 9. Average likelihood per molecule in training and in validation for the 1000 training epochs.

Figure 10. Average number of edges and nodes for the 1000 training epochs.
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When studying the molecules obtained through the
generation model regarding the application in the flavor
industry, 77.5% of them are already employed as flavoring
agents or flavor enhancers. The remaining 20% of valid
molecules that are not yet employed in the focused sector must
be studied, and their chemical structure must be analyzed to be
considered for the “new role” of the flavoring agent. Actually,
15% of them can be considered as a new approach to a
flavoring agent, while the other 5% are toxic molecules.
Concerning the toxic molecules, the five molecules obtained
are classified as carcinogenic. Meanwhile, the percentage of
molecules that are not yet employed in the flavor industry is
composed of molecules used in the pharmaceutical industry,
package production, lubricants, solvents, other flavors’
precursor, or perfumes. As an example, three of the obtained
molecules that are in this 15% are going to be analyzed in the
following paragraphs.
The first molecule to be analyzed is the 2-hydroxy-6-propan-

2-ylcyclohepta-2,4,6-trien-1-one (CAS number: 499-44-5), also
known as Hinokitiol, shown in eq 21 and Figure 11. It is a

natural molecule that is found in a traditional Japanese tree,
Taiwanese ninoki tree, used in the pharmaceutical industry to
regulate iron transport in animals. It is also applicable to
prevent infections, as an antistatic, as a fragrance component,
and in hair conditioning products. This molecule is already
used as a food additive in Japan. However, in the literature, it is
not possible to find information about it being used in the
flavor industry worldwide. It is an interesting molecule to be
analyzed and considered to be applied in the flavor industry
considering the pharmacological properties, the vast applica-
tion in different industries sectors, the fact that it is possible to
be naturally extracted from Cupressaceae family’s trees, and that
it was already approved as not carcinogenic in Canada.35,36

=CC(C)c1cccc(O)c( O)c1 (21)

The following obtained molecule to be analyzed is the 1,3-
benzodioxole-5-carboxylic acid (CAS number: 94-53-1), also
known as methyprylon, shown in eq 22 and Figure 12. This

molecule is used in the cosmetic industry for skin conditioning
and protection. It can be naturally extracted from the
Nectandra amazonum and Pongamia pinnata var. pinnata,
plants from tropical biome which are used in medicine. This
molecule has antifungal and skin healing properties. It is
possible to visualize in Figure 12 that this molecule has
functional groups that are common in flavored molecules, such
as ether and carboxylic acid groups. Considering the industrial
applications and properties, 1,3-benzodioxole-5-carboxylic acid
is an interesting molecule to be further studied and has its
toxicology assessed in order to consider it to be applied in the
flavor industry.37

=O C(O)c1ccc2c(c1)OCO2 (22)

Finally, the third molecule to be analyzed is the 7,7-
dimethyl-3-methylene-bicyclo[4.1.0]heptane (CAS number:
554-60-9), also known as β-carene, shown in eq 23 and Figure
13. This molecule can be extracted from the essential oil of

Algerian cypress. It is considered a volatile compound found in
herbs and has been the focus of studies regarding the use of
natural products for food preservation and in the analysis of
under-utilized herbs. The carene molecule is used in the
perfume industry. However, the β-carene could not be found
in the literature as a perfume component or flavoring agent.
Considering the studies performed and the natural aspect of
the molecule, it is important to consider a further analysis of
properties and toxicology to evaluate the application of this
molecule in the flavor industry.38

Table 4. Generated Molecule Assessment Results

categories
number of
molecules

percentage of molecules
(%)

valid molecules 197 98.5
invalid molecules 3 1.5
existent 195 97.5
non-existent 2 1
used in the flavor industry 155 77.5
not yet used in the flavor
industry

40 20

toxic 5 2.5

Figure 11. Image obtained as the output of the generative model of
the 2-hydroxy-6-propan-2-ylcyclohepta-2,4,6-trien-1-one.

Figure 12. Image obtained as the output of the generative model of
1,3-benzodioxole-5-carboxylic acid.

Figure 13. Image obtained as the output of the generative model of
7,7-dimethyl-3-methylene-bicyclo[4.1.0]heptane.
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=C C1CCC2C(C1)C2(C)C (23)

Another relevant aspect of the obtained molecules that are
valid and not yet applied in the flavor industry is the obtained
isomeric structures of molecules already applied in the flavor
industry. An example is the 2-methylbenzaldehyde (CAS
number: 529-20-4), also known as o-tolualdehyde, shown in eq
24 and Figure 14. This molecule is used as a fragrance

compound. However, as a flavoring agent, it is the p-
tolualdehyde that is used. The p-tolualdehyde has a floral,
sweet, and spicy flavor. Considering the flavor industry
application of the molecule’s para isomer, it is interesting to
analyze the possibility of using the ortho isomer as well, having
in mind that the reaction in the human body can be different
for different isomers.

=Cc1ccccc1C O (24)

It is possible to conclude that even though the generative
model designs the molecules through random sampling of
actions, it can find molecules that are already used in the flavor
industry or in other industrial. Meanwhile, it was possible to
verify that the new approach to develop flavors and flavor-
based products does not necessarily imply discovering and
trying new synthesis paths to obtain new molecules. Actually, it
is possible to discover molecules already available in the
market, some of them largely applied in other industry sectors,
that can be studied and analyzed to fulfill flavor engineering
needs. Alternatively, it is also possible to obtain through the
generative model suggestions of molecules that are already
applied in the flavor engineering field as flavoring agents or
flavor enhancers and can be considered in flavor-based product
development.

4. CONCLUSIONS
This work launches a new standpoint in flavor engineering
based on SciML. The main goal was to generate new flavored
molecules that could be synthesized and applied in the
industry to develop flavor-based products, hence addressing an
increasing challenge found in the flavor industry.
The methodology consisted of a generative framework

development to generate new flavor molecules based on a
database extracted from FlavorDB’s website. The proposed
method was able to design several molecules to be applied in
the flavor industry. The results demonstrate the overall
concept proposed in this work and its potential to help in
flavor design.
This work is focused on a methodology development to

generate flavored molecules. These generated molecules can be
evaluated concerning their existence or not in the market and

whether they can be easily synthesized or not. If they already
exist in the market but are not used in flavor-based products
yet, the search for a synthesis route is not required, and the
bureaucracy of compound regulation could be easier. To
address this issue and demonstrate this concept, a few of the
generated molecules were analyzed and their availability in the
market is shown.
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